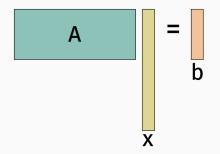
CS-GY 6763: Lecture 13 Finish Sparse Recovery and Compressed Sensing, Introduction to Spectral Sparsification

NYU Tandon School of Engineering, Prof. Christopher Musco

SPARSE RECOVERY/COMPRESSED SENSING PROBLEM SETUP

- Design a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ with $m < n, \mathbf{b} \in \mathbb{R}^{m}$.
- "Measure" $\mathbf{b} = \mathbf{A}\mathbf{x}$ for some <u>k-sparse</u> $\mathbf{x} \in \mathbb{R}^{n}$.



• Recover **x** from **b**.

Sample complexity: Can achieve $m = O(k \log n)$ or similar.

• Usually corresponds to some application-dependent cost (eg. length of time to acquire MRI, space complexity for heavy hitters problem)

Computational complexity: Naive methods take $O(n^k)$ time to recover *k*-sparse **x** from **b**.

Typically design **A** with as few rows as possible that fulfills some desired property.

- A has <u>Kruskal rank</u> *r*. All sets of *r* columns in A are linearly independent.
 - Recover vectors **x** with sparsity k = r/2.
- A is μ -incoherent. $|\mathbf{A}_i^T \mathbf{A}_j| \le \mu \|\mathbf{A}_i\|_2 \|\mathbf{A}_j\|_2$ for all columns $\mathbf{A}_i, \mathbf{A}_j, i \ne j$.
 - Recover vectors **x** with sparsity $k = 1/\mu$.
 - A obeys the (q, ϵ) -Restricted Isometry Property.
 - Recover vectors **x** with sparsity k = O(q).

Definition ((q, ϵ)-Restricted Isometry Property) A matrix A satisfies (q, ϵ)-RIP if, for all x with $||\mathbf{x}||_0 \le q$, $(1 - \epsilon)||\mathbf{x}||_2^2 \le ||\mathbf{A}\mathbf{x}||_2^2 \le (1 + \epsilon)||\mathbf{x}||_2^2$.

Argued this holds for random matrices (JL matrices) and subsampled Fourier matrices with roughly $m = O\left(\frac{k \log n}{\epsilon^2}\right)$ rows.

Theorem (ℓ_0 -minimization)

Suppose we are given $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} = \mathbf{A}\mathbf{x}$ for an unknown k-sparse $\mathbf{x} \in \mathbb{R}^n$. If \mathbf{A} is $(2k, \epsilon)$ -RIP for any $\epsilon < 1$ then \mathbf{x} is the <u>unique</u> minimizer of:

```
\min \|\mathbf{z}\|_0 \qquad subject \ to \qquad \mathbf{A}\mathbf{z} = \mathbf{b}.
```

 Establishes that information theoretically we can recover x in O(n^k) time from O(k log n) measurements.

Convex relaxation of the ℓ_0 minimization problem:

Problem (Basis Pursuit, i.e. ℓ_1 minimization.)

$$\min_{\mathbf{z}} \|\mathbf{z}\|_1 \qquad subject \text{ to} \qquad \mathbf{A}\mathbf{z} = \mathbf{b}.$$

• Objective is convex.

• Optimizing over convex set.

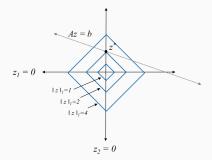
Theorem

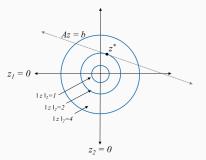
If **A** is $(3k, \epsilon)$ -RIP for $\epsilon < .17$ and $||\mathbf{x}||_0 = k$, then **x** is the unique optimal solution of the Basis Pursuit LP).

Two surprising things about this result:

- Exponentially improve computational complexity with only a <u>constant factor</u> overhead in measurement complexity.
- Typical "relax-and-round" algorithm, but rounding is not even necessary! Just return the solution of the relaxed problem.

Suppose A is 2×1 , so b is just a scalar and x is a 2-dimensional vector.





Vertices of level sets of ℓ_1 norm correspond to sparse solutions.

This is not the case e.g. for the ℓ_2 norm.

Theorem

If **A** is $(3k, \epsilon)$ -RIP for $\epsilon < .17$ and $||\mathbf{x}||_0 = k$, then **x** is the unique optimal solution of the Basis Pursuit LP).

Similar proof to ℓ_0 minimization:

- By way of contradiction, assume **x** is <u>not the optimal</u> solution. Then there exists some non-zero Δ such that:
 - $\cdot \ \|x+\Delta\|_1 \leq \|x\|_1$
 - $A(x + \Delta) = Ax$. I.e. $A\Delta = 0$.

Difference is that we can no longer assume that Δ is sparse.

We will argue that Δ is approximately sparse.

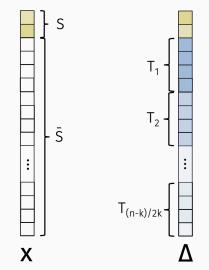
First tool:

```
For any q-sparse vector \mathbf{w}, \|\mathbf{w}\|_2 \le \|\mathbf{w}\|_1 \le \sqrt{q} \|\mathbf{w}\|_2
```

Second tool:

For any norm and vectors $\mathbf{a}, \mathbf{b}, \qquad \|\mathbf{a} + \mathbf{b}\| \ge \|\mathbf{a}\| - \|\mathbf{b}\|$

Some definitions:



BASIS PURSUIT ANALYSIS

Claim 1: $\|\Delta_S\|_1 \ge \|\Delta_{\bar{S}}\|_1$

Claim 2:
$$\|\Delta_{S}\|_{2} \ge \sqrt{2} \sum_{j \ge 2} \|\Delta_{T_{j}}\|_{2}$$
:

$$\|\mathbf{\Delta}_{S}\|_{2} \geq \frac{1}{\sqrt{k}} \|\mathbf{\Delta}_{S}\|_{1} \geq \frac{1}{\sqrt{k}} \|\mathbf{\Delta}_{\overline{S}}\|_{1} = \frac{1}{\sqrt{k}} \sum_{j \geq 1} \|\mathbf{\Delta}_{T_{j}}\|_{1}.$$

Claim: $\|\mathbf{\Delta}_{T_j}\|_1 \ge \sqrt{2k} \|\mathbf{\Delta}_{T_{j+1}}\|_2$

Finish up proof by contradiction: Recall that A is assumed to have the $(3k, \epsilon)$ RIP property.

$$0 = \|\mathbf{A}\mathbf{\Delta}\|_2 \ge \|\mathbf{A}\mathbf{\Delta}_{S\cup T_1}\|_2 - \sum_{j\ge 2} \|\mathbf{A}\mathbf{\Delta}_{T_j}\|_2$$

A lot of interest in developing even faster algorithms that avoid using the "heavy hammer" of linear programming and run in even faster than $O(n^{3.5})$ time.

- Iterative Hard Thresholding: Looks a lot like projected gradient descent. Solve min_z ||Az – b|| with gradient descent while continually projecting z back to the set of k-sparse vectors. Runs in time ~ O(nk log n) for Gaussian measurement matrices and O(n log n) for subsampled Fourer matrices.
- Other "first order" type methods: Orthogonal Matching Pursuit, CoSaMP, Subspace Pursuit, etc.

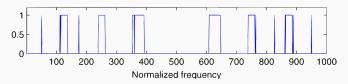
When **A** is a subsampled Fourier matrix, there are now methods that run in <u>O(k log^c n)</u> time [Hassanieh, Indyk, Kapralov, Katabi, Price, Shi, etc. 2012+].

Hold up...

Corollary: When **x** is *k*-sparse, we can compute the inverse Fourier transform F^*Fx of Fx in $O(k \log^c n)$ time!

- Randomly subsample **Fx**.
- Feed that input into our sparse recovery algorithm to extract **x**.

Fourier and inverse Fourier transforms in <u>sublinear time</u> when the output is sparse.



Applications in: Wireless communications, GPS, protein imaging, radio astronomy, etc. etc.

A LITTLE ABOUT MY RESEARCH

Theorem (Subspace Embedding)

Let $\mathbf{A} \in \mathbb{R}^{n \times d}$ be a matrix. If $\mathbf{\Pi} \in \mathbb{R}^{m \times n}$ is chosen from any distribution \mathcal{D} satisfying the Distributional JL Lemma, then with probability $1 - \delta$,

$$(1 - \epsilon) \|\mathbf{A}\mathbf{x}\|_2^2 \le \|\mathbf{\Pi}\mathbf{A}\mathbf{x}\|_2^2 \le (1 + \epsilon) \|\mathbf{A}\mathbf{x}\|_2^2$$

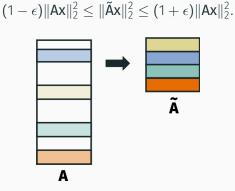
for all $\mathbf{x} \in \mathbb{R}^d$, as long as $m = O\left(\frac{d + \log(1/\delta)}{\epsilon^2}\right)$.

Implies regression result, and more.

Example: The any singular value $\tilde{\sigma}_i$ of **IA** is a $(1 \pm \epsilon)$ approximation to the true singular value σ_i of **B**.

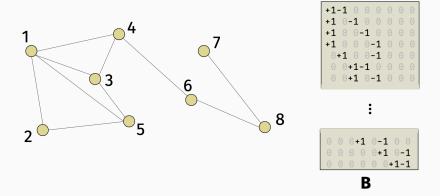
Recurring research interest: Replace random projection methods with <u>random sampling methods</u>. Prove that for essentially all problems of interest, can obtain same asymptotic runtimes.

Sampling has the added benefit of <u>preserving matrix sparsity</u> or structure, and can be applied in a <u>wider variety of settings</u> where random projections are too expensive. **Goal:** Can we use sampling to obtain subspace embeddings? I.e. for a given **A** find **Ã** whose rows are a (weighted) subset of rows in **A** and:



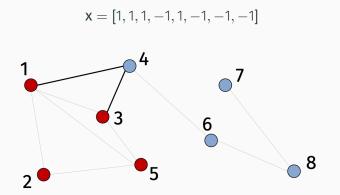
EXAMPLE WHERE STRUCTURE MATTERS

Let **B** be the edge-vertex incidence matrix of a graph *G* with vertex set *V*, |V| = d. Recall that $\mathbf{B}^T \mathbf{B} = \mathbf{L}$.

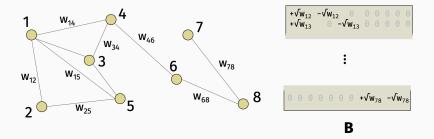


Recall that if $\mathbf{x} \in \{-1, 1\}^n$ is the <u>cut indicator vector</u> for a cut *S* in the graph, then $\frac{1}{4} \|\mathbf{B}\mathbf{x}\|_2^2 = \operatorname{cut}(S, V \setminus S)$.

LINEAR ALGEBRAIC VIEW OF CUTS

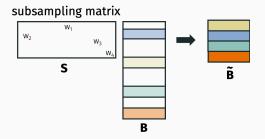


 $\mathbf{x} \in \{-1, 1\}^d$ is the <u>cut indicator vector</u> for a cut *S* in the graph, then $\frac{1}{4} \|\mathbf{Bx}\|_2^2 = \mathsf{cut}(S, V \setminus S)$ Extends to weighted graphs, as long as square root of weights is included in **B**. Still have the $\mathbf{B}^T \mathbf{B} = \mathbf{L}$.



And still have that if $\mathbf{x} \in \{-1, 1\}^d$ is the <u>cut indicator vector</u> for a cut S in the graph, then $\frac{1}{4} ||\mathbf{Bx}||_2^2 = \operatorname{cut}(S, V \setminus S)$.

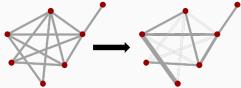
Goal: Approximate **B** by a weighted subsample. I.e. by \tilde{B} with $m \ll |E|$ rows, each of which is a scaled copy of a row from **B**.



Natural goal: \tilde{B} is a subspace embedding for **B**. In other words, \tilde{B} has $\approx O(d)$ rows and for all **x**,

$$(1-\epsilon) \|\mathbf{B}\mathbf{x}\|_2^2 \le \|\mathbf{\tilde{B}}\mathbf{x}\|_2^2 \le (1+\epsilon) \|\mathbf{B}\mathbf{x}\|_2^2.$$

B is itself an edge-vertex incidence matrix for some <u>sparser</u> graph *G*, which preserves many properties about *G*! *G* is called a <u>spectral sparsifier</u> for *G*.



For example, we have that for any set S,

 $(1 - \epsilon) \operatorname{cut}_G(S, V \setminus S) \leq \operatorname{cut}_{\widetilde{G}}(S, V \setminus S) \leq (1 + \epsilon) \operatorname{cut}_G(S, V \setminus S).$

So \tilde{G} can be used in place of G in solving e.g. max/min cut problems, balanced cut problems, etc.

In contrast **ΠB** would look nothing like an edge-vertex incidence matrix if **Π** is a JL matrix.

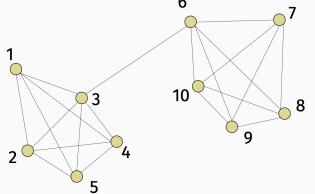
Spectral sparsifiers were introduced in 2004 by Spielman and Teng in an influential paper on faster algorithms for solving Laplacian linear systems.

- Generalize the cut sparsifiers of Benczur, Karger '96.
- Further developed in work by Spielman, Srivastava + Batson, '08.
- Have had huge influence in algorithms, and other areas of mathematics – this line of work lead to the 2013 resolution of the Kadison-Singer problem in functional analysis by Marcus, Spielman, Srivastava.

Rest of class: Learn about an important random sampling algorithm for constructing spectral sparsifiers, and subspace embeddings for matrices more generally.

Goal: Find $\tilde{\mathbf{A}}$ such that $\|\tilde{\mathbf{A}}\mathbf{x}\|_2^2 = (1 \pm \epsilon)\|\mathbf{A}\mathbf{x}\|_2^2$ for all \mathbf{x} .

Possible Approach: Construct à by <u>uniformly sampling</u> rows from A. 6



Can check that this approach fails even for the special case of a graph vertex-edge incidence matrix.

Key idea: <u>Importance sampling</u>. Select some rows with higher probability.

Suppose A has *n* rows $\mathbf{a}_1 \dots, \mathbf{a}_n$. Let $p_1, \dots, p_n \in [0, 1]$ be sampling probabilities. Construct $\tilde{\mathbf{A}}$ as follows:

- For i = 1, ..., n
 - Select \mathbf{a}_i with probability p_i .
 - If \mathbf{a}_i is selected, add the scaled row $\frac{1}{\sqrt{p_i}}\mathbf{a}_i$ to \tilde{A} .

Remember, ultimately want that $\|\tilde{\mathbf{A}}\mathbf{x}\|_2^2 = (1 \pm \epsilon)\|\mathbf{A}\mathbf{x}\|_2^2$ for all \mathbf{x} . Claim 1: $\mathbb{E}[\|\tilde{\mathbf{A}}\mathbf{x}\|_2^2] = \|\mathbf{A}\mathbf{x}\|_2^2$.

Claim 2: Expected number of rows in \tilde{A} is $\sum_{i=1}^{n} p_i$.

How should we choose the probabilities p_1, \ldots, p_n ?

- 1. Introduce the idea of row leverage scores.
- 2. Motivate why these scores make for good sampling probabilities.
- 3. Prove that sampling with probabilities proportional to these scores yields a subspace embedding (or a spectral sparsifier) with a near optimal number of rows.

Let $\mathbf{a}_1, \ldots, \mathbf{a}_n$ be A's rows. We define the statistical leverage score τ_i of row \mathbf{a}_i as:

$$\tau_i = \mathbf{a}_i^T (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{a}_i.$$

We will show that τ_i is a natural <u>importance measure</u> for each row in **A**.

We have that $\tau_i \in [0, 1]$ and $\sum_{i=1}^n \tau_i = d$ if **A** has *d* columns.

MAIN RESULT

For i = 1, ..., n,

$$\tau_i = \mathbf{a}_i^T (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{a}_i.$$

Theorem (Subspace Embedding from Subsampling)

For each *i*, and fixed constant *c*, let $p_i = \min\left(1, \frac{c \log d}{\epsilon^2} \cdot \tau_i\right)$. Let \tilde{A} have rows sampled from A with probabilities p_1, \ldots, p_n . With probability 9/10,

$$(1-\epsilon) \|\mathbf{A}\mathbf{x}\|_2^2 \le \|\mathbf{\tilde{A}}\mathbf{x}\|_2^2 \le (1+\epsilon) \|\mathbf{A}\mathbf{x}\|_2^2,$$

and \tilde{A} has $O(d \log d/\epsilon^2)$ rows in expectation.

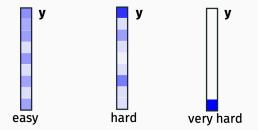
How should we choose the probabilities p_1, \ldots, p_n ?

As usual, consider a single vector \mathbf{x} and understand how to sample to preserve norm of $\mathbf{y} = \mathbf{A}\mathbf{x}$:

$$\|\mathbf{\tilde{A}}\mathbf{x}\|_{2}^{2} = \|\mathbf{S}\mathbf{A}\mathbf{x}\|_{2}^{2} = \|\mathbf{S}\mathbf{y}\|_{2}^{2} \approx \|\mathbf{y}\|_{2}^{2} = \|\mathbf{A}\mathbf{x}\|_{2}^{2}.$$

Then we can union bound over an ϵ -net to extend to all **x**.

As discussed a few lectures ago, uniform sampling only works well if y = Ax is "flat".



Instead consider sampling with probabilities at least proportional to the magnitude of **y**'s entries:

$$p_i > c \cdot \frac{y_i^2}{\|y\|_2^2}$$
 for constant *c* to be determined.

Let $\tilde{\mathbf{y}}$ be the subsampled \mathbf{y} . Recall that, when sampling with probabilities p_1, \ldots, p_n , for $i = 1, \ldots, n$ we add y_i to $\tilde{\mathbf{y}}$ with probability p_i and reweight by $\frac{1}{\sqrt{p_i}}$.

$$\|\tilde{\mathbf{y}}\|_2^2 = \sum_{i=1}^n \frac{y_i^2}{p_i} \cdot Z_i \quad \text{where} \quad Z_i = \begin{cases} 1 \text{ with probability } p_i \\ 0 \text{ otherwise} \end{cases}$$

$$\mathsf{Var}[\|\tilde{\mathbf{y}}\|_{2}^{2}] = \sum_{i=1}^{n} \frac{y_{i}^{2}}{p_{i}} \cdot \mathsf{Var}[Z_{i}] \le \sum_{i=1}^{n} \frac{y_{i}^{4}}{p_{i}^{2}} \cdot p_{i} = \frac{y_{i}^{4}}{p_{i}}$$

We set $p_i = c \cdot \frac{y_i^2}{\|y\|_2^2}$ so get total variance: $\frac{1}{c} \|y\|_2^4$ Using a Bernstein bound (or Chebyshev's inequality if you don't care about the δ dependence) we have that if $c = \frac{\log(1/\delta)}{c^2}$ then:

$$\Pr[\left|\|\tilde{\mathbf{y}}\|_2^2 - \|\mathbf{y}\|_2^2\right| \ge \epsilon \|\mathbf{y}\|_2^2] \le \delta.$$

The number of samples we take in expectation is:

$$\sum_{i=1}^{n} p_i = \sum_{i=1}^{n} c \cdot \frac{y_i^2}{\|y_i\|_2^2} = \frac{\log(1/\delta)}{\epsilon^2}.$$

We don't know $y_1, \ldots, y_n!$ And in fact, these values aren't fixed. We wanted to prove a bound for $\mathbf{y} = \mathbf{A}\mathbf{x}$ for any \mathbf{x} .

Idea behind leverage scores: Sample row *i* from A using the worst case (largest necessary) sampling probability:

$$\tau_i = \max_{\mathbf{x}} \frac{y_i^2}{\|\mathbf{y}\|_2^2} \qquad \text{where} \qquad \mathbf{y} = \mathbf{A}\mathbf{x}.$$

If we sample with probability $p_i = \frac{1}{\epsilon^2} \cdot \tau_i$, then we will be sampling by at least $\frac{1}{\epsilon^2} \cdot \frac{y_i^2}{\|\mathbf{y}\|_2^2}$, <u>no matter what **y** is</u>.

Two concerns:

1) How to compute τ_1, \ldots, τ_n ?

2) the number of samples we take will be roughly $\sum_{i=1}^{n} \tau_i$. How do we bound this?

SENSITIVITY SAMPLING

$$au_i = \max_{\mathbf{x}} \frac{y_i^2}{\|\mathbf{y}\|_2^2}$$
 where $\mathbf{y} = \mathbf{A}\mathbf{x}$.

Recall Cauchy-Schwarz inequality: $(w^T z)^2 \le w^T w \cdot z^T z$

Leverage score sampling:

• For *i* = 1, ..., *n*,

• Compute
$$\tau_i = \mathbf{a}_i^T (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{a}_i$$
.

• Set
$$p_i = \frac{c \log(1/\delta)}{\epsilon^2} \cdot \tau_i$$
.

• Add row \mathbf{a}_i to $\tilde{\mathbf{A}}$ with probability p_i and reweight by $\frac{1}{\sqrt{p_i}}$.

For any fixed **x**, we will have that $(1 - \epsilon) \|\mathbf{A}\mathbf{x}\|_2^2 \le \|\mathbf{\tilde{A}}\mathbf{x}\|_2^2 \le (1 + \epsilon) \|\mathbf{A}\mathbf{x}\|_2^2$ with probability $(1 - \delta)$.

How many rows do we sample in expectation?

Claim: No matter how large *n* is, $\sum_{i=1}^{n} \tau_i = d$ a matrix $\mathbf{A} \in \mathbb{R}^d$.

"Zero-sum" law for the importance of matrix rows.

Leverage score sampling:

• For *i* = 1, ..., *n*,

• Compute
$$\tau_i = \mathbf{a}_i^T (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{a}_i$$
.

• Set
$$p_i = \frac{c \log(1/\delta)}{\epsilon^2} \cdot \tau_i$$
.

• Add row \mathbf{a}_i to $\tilde{\mathbf{A}}$ with probability p_i and reweight by $\frac{1}{\sqrt{p_i}}$.

For any fixed **x**, we will have that $(1 - \epsilon) \|\mathbf{A}\mathbf{x}\|_2^2 \leq \|\mathbf{\tilde{A}}\mathbf{x}\|_2^2 \leq (1 + \epsilon) \|\mathbf{A}\mathbf{x}\|_2^2$ with high probability. And since $\sum_{i=1}^n p_i = \frac{c \log(1/\delta)}{\epsilon^2} \cdot \sum_{i=1}^n \tau_i$, $\mathbf{\tilde{A}}$ contains $O\left(\frac{d \log(1/\delta)}{\epsilon^2}\right)$ rows in expectation.

Last step: need to extend to all **x**.

MAIN RESULT

Naive ϵ -net argument leads to d^2 dependence since we need to set $\delta = c^d$. Getting the right $d \log d$ dependence below requires a "matrix Chernoff bound" (see e.g. Tropp 2015).

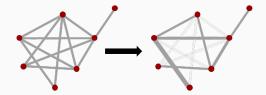
Theorem (Subspace Embedding from Subsampling)

For each *i*, and fixed constant *c*, let $p_i = \min\left(1, \frac{c \log d}{\epsilon^2} \cdot \tau_i\right)$. Let \tilde{A} have rows sampled from A with probabilities p_1, \ldots, p_n . With probability 9/10,

 $(1-\epsilon) \|\mathbf{A}\mathbf{x}\|_2^2 \le \|\mathbf{\tilde{A}}\mathbf{x}\|_2^2 \le (1+\epsilon) \|\mathbf{A}\mathbf{x}\|_2^2,$

and \tilde{A} has $O(d \log d/\epsilon^2)$ rows in expectation.

For any graph G with d nodes, there exists a graph \tilde{G} with $O(d \log d/\epsilon^2)$ edges such that, for all \mathbf{x} , $\|\mathbf{\tilde{B}x}\|_2^2 = (1 \pm \epsilon) \|\mathbf{Bx}\|_2^2$.

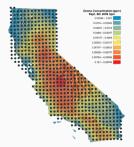


As a result, the value of any cut in \tilde{G} is within a $(1 \pm \epsilon)$ factor of the value in *G*, the Laplacian eigenvalues are with a $(1 \pm \epsilon)$ factors, etc.

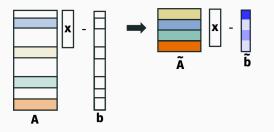
In many applications, computational costs are second order to data collection costs. We have a huge range of possible data points $\mathbf{a}_1, \ldots, \mathbf{a}_n$ that we can collect labels/values b_1, \ldots, b_n for. Goal is to learn \mathbf{x} such that:

 $\mathbf{a}_i^T \mathbf{x} \approx b_i$.

Want to do so after observing as few b_1, \ldots, b_n as possible. Applications include healthcare, environmental science, etc.



Can be solved via random sampling for linear models.



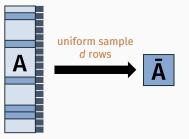
Claim: Let \tilde{A} is an O(1)-factor subspace embedding for A (obtained via leverage score sampling). Then $\tilde{x} = \arg \min \|\tilde{A}x - \tilde{b}\|_2^2$ satisfies:

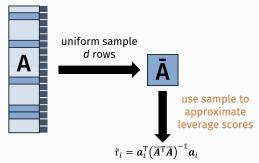
 $\|A\tilde{x} - b\|_2^2 \le \mathit{O}(1) \|Ax^* - b\|_2^2,$

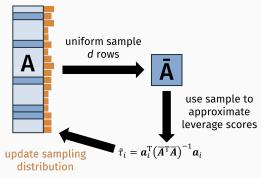
where $\mathbf{x}^* = \arg \min \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$. Computing $\tilde{\mathbf{x}}$ only requires collecting $O(d \log d)$ labels (independent of n).

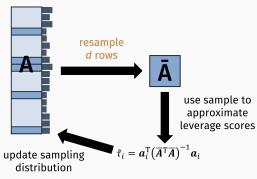
Lots of applications:

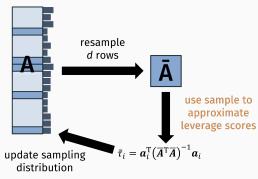
- Robust bandlimited and multiband interpolation [STOC 2019].
- Active learning for Gaussian process regression [NeurIPS 2020].
- + Active learning beyond the ℓ_2 norm [Preprint 2021]
- Active learning for polynomial regression [Preprint 2021]
- DOE Grant on "learning based" algorithms for solving parametric partial differential equations.

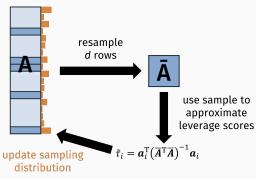


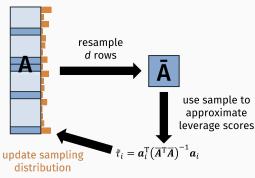










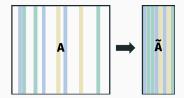


After $O(\log n)$ rounds, $\tilde{\tau}_i \approx \tau_i$ for all *i*.

Problem: Sometimes we want to compress down to $\ll d$ rows or columns. E.g. we don't need a full subspace embedding, but just want to find a near optimal rank *k* approximation.

Approach: Use "regularized" version of the leverage scores:

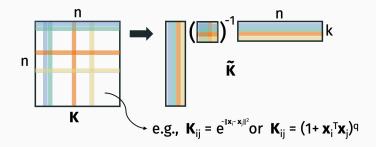
$$\bar{\tau}_i = \mathbf{a}_i^T (\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{a}_i$$



Result: Sample $O(k \log k/\epsilon)$ columns whose span contains a near-optimal low-approximation to **A** (SODA 2017).

EXAMPLE RESULT: SUBLINEAR TIME KERNEL APPROXIMATION

The first $O(nk^2/\epsilon^2)$ time algorithm¹ for near optimal rank-*k* approximation of any $n \times n$ positive semidefinite kernel matrix:



Based on the classic Nyström method. Importantly, does not even require constructing **K** explicitly, which takes $O(n^2)$ time.

¹NeurIPS 2017.

Highlights of the semester for me:

- Very active office hours!
- Large number of students presenting at the reading group. Got to learn about a lot of your reseach interests.
- Lots of collaboration between students.