
CS-GY 6763: Lecture 12
Fast Johnson-Lindenstrauss Transform, Sparse
Recovery and Compressed Sensing

NYU Tandon School of Engineering, Prof. Christopher Musco
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RANDOMIZED NUMERICAL LINEAR ALGEBRA

Main idea: If you want to compute singular vectors or
eigenvectors, multiply two matrices, solve a regression
problem, etc.:

1. Compress your matrices using a randomized method.
2. Solve the problem on the smaller or sparser matrix.

• Ã called a “sketch” or “coreset” for A.
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SKETCHED REGRESSION

Randomized approximate regression using a
Johnson-Lindenstrauss Matrix:

Input: A ∈ Rn×d, b ∈ Rn.

Algorithm: Let x̃∗ = argminx ∥ΠAx−Πb∥22.

Goal: Want ∥Ax̃∗ − b∥22 ≤ (1+ ϵ)minx ∥Ax− b∥22
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MAIN RESULT FROM LAST CLASS

Theorem (Randomized Linear Regression)
Let Π be a properly scaled JL matrix (random Gaussian, sign,
sparse random, etc.) with m = Õ

(
d
ϵ2

)
rows. Then with

probability (1− δ), for any A ∈ Rn×d and b ∈ Rn,

∥Ax̃∗ − b∥22 ≤ (1+ ϵ)min
x

∥Ax− b∥22

where x̃∗ = argminx ∥ΠAx−Πb∥22.
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RUNTIME CONSIDERATION

For ϵ, δ = O(1), we need Π to have m = O(d) rows.

• Cost to solve ∥Ax− b∥22:
• O(nd2) time for direct method. Need to compute
(ATA)−1ATb.

• O(nd) · (# of iterations) time for iterative method (GD, AGD,
conjugate gradient method).

• Cost to solve ∥ΠAx−Πb∥22:
• O(d3) time for direct method.
• O(d2) · (# of iterations) time for iterative method.
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RUNTIME CONSIDERATION

But time to compute ΠA is an (m× n)× (n× d) matrix
multiply: O(mnd) = O(nd2) time.

Goal: Develop faster Johnson-Lindenstrauss projections.

Typically using sparse or structured matrices instead of fully
random JL matrices.
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RETURN TO SINGLE VECTOR PROBLEM

Goal: Develop methods that reduce a vector x ∈ Rn down to
m ≈ log(1/δ)

ϵ2
dimensions in o(mn) time and guarantee:

(1− ϵ)∥x∥22 ≤ ∥Πx∥22 ≤ (1+ ϵ)∥x∥22
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SOLUTION FOR “FLAT” VECTORS

Let S be a random sampling matrix. Every row contains a value
of s =

√
n/m in a single location, and is zero elsewhere.

Claim
If x2i ≤

c
n∥x∥22 for all i then m = O(c log(1/δ)/ϵ2) samples

suffices to ensure the (1− ϵ)∥x∥22 ≤ ∥Sx∥22 ≤ (1+ ϵ)∥x∥22 with
probability 1− δ. 8



EXTENSION TO GENERAL VECTORS

Subsampled Randomized Hadamard Transform (SHRT)
(Ailon-Chazelle, 2006)

Theorem (The Fast JL Lemma)
Let Π = SHD ∈ Rm×n be a subsampled randomized
Hadamard transform with m = O

(
log(n/δ) log(1/δ)

ϵ2

)
rows. Then

for any fixed x,

(1− ϵ)∥x∥22 ≤ ∥Πx∥22 ≤ (1+ ϵ)∥x∥22

with probability (1− δ) and Πx can be computed in O(n log n)
(nearly linear) time.

Very little loss in embedding dimension compared to standard
JL. Leverages the simple sampling result from above. 9



THE FAST JOHNSON-LINDENSTRAUSS TRANSFORM

Key idea: First multiply x by a “mixing matrix” M which ensures
it cannot be too concentrated in one place.

M will have the property that ∥Mx∥22 = ∥x∥22 exactly. Then we
will multiply by a subsampling matrix S to do the actual
dimensionality reduction:

Πx = SMx
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THE FAST JOHNSON-LINDENSTRAUSS TRANSFORM

Good mixing matrices should look random:

For this approach to work, we need to be able to compute Mx
very quickly. So we will use a pseudorandom matrix instead.
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THE FAST JOHNSON-LINDENSTRAUSS TRANSFORM

Subsampled Randomized Hadamard Transform

Π = SM where M = HD:

• D ∈ n× n is a diagonal matrix with each entry uniform ±1.
• H ∈ n× n is a Hadamard matrix.

The Hadarmard matrix is an orthogonal matrix closely related
to the discrete Fourier matrix. It has two critical properties:

1. ∥Hv∥22 = ∥v∥22 exactly. Thus ∥HDx∥22 = ∥x∥22
2. ∥Hv∥22 can be computed in O(n log n) time.
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HADAMARD MATRICES RECURSIVE DEFINITION

Assume that n is a power of 2. For k = 0, 1, . . . , the kth

Hadamard matrix Hk is a 2k × 2k matrix defined by:

H0 = 1 H1 =
1√
2

[
1 1
1 −1

]
H2 =

1√
4


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1



Hk =
1√
2

[
Hk−1 Hk−1
Hk−1 −Hk−1

]

The n× n Hadamard matrix has all entries as ± 1√
n .

13



HADAMARD MATRICES ARE ORTHOGONAL

Property 1: For any k = 0, 1, . . ., we have ∥Hkv∥22 = ∥v∥22 for all v.
I.e., Hk is orthogonal.
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HADAMARD MATRICES

Property 2: Can compute Πx = SHDx in O(n log n) time.
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RANDOMIZED HADAMARD TRANSFORM

Property 3: The randomized Hadamard matrix is a good
“mixing matrix” for smoothing out vectors.

Deterministic
Hadamard matrix.

Randomized
Hadamard PHD.

Fully random sign
matrix.

Blue squares are 1/
√
n’s, white squares are −1/

√
n’s.
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RANDOMIZED HADAMARD ANALYSIS

Lemma (SHRT mixing lemma)
Let H be an (n× n) Hadamard matrix and D a random ±1
diagonal matrix. Let z = HDx for x ∈ Rn. With probability 1− δ,

(zi)2 ≤
c log(n/δ)

n ∥z∥22

for some fixed constant c.

The vector is very close to uniform with high probability. As
we saw earlier, we can thus argue that ∥Sz∥22 ≈ ∥z∥22. I.e. that:

∥Πx∥22 = ∥SHDx∥22 ≈ ∥x∥22
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JOHNSON-LINDENSTRAUSS WITH SHRTS

Our main results then follows directly from our sampling result
from earlier:
Theorem (The Fast JL Lemma)
Let Π = SHD ∈ Rm×n be a subsampled randomized
Hadamard transform with m = O

(
log(n/δ) log(1/δ)

ϵ2

)
rows. Then

for any fixed x,

(1− ϵ)∥x∥22 ≤ ∥Πx∥22 ≤ (1+ ϵ)∥x∥22

with probability (1− δ).
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RANDOMIZED HADAMARD ANALYSIS

SHRT mixing lemma proof: Need to prove (zi)2 ≤ c log(n/δ)
n ∥z∥22.

Let hT
i be the ith row of H. zi = hT

i Dx where:

hT
i D =

1√
n

[
1 1 . . . −1 −1

]

D1

D2
. . .

Dn


where D1, . . . ,Dn are random ±1’s.

This is equivalent to

hT
i D =

1√
n

[
R1 R2 . . . Rn

]
,

where R1, . . . ,Rn are random ±1’s.

19



RANDOMIZED HADAMARD ANALYSIS

So we have, for all i, zi = hT
i Dx = 1√

n
∑n

i=1 Rixi.

• zi is a random variable with mean 0 and variance 1
n∥x∥22,

which is a sum of independent random variables.
• By Central Limit Theorem, we expect that:

Pr[|zi| ≥ t · ∥x∥2√
n
] ≤ e−O(t2).

• Setting t =
√
log(n/δ), we have for constant c,

Pr

[
|zi| ≥ c

√
log(n/δ)

n ∥x∥2

]
≤ δ

n
.

• Applying a union bound to all n entries of z gives the SHRT
mixing lemma.

20



RADEMACHER CONCENTRATION

Formally, need to use Bernstein type concentration inequality
to prove the bound:

Lemma (Rademacher Concentration)
Let R1, . . . ,Rn be Rademacher random variables (i.e. uniform
±1’s). Then for any vector a ∈ Rn,

Pr

[ n∑
i=1

Riai ≥ t∥a∥2

]
≤ e−t2/2.

This is call the Khintchine Inequality. It is specialized to sums
of scaled ±1’s, and is a bit tighter and easier to apply than
using a generic Bernstein bound.
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FINISHING UP

With probability 1− δ, we have that for all i,
zi ≤

√
c log(n/δ)

n ∥x∥2 =
√

c log(n/δ)
n ∥z∥2.

As shown earlier, we can thus guarantee that:

(1− ϵ)∥z∥22 ≤ ∥Sz∥22 ≤ (1+ ϵ)∥z∥22

as long as S ∈ Rm×n is a random sampling matrix with

m = O
(
log(n/δ) log(1/δ)

ϵ2

)
rows.

∥Sz∥22 = ∥SHDx∥22 = ∥Πx∥22 and ∥z∥22 = ∥x∥22, so we are done.
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LINEAR REGRESSION WITH SHRTS

Upshot for regression: Compute ΠA in O(nd log n) time instead
of O(nd2) time. Compress problem down to Ã with O(d2)

dimensions.
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BRIEF COMMENT ON OTHER METHODS

O(nd log n) is nearly linear in the size of A when A is dense.

Clarkson-Woodruff 2013, STOC Best Paper: Let O (nnz(A)) be
the number of non-zeros in A. It is possible to compute Ã with
poly(d) rows in:

O (nnz(A)) time.

Π is chosen to be an ultra-sparse random matrix. Uses totally
different techniques (you can’t do JL + ϵ-net).

Lead to a whole close of matrix algorithms (for regression, SVD,
etc.) which run in time:

O (nnz(A)) + poly(d, ϵ).
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WHAT WERE AILON AND CHAZELLE THINKING?

Simple, inspired algorithm that has been used for accelerating:

• Vector dimensionality reduction

• Linear algebra

• Locality sensitive hashing
(SimHash)

• Randomized kernel learning
methods.
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WHAT WERE AILON AND CHAZELLE THINKING?

The Hadamard Transform is closely related to the Discrete
Fourier Transform.

Fj,k = e−2πi j·kn , F∗F = I.

Real part of Fj,k.

Fy computes the Discrete Fourier Transform of the vector y.
Can be computed in O(n log n) time using a divide and conquer
algorithm (the Fast Fourier Transform). 26



THE UNCERTAINTY PRINCIPAL

The Uncertainty Principal (informal): A function and it’s
Fourier transform cannot both be concentrated.

Vector y. Fourier transform Fy.
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SPARSE RECOVERY/COMPRESSED SENSING

What do we know?
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THE UNCERTAINTY PRINCIPAL

Sampling does not preserve norms, i.e. ∥Sy∥2 ̸≈ ∥y∥2 when y
has a few large entries.

Taking a Fourier transform exactly eliminates this hard case,
without changing y’s norm.

One of the central tools in the field of sparse recovery aka
compressed sensing.
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SPARSE RECOVERY/COMPRESSED SENSING PROBLEM SETUP

Underdetermined linear regression: Given A ∈ Rm×n with
m < n, b ∈ Rm. Assume b = Ax for some x ∈ Rn.

• Infinite possible solutions y to Ay = b, so in general, it is
impossible to recover parameter vector x from the data
A,b.
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SPARSITY RECOVERY/COMPRESSED SENSING

Underdetermined linear regression: Given A ∈ Rm×n with
m < n, b ∈ Rm. Solve Ax = b for x.

• Assume x is k-sparse for small k. ∥x∥0 = k.

• In many cases can recover x with ≪ n rows. In fact, often
∼ O(k) suffice.

• Need additional assumptions about A!
31



QUICK ASIDE

• In statistics and machine learning, we often think about
A’s rows as data drawn from some universe/distribution:

• In other settings, we will get to choose A’s rows. I.e. each
bi = xTai for some vector ai that we select.

• In the later case, we often call bi a linear measurement of
x and we call A a measurement matrix.
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ASSUMPTIONS ON MEASUREMENT MATRIX

When should this problem be difficult?
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ASSUMPTIONS ON MEASUREMENT MATRIX

Many ways to formalize our intuition

• A has Kruskal rank r. All sets of r columns in A are linearly
independent.

• Recover vectors x with sparsity k = r/2.
• A is µ-incoherent. |ATi Aj| ≤ µ∥Ai∥2∥Aj∥2 for all columns
Ai,Aj, i ̸= j.

• Recover vectors x with sparsity k = 1/µ.

• Focus today: A obeys the Restricted Isometry Property.
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RESTRICTED ISOMETRY PROPERTY

Definition ((q, ϵ)-Restricted Isometry Property)
A matrix A satisfies (q, ϵ)-RIP if, for all x with ∥x∥0 ≤ q,

(1− ϵ)∥x∥22 ≤ ∥Ax∥22 ≤ (1+ ϵ)∥x∥22.

• Johnson-Lindenstrauss type condition.
• A preserves the norm of all q sparse vectors, instead of
the norms of a fixed discrete set of vectors, or all vectors
in a subspace (as in subspace embeddings).
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FIRST SPARSE RECOVERY RESULT

Theorem (ℓ0-minimization)
Suppose we are given A ∈ Rm×n and b = Ax for an unknown
k-sparse x ∈ Rn. If A is (2k, ϵ)-RIP for any ϵ < 1 then x is the
unique minimizer of:

min∥z∥0 subject to Az = b.

• Establishes that information theoretically we can recover
x. Solving the ℓ0-minimization problem is computationally
difficult, requiring O(nk) time. We will address faster
recovery shortly.
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FIRST SPARSE RECOVERY RESULT

Claim: If A is (2k, ϵ)-RIP for any ϵ < 1 then x is the unique
minimizer of minAz=b ∥z∥0.

Proof: By contradiction, assume there is some y ̸= x such that
Ay = b, ∥y∥0 ≤ ∥x∥0.
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ROBUSTNESS

Important note: Robust versions of this theorem and the
others we will discuss exist. These are much more important
practically. Here’s a flavor of a robust result:

• Suppose b = A(x+ e) where x is k-sparse and e is dense
but has bounded norm.

• Recover some k-sparse x̃ such that:

∥x̃− x∥2 ≤ ∥e∥1

or even

∥x̃− x∥2 ≤ O
(

1√
k

)
∥e∥1.
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ROBUSTNESS

We will not discuss robustness in detail, but along with
computational considerations, it is a big part of what has
made compressed sensing such an active research area in the
last 20 years. Non-robust compressed sensing results have
been known for a long time:

Gaspard Riche de Prony, Essay experimental et analytique: sur
les lois de la dilatabilite de fluides elastique et sur celles de la

force expansive de la vapeur de l’alcool, a differentes
temperatures. Journal de l’Ecole Polytechnique, 24–76. 1795.
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RESTRICTED ISOMETRY PROPERTY

What matrices satisfy this property?

• Random Johnson-Lindenstrauss matrices (Gaussian, sign,
etc.) with m = O(k log(n/k)

ϵ2
) rows are (k, ϵ)-RIP.

Some real world data may look random, but this is also a
useful observation algorithmically when we want to design A.
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RESTRICTED ISOMETRY PROPERTY

Definition ((q, ϵ)-Restricted Isometry Property – Candes, Tao
’05)
A matrix A satisfies (q, ϵ)-RIP if, for all x with ∥x∥0 ≤ q,

(1− ϵ)∥x∥22 ≤ ∥Ax∥22 ≤ (1+ ϵ)∥x∥22.

The vectors that can be written as Ax for q sparse x lie in a
union of q dimensional linear subspaces:
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RESTRICTED ISOMETRY PROPERTY

Candes, Tao 2005: A random JL matrix with O(q log(n/q)/ϵ2)
rows satisfies (q, ϵ)-RIP with high probability.

Any ideas for how you might prove this? I.e. prove that a
random matrix preserves the norm of every x in this union of

subspaces?
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RESTRICTED ISOMETRY PROPERTY FROM JL

Theorem (Subspace Embedding from JL)
Let U ⊂ Rn be a q-dimensional linear subspace in Rn. If
Π ∈ Rm×n is chosen from any distribution D satisfying the
Distributional JL Lemma, then with probability 1− δ,

(1− ϵ)∥v∥22 ≤ ∥Πv∥22 ≤ (1+ ϵ)∥v∥22

for all v ∈ U , as long as m = O
(
q+log(1/δ)

ϵ2

)
.

Quick argument:
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APPLICATION: RETURN TO HEAVY HITTERS IN DATA STREAMS

Suppose you view a stream of numbers in 1, . . . ,n:

4, 18, 4, 1, 2, 24, 6, 4, 3, 18, 18, . . .

After some time, you want to report which k items appeared
most frequently in the stream.

E.g. Amazon is monitoring web-logs to see which product
pages people view. They want to figure out which products are
viewed most frequently. n ≈ 500 million.

How can you do this quickly in small space?
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APPLICATION: HEAVY HITTERS IN DATA STREAMS

• Every time we receive a number i in the stream, add
column Ai to b.
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APPLICATION: HEAVY HITTERS IN DATA STREAMS

• At the end b = Ax for an approximately sparse x if there
were only a few “heavy hitters”. Recover x from b using a
sparse recovery method (like ℓ0 minimization).
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APPLICATION: HEAVY HITTERS IN DATA STREAMS

In contrast to the standard implementations of CountMin and
related methods, sparse recovery based methods naturally

handles both insertions or deletions.

insert(4), insert(18), remove(4), insert(1), insert(2), remove(2) . . .

E.g. Amazon is monitoring what products people add to their
“wishlist” and wants a list of most tagged products. Wishlists
can be changed over time, including by removing items.
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APPLICATION: SINGLE PIXEL CAMERA

Typical acquisition of image by camera:

Requires one image sensor per pixel captured.
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APPLICATION: SINGLE PIXEL CAMERA

Compressed acquisition of image:

p =
∑
i=1

xi =
[
1
n

1
n . . . 1

n

]

x1
x2
...
xn


Does not provide very much information about the image.
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APPLICATION: SINGLE PIXEL CAMERA

But several random linear measurements do!

p =
∑
i=1

Rixi =
[
0 1 0 0 . . . 1

]

x1
x2
...
xn
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APPLICATION: SINGLE PIXEL CAMERA

Applications in:

• Imaging outside of the visible spectrum (more expensive
sensors).

• Microscopy.
• Other scientific imaging.

Compressed sensing theory does not exactly describe these
problems, but has been very valuable in modeling them.
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THE DISCRETE FOURIER MATRIX

The n× n discrete Fourier matrix F is defined:

Fj,k = e
−2πi
n j·k,

where i =
√
−1. Recall e−2πi

n j·k = cos(2πjk/n)− i sin(2πjk/n).
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THE DISCRETE FOURIER MATRIX

Fx is the Discrete Fourier Transform of the vector x (what an
FFT computes).

Decomposes x into different frequencies: [Fx]j is the
component with frequency j/n.

Because F∗F = I, F∗Fx = x, so we can recover x if we have
access to its DFT. Fx.
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RESTRICTED ISOMETRY PROPERTY

Setting A to contain a random m ∼ O
(
k log2 k log n

ϵ2

)
rows of the

discrete Fourier matrix F yields a matrix that with high
probability satisfies (k, ϵ)-RIP. [Haviv, Regev, 2016].

Improves on a long line of work: Candès, Tao, Rudelson,
Vershynin, Cheraghchi, Guruswami, Velingker, Bourgain.

Proving this requires similar tools to analyzing subsampled
Hadamard transforms!
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THE DISCRETE FOURIER MATRIX

If A is a subset of q rows from F, then Ax is a subset of random
frequency components from x’s discrete Fourier transform.

In many scientific applications, we can collect entries of Fx one
at a time for some unobserved data vector x.
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APPLICATION: GEOPHYSICS

Warning: very cartoonish explanation of very complex problem.

Understanding what material is beneath the crust:

Think of vector x as scalar values of the density/reflectivity in a
single vertical core of the earth.

How do we measure entries of Fourier transform Fx?
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APPLICATION: GEOPHYSICS

Vibrate the earth at different frequencies! And measure the
response.

Vibroseis Truck

Can also use airguns, controlled explorations, vibrations from
drilling, etc. The fewer measurements we need from Fx, the
cheaper and faster our data acquisition process becomes.
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APPLICATION: GEOPHYSICS

Warning: very cartoonish explanation of very complex problem.

Medical Imaging (MRI)

Vector x here is a 2D image. Everything works with 2D Fourier
transforms.

How do we measure entries of Fourier transform Fx?
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APPLICATION: GEOPHYSICS

Blast the body with sounds waves of varying frequency.

The fewer measurements we need from Fx, the faster we can
acquire an image.

• Especially important when trying to capture something
moving (e.g. lungs, baby, child who can’t sit still).

• Can also cut down on power requirements (which for MRI
machines are huge).
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RESTRICTED ISOMETRY PROPERTY

Definition ((q, ϵ)-Restricted Isometry Property)
A matrix A satisfies (q, ϵ)-RIP if, for all x with ∥x∥0 ≤ q,

(1− ϵ)∥x∥22 ≤ ∥Ax∥22 ≤ (1+ ϵ)∥x∥22.

Lots of other random matrices satisfy RIP as well.

One major theoretical question is if we can deterministically
construct good RIP matrices. Interestingly, if we want
(O(k),O(1)) RIP, we can only do so with O(k2) rows (now very
slightly better – thanks to Bourgain et al.).

Whether or not a linear dependence on k is possible with a
deterministic construction is unknown.
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FASTER SPARSE RECOVERY

Theorem (ℓ0-minimization)
Suppose we are given A ∈ Rm×n and b = Ax for an unknown
k-sparse x. If A is (2k, ϵ)-RIP for any ϵ < 1 then x is the unique
minimizer of:

min∥z∥0 subject to Az = b.

Algorithm question: Can we recover x using a faster method?
Ideally in polynomial time.

61



BASIS PURSUIT

Convex relaxation of the ℓ0 minimization problem:

Problem (Basis Pursuit, i.e. ℓ1 minimization.)

min
z
∥z∥1 subject to Az = b.

• Objective is convex.

• Optimizing over convex set.

What is one method we know for solving this problem?
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BASIS PURSUIT LINEAR PROGRAM

Equivalent formulation:

Problem (Basis Pursuit Linear Program.)

min
w,z

1Tw subject to Az = b,w ≥ 0,−w ≤ z ≤ w.

Can be solved using any algorithm for linear programming. An
Interior Point Method will run in ∼ O(n3.5) time.
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BASIS PURSUIT INTUITION

Suppose A is 2× 1, so b is just a scalar and x is a
2-dimensional vector.

Vertices of level sets of ℓ1 norm
correspond to sparse solutions.

This is not the case e.g. for the ℓ2

norm.
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BASIS PURSUIT ANALYSIS

Theorem
If A is (3k, ϵ)-RIP for ϵ < .17 and ∥x∥0 = k, then x is the unique
optimal solution of the Basis Pursuit LP).

Similar proof to ℓ0 minimization:

• By way of contradiction, assume x is not the optimal
solution. Then there exists some non-zero ∆ such that:

• ∥x+∆∥1 ≤ ∥x∥1
• A(x+∆) = Ax. I.e. A∆ = 0.

Difference is that we can no longer assume that ∆ is sparse.

We will argue that ∆ is approximately sparse.
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TOOLS NEEDED

First tool:

For any q-sparse vector w, ∥w∥2 ≤ ∥w∥1 ≤
√
q∥w∥2

Second tool:

For any norm and vectors a,b, ∥a+ b∥ ≥ ∥a∥ − ∥b∥
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BASIS PURSUIT ANALYSIS

Some definitions:

T1 contains the 2k indices with largest value in ∆ that are zero
in x. T2 contains the next 2k largest entries, etc.

67



BASIS PURSUIT ANALYSIS

Claim 1: ∥∆S∥1 ≥ ∥∆S̄∥1
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BASIS PURSUIT ANALYSIS

Claim 2: ∥∆S∥2 ≥
√
2
∑

j≥2 ∥∆Tj∥2:

∥∆s∥2 ≥
1√
k
∥∆S∥1 ≥

1√
k
∥∆S̄∥1 =

1√
k

∑
j≥1

∥∆Tj∥1.

Claim: ∥∆Tj∥1 ≥
√
2k∥∆Tj+1∥2
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BASIS PURSUIT ANALYSIS

Finish up proof by contradiction: Recall that A is assumed to
have the (3k, ϵ) RIP property.

0 = ∥A∆∥2 ≥ ∥A∆S∪T1∥2 −
∑
j≥2

∥A∆Tj∥2
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FASTER METHODS

A lot of interest in developing even faster algorithms that
avoid using the “heavy hammer” of linear programming and
run in even faster than O(n3.5) time.

• Iterative Hard Thresholding: Looks a lot like projected
gradient descent. Solve minz ∥Az− b∥ with gradient
descent while continually projecting z back to the set of
k-sparse vectors. Runs in time ∼ O(nk log n) for Gaussian
measurement matrices and O(n log n) for subsampled
Fourer matrices.

• Other “first order” type methods: Orthogonal Matching
Pursuit, CoSaMP, Subspace Pursuit, etc.
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FASTER METHODS

When A is a subsampled Fourier matrix, there are now
methods that run in O(k logc n) time [Hassanieh, Indyk,
Kapralov, Katabi, Price, Shi, etc. 2012+].

Hold up...
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SPARSE FOURIER TRANSFORM

Corollary: When x is k-sparse, we can compute the inverse
Fourier transform F∗Fx of Fx in O(k logc n) time!

• Randomly subsample Fx.
• Feed that input into our sparse recovery algorithm to
extract x.

Fourier and inverse Fourier transforms in sublinear time when
the output is sparse.

Applications in: Wireless communications, GPS, protein
imaging, radio astronomy, etc. etc. 73


