
CS-GY 6763: Lecture 13
Finish Sparse Recovery and Compressed
Sensing, Introduction to Spectral Sparsification

NYU Tandon School of Engineering, Prof. Christopher Musco
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SPARSE RECOVERY/COMPRESSED SENSING PROBLEM SETUP

• Design a matrix A ∈ Rm×n with m < n, b ∈ Rm.
• “Measure” b = Ax for some k-sparse x ∈ Rn.

• Recover x from b.
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PERFORMANCE GOALS

Sample complexity: Can achieve m = O(k log n) or similar.

• Usually corresponds to some application-dependent cost
(eg. length of time to acquire MRI, space complexity for
heavy hitters problem)

Computational complexity: Naive methods take O(nk) time to
recover k-sparse x from b.
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SAMPLE COMPLEXITY

Typically design A with as few rows as possible that fulfills
some desired property.

• A has Kruskal rank r. All sets of r columns in A are linearly
independent.

• Recover vectors x with sparsity k = r/2.
• A is µ-incoherent. |ATi Aj| ≤ µ∥Ai∥2∥Aj∥2 for all columns
Ai,Aj, i ̸= j.

• Recover vectors x with sparsity k = 1/µ.
A obeys the (q, ϵ)-Restricted Isometry Property.

• Recover vectors x with sparsity k = O(q).
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RESTRICTED ISOMETRY PROPERTY

Definition ((q, ϵ)-Restricted Isometry Property)
A matrix A satisfies (q, ϵ)-RIP if, for all x with ∥x∥0 ≤ q,

(1− ϵ)∥x∥22 ≤ ∥Ax∥22 ≤ (1+ ϵ)∥x∥22.

Argued this holds for random matrices (JL matrices) and
subsampled Fourier matrices with roughly m = O

(
k log n
ϵ2

)
rows.
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FIRST SPARSE RECOVERY RESULT

Theorem (ℓ0-minimization)
Suppose we are given A ∈ Rm×n and b = Ax for an unknown
k-sparse x ∈ Rn. If A is (2k, ϵ)-RIP for any ϵ < 1 then x is the
unique minimizer of:

min∥z∥0 subject to Az = b.

• Establishes that information theoretically we can recover x
in O(nk) time from O(k log n) measurements.

6



POLYNOMIAL TIME SPARSE RECOVERY

Convex relaxation of the ℓ0 minimization problem:

Problem (Basis Pursuit, i.e. ℓ1 minimization.)

min
z
∥z∥1 subject to Az = b.

• Objective is convex.

• Optimizing over convex set.
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BASIS PURSUIT ANALYSIS

Theorem
If A is (3k, ϵ)-RIP for ϵ < .17 and ∥x∥0 = k, then x is the unique
optimal solution of the Basis Pursuit LP).

Two surprising things about this result:

• Exponentially improve computational complexity with only
a constant factor overhead in measurement complexity.

• Typical “relax-and-round” algorithm, but rounding is not
even necessary! Just return the solution of the relaxed
problem.
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BASIS PURSUIT INTUITION

Suppose A is 2× 1, so b is just a scalar and x is a
2-dimensional vector.

Vertices of level sets of ℓ1 norm
correspond to sparse solutions.

This is not the case e.g. for the ℓ2

norm.
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BASIS PURSUIT ANALYSIS

Theorem
If A is (3k, ϵ)-RIP for ϵ < .17 and ∥x∥0 = k, then x is the unique
optimal solution of the Basis Pursuit LP).

Similar proof to ℓ0 minimization:

• By way of contradiction, assume x is not the optimal
solution. Then there exists some non-zero ∆ such that:

• ∥x+∆∥1 ≤ ∥x∥1
• A(x+∆) = Ax. I.e. A∆ = 0.

Difference is that we can no longer assume that ∆ is sparse.

We will argue that ∆ is approximately sparse.
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TOOLS NEEDED

First tool:

For any q-sparse vector w, ∥w∥2 ≤ ∥w∥1 ≤
√
q∥w∥2

Second tool:

For any norm and vectors a,b, ∥a+ b∥ ≥ ∥a∥ − ∥b∥
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BASIS PURSUIT ANALYSIS

Some definitions:

T1 contains the 2k indices with largest value in ∆ that are zero
in x. T2 contains the next 2k largest entries, etc.
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BASIS PURSUIT ANALYSIS

Claim 1: ∥∆S∥1 ≥ ∥∆S̄∥1
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BASIS PURSUIT ANALYSIS

Claim 2: ∥∆S∥2 ≥
√
2
∑

j≥2 ∥∆Tj∥2:

∥∆s∥2 ≥
1√
k
∥∆S∥1 ≥

1√
k
∥∆S̄∥1 =

1√
k

∑
j≥1

∥∆Tj∥1.

Claim: ∥∆Tj∥1 ≥
√
2k∥∆Tj+1∥2
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BASIS PURSUIT ANALYSIS

Finish up proof by contradiction: Recall that A is assumed to
have the (3k, ϵ) RIP property.

0 = ∥A∆∥2 ≥ ∥A∆S∪T1∥2 −
∑
j≥2

∥A∆Tj∥2
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FASTER METHODS

A lot of interest in developing even faster algorithms that
avoid using the “heavy hammer” of linear programming and
run in even faster than O(n3.5) time.

• Iterative Hard Thresholding: Looks a lot like projected
gradient descent. Solve minz ∥Az− b∥ with gradient
descent while continually projecting z back to the set of
k-sparse vectors. Runs in time ∼ O(nk log n) for Gaussian
measurement matrices and O(n log n) for subsampled
Fourer matrices.

• Other “first order” type methods: Orthogonal Matching
Pursuit, CoSaMP, Subspace Pursuit, etc.
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FASTER METHODS

When A is a subsampled Fourier matrix, there are now
methods that run in O(k logc n) time [Hassanieh, Indyk,
Kapralov, Katabi, Price, Shi, etc. 2012+].

Hold up...
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SPARSE FOURIER TRANSFORM

Corollary: When x is k-sparse, we can compute the inverse
Fourier transform F∗Fx of Fx in O(k logc n) time!

• Randomly subsample Fx.
• Feed that input into our sparse recovery algorithm to
extract x.

Fourier and inverse Fourier transforms in sublinear time when
the output is sparse.

Applications in: Wireless communications, GPS, protein
imaging, radio astronomy, etc. etc. 18



A LITTLE ABOUT MY RESEARCH
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SUBSPACE EMBEDDINGS REWORDED

Theorem (Subspace Embedding)
Let A ∈ Rn×d be a matrix. If Π ∈ Rm×n is chosen from any
distribution D satisfying the Distributional JL Lemma, then
with probability 1− δ,

(1− ϵ)∥Ax∥22 ≤ ∥ΠAx∥22 ≤ (1+ ϵ)∥Ax∥22

for all x ∈ Rd, as long as m = O
(
d+log(1/δ)

ϵ2

)
.

Implies regression result, and more.

Example: The any singular value σ̃i of ΠA is a (1± ϵ)

approximation to the true singular value σi of B.
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SUBSAMPLING METHODS

Recurring research interest: Replace random projection
methods with random sampling methods. Prove that for
essentially all problems of interest, can obtain same

asymptotic runtimes.

Sampling has the added benefit of preserving matrix sparsity
or structure, and can be applied in a wider variety of settings

where random projections are too expensive.
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SUBSAMPLING METHODS

Goal: Can we use sampling to obtain subspace embeddings?
I.e. for a given A find Ã whose rows are a (weighted) subset of
rows in A and:

(1− ϵ)∥Ax∥22 ≤ ∥Ãx∥22 ≤ (1+ ϵ)∥Ax∥22.

21



EXAMPLE WHERE STRUCTURE MATTERS

Let B be the edge-vertex incidence matrix of a graph G with
vertex set V, |V| = d. Recall that BTB = L.

Recall that if x ∈ {−1, 1}n is the cut indicator vector for a cut S
in the graph, then 1

4∥Bx∥22 = cut(S, V \ S). 22



LINEAR ALGEBRAIC VIEW OF CUTS

x = [1, 1, 1,−1, 1,−1,−1,−1]

x ∈ {−1, 1}d is the cut indicator vector for a cut S in the graph,
then 1

4∥Bx∥22 = cut(S, V \ S)
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WEIGHTED CUTS

Extends to weighted graphs, as long as square root of weights
is included in B. Still have the BTB = L.

And still have that if x ∈ {−1, 1}d is the cut indicator vector for
a cut S in the graph, then 1

4∥Bx∥22 = cut(S, V \ S).
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SPECTRAL SPARSIFICATION

Goal: Approximate B by a weighted subsample. I.e. by B̃ with
m ≪ |E| rows, each of which is a scaled copy of a row from B.

Natural goal: B̃ is a subspace embedding for B. In other words,
B̃ has ≈ O(d) rows and for all x,

(1− ϵ)∥Bx∥22 ≤ ∥B̃x∥22 ≤ (1+ ϵ)∥Bx∥22.
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HISTORY SPECTRAL SPARSIFICATION

B̃ is itself an edge-vertex incidence matrix for some sparser
graph G̃, which preserves many properties about G! G̃ is called
a spectral sparsifier for G.

For example, we have that for any set S,

(1− ϵ) cutG(S, V \ S) ≤ cutG̃(S, V \ S) ≤ (1+ ϵ) cutG(S, V \ S).

So G̃ can be used in place of G in solving e.g. max/min cut
problems, balanced cut problems, etc.

In contrast ΠB would look nothing like an edge-vertex
incidence matrix if Π is a JL matrix.
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HISTORY OF SPECTRAL SPARSIFICATION

Spectral sparsifiers were introduced in 2004 by Spielman and
Teng in an influential paper on faster algorithms for solving
Laplacian linear systems.

• Generalize the cut sparsifiers of Benczur, Karger ‘96.
• Further developed in work by Spielman, Srivastava +
Batson, ‘08.

• Have had huge influence in algorithms, and other areas of
mathematics – this line of work lead to the 2013 resolution
of the Kadison-Singer problem in functional analysis by
Marcus, Spielman, Srivastava.

Rest of class: Learn about an important random sampling
algorithm for constructing spectral sparsifiers, and subspace
embeddings for matrices more generally.
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NATURAL FIRST ATTEMPT

Goal: Find Ã such that ∥Ãx∥22 = (1± ϵ)∥Ax∥22 for all x.

Possible Approach: Construct Ã by uniformly sampling rows
from A.

Can check that this approach fails even for the special case of
a graph vertex-edge incidence matrix. 28



IMPORTANCE SAMPLING FRAMEWORK

Key idea: Importance sampling. Select some rows with higher
probability.

Suppose A has n rows a1 . . . , an. Let p1, . . . ,pn ∈ [0, 1] be
sampling probabilities. Construct Ã as follows:

• For i = 1, . . . ,n
• Select ai with probability pi.
• If ai is selected, add the scaled row 1√pi

ai to Ã.

Remember, ultimately want that ∥Ãx∥22 = (1± ϵ)∥Ax∥22 for all x.

Claim 1: E[∥Ãx∥22] = ∥Ax∥22.

Claim 2: Expected number of rows in Ã is
∑n

i=1 pi.
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LECTURE OUTLINE

How should we choose the probabilities p1, . . . ,pn?

1. Introduce the idea of row leverage scores.
2. Motivate why these scores make for good sampling

probabilities.
3. Prove that sampling with probabilities proportional to

these scores yields a subspace embedding (or a spectral
sparsifier) with a near optimal number of rows.
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MAIN RESULT

Let a1, . . . , an be A’s rows. We define the statistical leverage
score τi of row ai as:

τi = aTi (ATA)−1ai.

We will show that τi is a natural importance measure for each
row in A.

We have that τi ∈ [0, 1] and
∑n

i=1 τi = d if A has d columns.
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MAIN RESULT

For i = 1, . . . ,n,

τi = aTi (ATA)−1ai.

Theorem (Subspace Embedding from Subsampling)

For each i, and fixed constant c, let pi = min
(
1, c log d

ϵ2
· τi

)
. Let

Ã have rows sampled from A with probabilities p1, . . . ,pn.
With probability 9/10,

(1− ϵ)∥Ax∥22 ≤ ∥Ãx∥22 ≤ (1+ ϵ)∥Ax∥22,

and Ã has O(d log d/ϵ2) rows in expectation.
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VECTOR SAMPLING

How should we choose the probabilities p1, . . . ,pn?

As usual, consider a single vector x and understand how to
sample to preserve norm of y = Ax:

∥Ãx∥22 = ∥SAx∥22 = ∥Sy∥22 ≈ ∥y∥22 = ∥Ax∥22.

Then we can union bound over an ϵ-net to extend to all x.
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VECTOR SAMPLING

As discussed a few lectures ago, uniform sampling only works
well if y = Ax is “flat”.

Instead consider sampling with probabilities at least
proportional to the magnitude of y’s entries:

pi > c ·
y2i

∥y∥22
for constant c to be determined.
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VARIANCE ANALYSIS

Let ỹ be the subsampled y. Recall that, when sampling with
probabilities p1, . . . ,pn, for i = 1, . . . ,n we add yi to ỹ with
probability pi and reweight by 1√pi

.

∥ỹ∥22 =
n∑
i=1

y2i
pi

· Zi where Zi =

1 with probability pi
0 otherwise

Var[∥ỹ∥22] =
n∑
i=1

y2i
pi

· Var[Zi] ≤
n∑
i=1

y4i
p2
i
· pi =

y4i
pi

We set pi = c · y2i
∥y∥22

so get total variance:

1
c∥y∥

4
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VARIANCE ANALYSIS

Using a Bernstein bound (or Chebyshev’s inequality if you don’t
care about the δ dependence) we have that if c = log(1/δ)

ϵ2
then:

Pr[
∣∣∥ỹ∥22 − ∥y∥22

∣∣ ≥ ϵ∥y∥22] ≤ δ.

The number of samples we take in expectation is:

n∑
i=1

pi =
n∑
i=1

c ·
y2i

∥yi∥22
=

log(1/δ)
ϵ2

.
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MAJOR CAVEAT!

We don’t know y1, . . . , yn! And in fact, these values aren’t fixed.
We wanted to prove a bound for y = Ax for any x.

Idea behind leverage scores: Sample row i from A using the
worst case (largest necessary) sampling probability:

τi = max
x

y2i
∥y∥22

where y = Ax.

If we sample with probability pi = 1
ϵ2
· τi, then we will be

sampling by at least 1
ϵ2
· y2i
∥y∥22

, no matter what y is.

Two concerns:

1) How to compute τ1, . . . , τn?

2) the number of samples we take will be roughly
∑n

i=1 τi. How
do we bound this? 37



SENSITIVITY SAMPLING

τi = max
x

y2i
∥y∥22

where y = Ax.

Recall Cauchy-Schwarz inequality: (wTz)2 ≤ wTw · zTz
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LEVERAGE SCORE SAMPLING

Leverage score sampling:

• For i = 1, . . . ,n,
• Compute τi = aTi (ATA)−1ai.
• Set pi =

c log(1/δ)
ϵ2 · τi.

• Add row ai to Ã with probability pi and reweight by 1√pi
.

For any fixed x, we will have that
(1− ϵ)∥Ax∥22 ≤ ∥Ãx∥22 ≤ (1+ ϵ)∥Ax∥22 with probability (1− δ).

How many rows do we sample in expectation?
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SUM OF LEVERAGE SCORES

Claim: No matter how large n is,
∑n

i=1 τi = d a matrix A ∈ Rd.

“Zero-sum” law for the importance of matrix rows.

40



LEVERAGE SCORE SAMPLING

Leverage score sampling:

• For i = 1, . . . ,n,
• Compute τi = aTi (ATA)−1ai.
• Set pi =

c log(1/δ
ϵ2 · τi.

• Add row ai to Ã with probability pi and reweight by 1√pi
.

For any fixed x, we will have that
(1− ϵ)∥Ax∥22 ≤ ∥Ãx∥22 ≤ (1+ ϵ)∥Ax∥22 with high probability.

And since
∑n

i=1 pi =
c log(1/δ

ϵ2
·
∑n

i=1 τi, Ã contains O
(
d log(1/δ)

ϵ2

)
rows in expectation.

Last step: need to extend to all x.
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MAIN RESULT

Naive ϵ-net argument leads to d2 dependence since we need
to set δ = cd. Getting the right d log d dependence below
requires a “matrix Chernoff bound” (see e.g. Tropp 2015).

Theorem (Subspace Embedding from Subsampling)

For each i, and fixed constant c, let pi = min
(
1, c log d

ϵ2
· τi

)
. Let

Ã have rows sampled from A with probabilities p1, . . . ,pn.
With probability 9/10,

(1− ϵ)∥Ax∥22 ≤ ∥Ãx∥22 ≤ (1+ ϵ)∥Ax∥22,

and Ã has O(d log d/ϵ2) rows in expectation.
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SPECTRAL SPARSIFICATION COROLLARY

For any graph G with d nodes, there exists a graph G̃ with
O(d log d/ϵ2) edges such that, for all x, ∥B̃x∥22 = (1± ϵ)∥Bx∥22.

As a result, the value of any cut in G̃ is within a (1± ϵ) factor of
the value in G, the Laplacian eigenvalues are with a (1± ϵ)

factors, etc.
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ANOTHER APPLICATION: ACTIVE REGRESSION

In many applications, computational costs are second order to
data collection costs. We have a huge range of possible data
points a1, . . . , an that we can collect labels/values b1, . . . ,bn
for. Goal is to learn x such that:

aTi x ≈ bi.

Want to do so after observing as few b1, . . . ,bn as possible.
Applications include healthcare, environmental science, etc.
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ANOTHER APPLICATION: ACTIVE REGRESSION

Can be solved via random sampling for linear models.
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ANOTHER APPLICATION: ACTIVE REGRESSION

Claim: Let Ã is an O(1)-factor subspace embedding for A
(obtained via leverage score sampling). Then
x̃ = argmin ∥Ãx− b̃∥22 satisfies:

∥Ax̃− b∥22 ≤ O(1)∥Ax∗ − b∥22,

where x∗ = argmin ∥Ax− b∥22. Computing x̃ only requires
collecting O(d log d) labels (independent of n).

Lots of applications:

• Robust bandlimited and multiband interpolation [STOC 2019].

• Active learning for Gaussian process regression [NeurIPS 2020].

• Active learning beyond the ℓ2 norm [Preprint 2021]

• Active learning for polynomial regression [Preprint 2021]

• DOE Grant on “learning based” algorithms for solving
parametric partial differential equations.
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SOME OTHER THINGS I HAVE WORKED ON

Problem: Computing leverage scores τi = aTi (ATA)−1ai is
expensive.

After O(log n) rounds, τ̃i ≈ τi for all i.

Main algorithmic idea: Bootstrap leverage score sampling from
uniform sampling (ITCS 2015). 47
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SOME THINGS I HAVE WORKED ON

Problem: Sometimes we want to compress down to ≪ d rows
or columns. E.g. we don’t need a full subspace embedding, but
just want to find a near optimal rank k approximation.

Approach: Use “regularized” version of the leverage scores:

τ̄i = aTi (ATA+ λI)−1ai

Result: Sample O(k log k/ϵ) columns whose span contains a
near-optimal low-approximation to A (SODA 2017).
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EXAMPLE RESULT: SUBLINEAR TIME KERNEL APPROXIMATION

The first O(nk2/ϵ2) time algorithm1 for near optimal rank-k
approximation of any n× n positive semidefinite kernel matrix:

Based on the classic Nyström method. Importantly, does not
even require constructing K explicitly, which takes O(n2) time.
1NeurIPS 2017.
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THANKS FOR BEING A GREAT CLASS!

Highlights of the semester for me:

• Very active office hours!
• Large number of students presenting at the reading group.
Got to learn about a lot of your reseach interests.

• Lots of collaboration between students.
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