
CS-GY :ࠂ676 Lecture ࠀࠀ
Randomized numerical linear algebra, ε-net
arguments.

NYU Tandon School of Engineering, Prof. Christopher Musco

ࠀ

LAST CLASS

Represent undirected graph as symmetric matrix: n× n
adjacency matrix A and graph Laplacian L = D− A where D is
the diagonal degree matrix.

L = BTB where B is the “edge-vertex incidence” matrix.

B =





ࠀ ࠀ− ߿ ߿
߿ ࠀ ࠀ− ߿
߿ ࠀ ߿ ࠀ−
߿ ߿ ࠀ ࠀ−





ࠁ

①
-

%

-
B

#
of
edges←

m ,

LAST CLASS

Balanced Cut: Partition nodes along a cut that:

• Has few crossing edges: |{(u, v) ∈ E : u ∈ B, v ∈ C}| is
small.

• Separates large partitions: |B|, |C| are not too small.

ࠂ

0 0

RELAX AND ROUND

We observed that xTLx =
∑

(i,j)∈E(x(i)− x(j))ࠁ. If c is a “cut
indicator vector” for a cut between node set B and C – i.e.
c[i] = ࠀ for all i ∈ B and ࠀ− elsewhere, then it followed that:

cTLc = ࠃ · cut(B, C).

We used this basic fact to argue heuristically that the smallest
eigenvectors of L can be used to find balanced cuts in a graph.

Note: c often denote by χB,C.

ࠃ

J I E
B - C :E l . . ." 3

O _ 0 i f

0

RELAX AND ROUND

“Relax and round” algorithm:

• Relax problem min cTLc by not requiring c to be a binary
cut-indicator vector.

• Showed that second smallest eigenvector vn−ࠀ of L solved
the relaxed problem.

• Round this vector to be a cut indicator vector: all negative
entries rounded to ,ࠀ− all positive entries rounded to .ࠀ

Main theoretical result: This approach is hard to analyze in
general, but can be proven to work well on random graphs
drawn from the stochastic block model!.

ࠄ

-
O

-

STOCHASTIC BLOCK MODEL

Stochastic Block Model (Planted Partition Model):

Let Gn(p,q) be a distribution over graphs on n nodes, split
equally into two groups B and C, each with n/ࠁ nodes.

• Any two nodes in the same group are connected with
probability p (including self-loops).

• Any two nodes in different groups are connected with
prob. q < p.

ࠅ

i

EXPECTED ADJACENCY SPECTRUM

E[A] = p · I− E[L], so smallest eigenvectors of E[L] are equal to
largest of E[A].

• vࠀ = ࠀ with eigenvalue λࠀ =
(p+q)n

ࠁ .
• vࠁ = χB,C with eigenvalue λࠁ =

(p−q)n
ࠁ .

• χB,C(i) = ࠀ if i ∈ B and χB,C(i) = ࠀ− for i ∈ C.

If we compute vࠁ then we recover the communities B and C.
ࠆ

O -

Ooooo

EXPECTED LAPLACIAN SPECTRUM

Upshot: The second small eigenvector of E[L] (i.e. the second
largest of E[A]) is χB,C – the indicator vector for the cut
between the communities.

• If the random graph G (equivilantly A and L) were exactly
equal to its expectation, partitioning using this
eigenvector would exactly recover communities B and C.

How do we show that a matrix (e.g., A) is close to its
expectation? Matrix concentration inequalities.

ࠇ

MATRIX CONCENTRATION

Matrix Concentration Inequality: If p ≥ O
(
logࠃ n

n

)
, then

with high probability

‖A− E[A]‖ࠁ ≤ O(
√
pn).

where ‖ · ࠁ‖ is the matrix spectral norm (operator norm).

For X ∈ Rn×d, ‖X‖ࠁ = maxz∈Rd:‖z‖ࠀ=ࠁ ‖Xz‖ࠁ = σࠀ(X).

ࠈ

⇒ n Yue

EIGENVECTOR PERTURBATION

For the stochastic block model application, we want to
show that the second eigenvectors of A andE[A] are close.
How does this relate to their difference in spectral norm?
Davis-Kahan Eigenvector Perturbation Theorem: Sup-
pose A,A ∈ Rd×d are symmetric with ‖A − A‖ࠁ ≤ ε

and eigenvectors vࠀ, vࠁ, . . . , vn and v̄ࠀ, v̄ࠁ, . . . , v̄n. Letting
θ(vi, v̄i) denote the angle between vi and v̄i, for all i:

sin[θ(vi, v̄i)] ≤
ε

minj %=i |λi − λj|

where λࠀ, . . . ,λn are the eigenvalues of A.

߿ࠀ

f o g

APPLICATION TO STOCHASTIC BLOCK MODEL

Claim ࠀ (Matrix Concentration): For p ≥ O
(

logࠃ n
n

)
,

‖A− E[A]‖ࠁ ≤ O(
√
pn).

Claim ࠁ (Davis-Kahan): For p ≥ O
(

logࠃ n
n

)
,

sin θ(vࠁ, v̄ࠁ) ≤
O(√pn)

minj !=i |λi − λj|
≤ O(√pn)

(p− q)n/ࠁ
= O

(√p
(p− q)

√
n

)

Recall: E[A], has eigenvalues λࠀ = (p+q)n
ࠁ , λࠁ = (p−q)n

ࠁ , λi = ߿
for i ≥ .ࠂ

min
j !=i

|λi − λj| = min

(
qn, (p− q)n

ࠁ

)
.

Assume (p−q)n
ࠁ will be the minimum of these two gaps.

ࠀࠀ

F o
-

a - -

, .

- §
=

APPLICATION TO STOCHASTIC BLOCK MODEL

So far: sin θ(vࠁ, v̄ࠁ) ≤ O
(√p

(p−q)
√
n

)
. What does this give us?

• Can show that this implies ‖vࠁ − v̄ࠁࠁ‖ࠁ ≤ O
(

p
(p−q)ࠁn

)
(exercise).

• v̄ࠁ is √ࠀ
nχB,C: the community indicator vector.

• To understand how well rounding recovers v̄ࠁ, need to
understand how many locations vࠁ and v̄ࠁ can differ in sign.

ࠁࠀ

= - T o s a v e

¥
' O . - - . - @

APPLICATION TO STOCHASTIC BLOCK MODEL

Main argument:

• Every i where vࠁ(i), v̄ࠁ(i) differ in sign contributes ≥ ࠀ
n to

‖vࠁ − v̄ࠁࠁ‖ࠁ.

• We know that ‖vࠁ − v̄ࠁࠁ‖ࠁ ≤ O
(

p
(p−q)ࠁn

)
.

• So vࠁ and v̄ࠁ differ in sign in at most O
(

p
(p−q)ࠁ

)
positions.

ࠂࠀ

-

Yr n

°

O o
'Hh

APPLICATION TO STOCHASTIC BLOCK MODEL

Upshot: If G is a stochastic block model graph with adjacency
matrix A, if we compute its second large eigenvector vࠁ and
assign nodes to communities according to the sign pattern of
this vector, we will correctly assign all but O

(
p

(p−q)ࠁ

)
nodes.

• Hard case: p = c/n for some factor c. Even when
p− q = O(ࠀ/n), assign all but an O(n) fraction of nodes
correctly. E.g., assign %ࠈࠈ of nodes to the right cluster.

ࠃࠀ

-

-

F
c .h f o r < < < 1

RANDOMIZED NUMERICAL LINEAR ALGEBRA

Forget about the previous problem, but still consider the
matrix M = E[A].

• Dense n× n matrix.
• Computing top eigenvectors takes ≈ O(nࠁ/

√
ε) time.

If someone asked you to speed this up and return approximate
top eigenvectors, what could you do?

ࠄࠀ

-

e

t⇒±÷*÷i÷O"'"

RANDOMIZED NUMERICAL LINEAR ALGEBRA

Main idea: If you want to compute singular vectors, multiply
two matrices, solve a regression problem, etc.:

.ࠀ Compress your matrices using a randomized method (e.g.
subsampling).

.ࠁ Solve the problem on the smaller or sparser matrix.
• Ã called a “sketch” or “coreset” for A.

ࠅࠀ

-

§" Q

RANDOMIZED NUMERICAL LINEAR ALGEBRA

Approximate matrix multiplication:

Approximate regression:

ࠆࠀ

n " " €
Oland)

O(und)

l I I 11

SKETCHED REGRESSION

Randomized approximate regression using a
Johnson-Lindenstrauss Matrix:

Input: A ∈ Rn×d, b ∈ Rn.

Goal: Let x∗ = argminx ‖Ax− b‖ࠁࠁ. Let x̃ = argminx ‖ΠAx−Πb̃‖ࠁࠁ

Want: ‖Ax̃− b‖ࠁࠁ ≤ +ࠀ) O(ε)) ‖Ax∗ − b‖ࠁࠁ

If Π ∈ Rm×n, how large does m need to be? Is it even clear this
should work as m → ∞?

ࠇࠀ

and.#in}
"'

0 7 ' Obed')
ocmd.lt#tF

m

"

m
d

n [µ
O o - 1 ¥
G - a -

TARGET RESULT

Theorem (Randomized Linear Regression)
Let Π be a properly scaled JL matrix (random Gaussian, sign,
sparse random, etc.) with m = O

(
d
εࠁ

)
rowsࠀ. Then with

probability ,߿ࠀ/ࠈ for any A ∈ Rn×d and b ∈ Rn,

‖Ax̃− b‖ࠁࠁ ≤ +ࠀ) ε)‖Ax∗ − b‖ࠁࠁ

where x̃ = argminx ‖ΠAx−Πb‖ࠁࠁ.

Thisࠀ can be improved to O(d/ε) with a tighter analysis

ࠈࠀ

⇐
a

PLAN

• Prove this theorem using an ε-net argument, which is a
popular technique for applying our standard
concentration inequality + union bound argument to an
infinite number of events.

• These sort of arguments appear all the time in theoretical
algorithms and ML research, so this lecture is as much
about the technique as the final result.

• You will use and ε-net argument to prove a matrix
concentration inequality on your problem set.

߿ࠁ

SKETCHED REGRESSION

Claim: Suffices to prove that for all x ∈ Rd,

−ࠀ) ε)‖Ax− b‖ࠁࠁ ≤ ‖ΠAx−Πb‖ࠁࠁ ≤ +ࠀ) ε)‖Ax− b‖ࠁࠁ

ࠀࠁ

@ XEargui-YAX-but

- - - -HA-ibie.tl#x=blliE~I-
tb

F .argue-111TAx-Tbt-2 € . (Ita)11AM-611£

llt-II.lt/otad)(1te)11Axte-
b1liGteaxitb=iteei-¥IIT¥¥j"

DISTRIBUTIONAL JOHNSON-LINDENSTRAUSS REVIEW

Lemma (Distributional JL)
If Π is chosen to a properly scaled random Gaussian matrix,
sign matrix, sparse random matrix, etc., with O

(
log(ࠀ/δ

εࠁ

)
rows

then for any fixed y,

−ࠀ) ε)‖y‖ࠁࠁ ≤ ‖Πy‖ࠁࠁ ≤ +ࠀ) ε)‖y‖ࠁࠁ

with probability −ࠀ) δ).

Corollary: For any fixed x, with probability −ࠀ) δ),

−ࠀ) ε)‖Ax− b‖ࠁࠁ ≤ ‖ΠAx−Πb‖ࠁࠁ ≤ +ࠀ) ε)‖Ax− b‖ࠁࠁ.

ࠁࠁ

←

- I -

- I

Y ¥ ¥ I Ty = ITCHx-b) = FAX-Tb

FOR ANY TO FOR ALL

How do we go from “for any fixed x” to “for all x ∈ Rd”.

This statement requires establishing a Johnson-Lindenstrauss
type bound for an infinity of possible vectors (Ax− b), which
can’t be tackled directly with a union bound argument.

Note that all vectors of the form (Ax− b) lie in a low
dimensional subspace: spanned by d+ ࠀ vectors, where d is
the width of A. So even though the set is infinite, it is “simple”
in some way. Parameterized by just d+ ࠀ numbers.

ࠂࠁ

£
o _ O
€ ¥ /

-

SUBSPACE EMBEDDINGS

Theorem (Subspace Embedding from JL)
Let U ⊂ Rn be a d-dimensional linear subspace in Rn. If
Π ∈ Rm×d is chosen from any distribution D satisfying the
Distributional JL Lemma, then with probability −ࠀ δ,

−ࠀ) ε)‖v‖ࠁࠁ ≤ ‖Πv‖ࠁࠁ ≤ +ࠀ) ε)‖v‖ࠁࠁ

for all v ∈ U , as long as m = O
(
d log(ࠀ/ε)+log(ࠀ/δ)

εࠁ

)
.ࠁ

It’sࠁ possible to obtain a slightly tighter bound of O
(

d+log(ࠀ/δ)
εࠁ

)
. It’s a nice

challenge to try proving this. ࠃࠁ

- •

-

=

By

O

SUBSPACE EMBEDDING TO APPROXIMATE REGRESSION

Corollary: If we choose Π and properly scale, then with
O
(
d/εࠁ

)
rows,

−ࠀ) ε)‖Ax− b‖ࠁࠁ ≤ ‖ΠAx−Πb‖ࠁࠁ ≤ +ࠀ) ε)‖Ax− b‖ࠁࠁ

for all x and thus

‖Ax̃− b‖ࠁࠁ ≤ +ࠀ) O(ε))min
x

‖Ax− b‖ࠁࠁ.

I.e., our main theorem is proven.

Proof: Apply Subspace Embedding Thm. to the (d+ (ࠀ
dimensional subspace spanned by A’s d columns and b. Every
vector Ax− b lies in this subspace.

ࠄࠁ

•

SUBSPACE EMBEDDINGS

Theorem (Subspace Embedding from JL)
Let U ⊂ Rn be a d-dimensional linear subspace in Rn. If
Π ∈ Rm×d is chosen from any distribution D satisfying the
Distributional JL Lemma, then with probability −ࠀ δ,

−ࠀ) ε)‖v‖ࠁࠁ ≤ ‖Πv‖ࠁࠁ ≤ +ࠀ) ε)‖v‖ࠁࠁ (ࠀ)

for all v ∈ U , as long as m = O
(
d log(ࠀ/ε)+log(ࠀ/δ)

εࠁ

)

Subspace embeddings have tons of other applications!
ࠅࠁ

so:O%,I

SUBSPACE EMBEDDING PROOF

−ࠀ) ε)‖v‖ࠁࠁ ≤ ‖Πv‖ࠁࠁ ≤ +ࠀ) ε)‖v‖ࠁࠁ (ࠁ)

First Observation: The theorem holds as long as (ࠁ) holds for
all w on the unit sphere in U . Denote the sphere SU :

SU = {w |w ∈ U and ‖w‖ࠁ = .{ࠀ

Follows from linearity: Any point v ∈ U can be written as cw
for some scalar c and some point w ∈ SU .

• If −ࠀ) ε)‖w‖ࠁ ≤ ‖Πw‖ࠁ ≤ +ࠀ) ε)‖w‖ࠁ.
• then c(ࠀ− ε)‖w‖ࠁ ≤ c‖Πw‖ࠁ ≤ c(ࠀ+ ε)‖w‖ࠁ,
• and thus −ࠀ) ε)‖cw‖ࠁ ≤ ‖Πcw‖ࠁ ≤ +ࠀ) ε)‖cw‖ࠁ.

ࠆࠁ

(= H rl l s÷⇐÷.

SUBSPACE EMBEDDING PROOF

Intuition: There are not too many “different” points on a
d-dimensional sphere:

Nε is called an “ε”-net.

If we can prove

−ࠀ) ε)‖w‖ࠁ ≤ ‖Πw‖ࠁ ≤ +ࠀ) ε)‖w‖ࠁ

for all points w ∈ Nε, we can hopefully extend to all of SU . ࠇࠁ

• . . .

. . .

.

O

ε-NET FOR THE SPHERE

Lemma (ε-net for the sphere)

For any ε ≤ ,ࠀ there exists a set Nε ⊂ SU with |Nε| =
ࠃ)
ε

)d such
that ∀v ∈ SU ,

min
w∈Nε

‖v− w‖ ≤ ε.

Take this claim to be true for now: we will prove later.

ࠈࠁ

O- O
-

a - a

SUBSPACE EMBEDDING PROOF

.ࠀ Preserving norms of all points in net Nε.

Set δ′ =
(
ε
ࠃ
)d · δ. By a union bound, with probability −ࠀ δ, for

all w ∈ Nε,

−ࠀ) ε)‖w‖ࠁ ≤ ‖Πw‖ࠁ ≤ +ࠀ) ε)‖w‖ࠁ.

as long as Π has O
(
log(ࠀ/δ′)

εࠁ

)
= O

(
d log(ࠀ/ε)+log(ࠀ/δ)

εࠁ

)
rows.

߿ࠂ

µ#ofeve-t' n r a 0 (def)¥Y¥¥
%=fzµggg§, save prosf o r o u e '

e

-

site's.............
."looks):1dg((I)d .¥) = log(E)

d
t lo,C' G)

SUBSPACE EMBEDDING PROOF

.ࠁ Writing any point in sphere as linear comb. of points in Nε.

For some w߿,wࠀ,wࠁ . . . ∈ Nε, any v ∈ SU . can be written:

v = w߿ + cࠀwࠀ + cࠁwࠁ + . . .

for constants cࠀ, cࠁ, . . . where |ci| ≤ εi.

ࠀࠂ

- ¥¥}§-too
i . ÷:÷÷::÷::*.....
•¥ 0 w , trying

llw.ro/l1rollllnri=Tfroniw'

⇐{ at ¥3

SUBSPACE EMBEDDING PROOF

.ࠂ Preserving norm of v.

Applying triangle inequality, we have

‖Πv‖ࠁ = ‖Πw߿ + cࠀΠwࠀ + cࠁΠwࠁ + . . . ‖
≤ ‖Πw߿‖+ ε‖Πwࠀ‖+ εࠁ‖Πwࠁ‖+ . . .

≤ +ࠀ) ε) + ε(ࠀ+ ε) + εࠀ)ࠁ+ ε) + . . .

≤ +ࠀ O(ε).

ࠁࠂ

ITVa - I T(✓o t c ,u , t c ,w e t t)

c ,E 6 3

- ⇐

iii.÷÷⇒
....+ 11,4T't...

f - ItvI l u = (HE)(Ita+E 'te?...)

I twillE (i te)I will= (i tE)a 1 F E
E (I tE)(1+2E)
E (i t 5 E)

SUBSPACE EMBEDDING PROOF

.ࠂ Preserving norm of v.

Similarly,

‖Πv‖ࠁ = ‖Πw߿ + cࠀΠwࠀ + cࠁΠwࠁ + . . . ‖
≥ ‖Πw߿‖ − ε‖Πwࠀ‖ − εࠁ‖Πwࠁ‖ − . . .

≥ −ࠀ) ε)− ε(ࠀ+ ε)− εࠀ)ࠁ+ ε)− . . .

≥ −ࠀ O(ε).

ࠂࠂ

" 0 9 ¥
" '"' " '" '" '" '"

-11↳I Twell...

two#V-Tlc,w , -ITc a n -....)
HITw o114 11T v112+11IT.4 W .H t

SUBSPACE EMBEDDING PROOF

So we have proven

−ࠀ) O(ε)) ‖v‖ࠁ ≤ ‖Πv‖ࠁ ≤ +ࠀ) O(ε)) ‖v‖ࠁ

for all v ∈ SU , which in turn implies,

−ࠀ) O(ε)) ‖v‖ࠁࠁ ≤ ‖Πv‖ࠁࠁ ≤ +ࠀ) O(ε)) ‖v‖ࠁࠁ

Adjusting ε proves the Subspace Embedding theorem.

ࠃࠂ

÷

SUBSPACE EMBEDDINGS

Theorem (Subspace Embedding from JL)
Let U ⊂ Rn be a d-dimensional linear subspace in Rn. If
Π ∈ Rm×d is chosen from any distribution D satisfying the
Distributional JL Lemma, then with probability −ࠀ δ,

−ࠀ) ε)‖v‖ࠁࠁ ≤ ‖Πv‖ࠁࠁ ≤ +ࠀ) ε)‖v‖ࠁࠁ (ࠂ)

for all v ∈ U , as long as m = O
(
d log(ࠀ/ε)+log(ࠀ/δ)

εࠁ

)

Subspace embeddings have many other applications!

For example, if m = O(k/ε), ΠA can be used to compute an
approximate partial SVD, which leads to a +ࠀ) ε) approximate
low-rank approximation for A.

ࠄࠂ

÷

ε-NET FOR THE SPHERE

Lemma (ε-net for the sphere)

For any ε ≤ ,ࠀ there exists a set Nε ⊂ SU with |Nε| =
ࠃ)
ε

)d such
that ∀v ∈ SU ,

min
w∈Nε

‖v− w‖ ≤ ε.

Imaginary algorithm for constructing Nε:

• Set Nε = {}
• While such a point exists, choose an arbitrary point v ∈ SU
where !w ∈ Nε with ‖v− w‖ ≤ ε. Set Nε = Nε ∪ {w}.

After running this procedure, we have Nε = {wࠀ, . . . ,w|Nε|} and
minw∈Nε ‖v− w‖ ≤ ε for all v ∈ SU as desired.

ࠅࠂ

80

log(E t)
log(Ya)

: O

ε-NET FOR THE SPHERE

How many steps does this procedure take?

Can place a ball of radius ε/ࠁ around each wi without
intersecting any other balls. All of these balls live in a ball of
radius +ࠀ ε/ࠁ.

ࠆࠂ

I =/Ha)

0 0@iEio.oion

ε-NET FOR THE SPHERE

Volume of d dimensional ball of radius r is

vol(d, r) = c · rd,

where c is a constant that depends on d, but not r. From

previous slide we have:

vol(d, ε/ࠁ) · |Nε| ≤ vol(d, +ࠀ ε/ࠁ)

|Nε| ≤
vol(d, +ࠀ ε/ࠁ)
vol(d, ε/ࠁ)

≤
(
+ࠀ ε/ࠁ
ε/ࠁ

)d
≤
(
ࠃ
ε

)d

ࠇࠂ

0 0

, # a n

5 ¥
g u n o f

volumes g2

o f swell bal ls 05

TIGHTER BOUND

You can actually show that m = O
(
d+log(ࠀ/δ)

ε

)
suffices to be a d

dimensional subspace embedding, instead of the bound we
proved of m = O

(
d log(ࠀ/ε)+log(ࠀ/δ)

ε

)
.

The trick is to show that a constant factor net is actually all
that you need instead of an ε factor.

ࠈࠂ

RUNTIME CONSIDERATION

For ε, δ = O(ࠀ), we need Π to have m = O(d) rows.

• Cost to solve ‖Ax− b‖ࠁࠁ:
• O(ndࠁ) time for direct method. Need to compute
(ATA)−ࠀATb.

• O(nd) · (# of iterations) time for iterative method (GD, AGD,
conjugate gradient method).

• Cost to solve ‖ΠAx−Πb‖ࠁࠁ:
• O(dࠂ) time for direct method.
• O(dࠁ) · (# of iterations) time for iterative method.

߿ࠃ

②

÷
O

RUNTIME CONSIDERATION

But time to compute ΠA is an (m× n)× (n× d) matrix
multiply: O(mnd) = O(ndࠁ) time!

Goal: Develop faster Johnson-Lindenstrauss projections.

Typically using sparse and structured matrices.

We will describe a construction where ΠA can be computed in
O(nd log n) time.

ࠀࠃ

8

Q b
@ dud)

RETURN TO SINGLE VECTOR PROBLEM

Goal: Develop methods that reduce a vector x ∈ Rn down to
m ≈ log(ࠀ/δ)

εࠁ
dimensions in o(mn) time and guarantee:

−ࠀ) ε)‖x‖ࠁࠁ ≤ ‖Πx‖ࠁࠁ ≤ +ࠀ) ε)‖x‖ࠁࠁ

We will learn about a truly brilliant method that runs in
O(n log n) time. Preview: Will involve Fast Fourier Transform in
disguise. ࠁࠃ

0 ¥
alum)

M

n

- -

FIRST ATTEMPT

Let Π be a random sampling matrix. Every row contains a value
of s =

√
n/m in a single location, and is zero elsewhere.

What’s the running time
to compute Πx?

‖Πx‖ࠁࠁ =

E[‖Πx‖ࠁࠁ] =

ࠂࠃ

L IGi l] : thX i ' t t x .Y t . . . tuX u -

-

°=J
£ ' "

O 8
=1Tx

Em
,
I sz i) '= s2 .§.2 ; - =z Fi,z u wherezinlhitlxn.in#-

I.EE#3=E.E..tniEgE.=1lxlli.

FIRST ATTEMPT

So E‖Πx‖ࠁࠁ = ‖x‖ࠁࠁ in expectation. To show it is close with high
probability we would need to apply a concentration inequality.
How do you think this will work out?

ࠃࠃ

O o o
O o

o o
o

o o o
o

:
:

VARIANCE ANALYSIS

‖Πx‖ࠁࠁ =

σࠁ = Var[‖Πx‖ࠁࠁ] =

Recall Chebyshev’s Inequality:

Pr[
∣∣‖Πx‖ࠁࠁ − ‖x‖ࠁࠁ

∣∣ ≤ ߿ࠀ · σ] ≤ ࠀ
߿߿ࠀ

We want additive error
∣∣‖Πx‖ࠁࠁ − ‖x‖ࠁࠁ

∣∣ ≤ ε‖x‖ࠁࠁ

ࠄࠃ

¥ Eh..2 i n where
zinlhitlxn.ie#

th:EIWar(z i) = In .
11×14"

Uefa23= IECET)-J
- 1k¥23's E t i2)"3=t§x&

= In11×11

v i .t o

- ,

µFzHx&

O

VARIANCE ANALYSIS

We need to choose m so that:

߿ࠀ
√

n
m
‖x‖ࠃࠁ ≤ ε‖x‖ࠁࠁ.

How do these two two norms compare?

‖x‖ࠃࠁ =
(n∑

i=ࠀ

xࠃi

ࠁ/ࠀ(

‖x‖ࠁࠁ =
n∑

i=ࠀ

xࠁi

Consider ࠁ extreme cases:

x =





ࠀ
߿
...
߿




x =





ࠀ
ࠀ
...
ࠀ




.

ࠅࠃ

lxlln.fi?.xiY""

§
' "¥*" " "

- e .

11×117=1
.

11×115=5411111
4¥ ¢ 11×11?i n

VARIANCE FOR SMOOOTH FUNCTIONS

We need to choose m so that:

ࠀ
߿ࠀ

√
n
m
‖x‖ࠃࠁ ≤ ε‖x‖ࠁࠁ.

Suppose x is very evenly distributed. I.e., for all i ∈ ,ࠀ . . . ,n,

xࠁi ≤
c
n

n∑

i=ࠀ

xࠁi =
c
n
‖x‖ࠁࠁ

Claim: ‖x‖ࠃࠁ ≤ c√
n‖x‖

ࠁ
.ࠁ So m = O(c/εࠁ) samples suffices.ࠂ

Usingࠂ the right Bernstein bound we can prove m = O(c log(ࠀ/δ)/εࠁ)
suffices for failure probability δ.

ࠆࠃ

O

-

' "

I i " ¥ 1 5

- - -

- -

VECTOR SAMPLING

So sampling does work to preserve the norm of x, but only
when the vector is relatively “smooth” (not concentrated). Do
we expect to see such vectors in the wild?

ࠇࠃ

THE FAST JOHNSON-LINDENSTRAUSS TRANSFORM

Subsampled Randomized Hadamard Transform (SHRT)
(Ailon-Chazelle, (6߿߿ࠁ

Key idea: First multiply x by a “mixing matrix” M which ensures
it cannot be too concentrated in one place.

M should have the property that ‖Mx‖ࠁࠁ = ‖x‖ࠁࠁ exactly, or is
very close. Then we will multiply by a subsampling matrix S to
do the actual dimensionality reduction:

Πx = SMx

Oh... and M needs to be fast to multiply by!

ࠈࠃ

O
-

O

- a

•

Ocular)

THE FAST JOHNSON-LINDENSTRAUSS TRANSFORM

Good mixing matrices should look random:

For this approach to work, we need to be able to compute Mx
very quickly. So we will use a pseudorandom matrix instead.

߿ࠄ

THE FAST JOHNSON-LINDENSTRAUSS TRANSFORM

Subsampled Randomized Hadamard Transform (SHRT)
(Ailon-Chazelle, (6߿߿ࠁ

Π = SM where M = HD:

• D ∈ n× n is a diagonal matrix with each entry uniform .ࠀ±
• H ∈ n× n is a Hadamard matrix.

The Hadarmard matrix is an othogonal matrix closely related
to the discrete Fourier matrix. It has two critical properties:

.ࠀ ‖Hv‖ࠁࠁ = ‖v‖ࠁࠁ exactly. Thus ‖HDx‖ࠁࠁ = ‖x‖ࠁࠁ
.ࠁ ‖Hv‖ࠁࠁ can be computed in O(n log n) time.

ࠀࠄ

HADAMARD MATRICES RECURSIVE DEFINITION

Assume that n is a power of .ࠁ For k = ,߿ ,ࠀ . . . , the kth

Hadamard matrix Hk is a kࠁ × kࠁ matrix defined by:

H߿ = ࠀ Hࠀ =
√ࠀ
ࠁ

[
ࠀ ࠀ
ࠀ ࠀ−

]
Hࠁ =

√ࠀ
ࠃ





ࠀ ࠀ ࠀ ࠀ
ࠀ ࠀ− ࠀ ࠀ−
ࠀ ࠀ ࠀ− ࠀ−
ࠀ ࠀ− ࠀ− ࠀ





Hk =
√ࠀ
ࠁ

[
Hk−ࠀ Hk−ࠀ
Hk−ࠀ −Hk−ࠀ

]

The n× n Hadamard matrix has all entries as ± √ࠀ
n .

ࠁࠄ

HADAMARD MATRICES ARE ORTHOGONAL

Property :ࠀ For any k = ,߿ ,ࠀ . . ., we have ‖Hkv‖ࠁࠁ = ‖v‖ࠁࠁ for all v.
I.e., Hk is orthogonal.

ࠂࠄ

HADAMARD MATRICES

Property :ࠁ Can compute Πx = SHDx in O(n log n) time.

ࠃࠄ

RANDOMIZED HADAMARD TRANSFORM

Property :ࠂ The randomized Hadamard matrix is a good
“mixing matrix” for smoothing out vectors.

Deterministic
Hadamard matrix.

Randomized
Hadamard PHD.

Fully random sign
matrix.

Blue squares are /ࠀ
√
n’s, white squares are /ࠀ−

√
n’s.

ࠄࠄ

RANDOMIZED HADAMARD ANALYSIS

Lemma (SHRT mixing lemma)
Let H be an (n× n) Hadamard matrix and D a random ࠀ±
diagonal matrix. Let z = HDx for x ∈ Rn. With probability −ࠀ δ,

(zi)ࠁ ≤
c log(n/δ)

n
‖z‖ࠁࠁ

for some fixed constant c.

The vector is very close to uniform with high probability. As
we saw earlier, we can thus argue that ‖Sz‖ࠁࠁ ≈ ‖z‖ࠁࠁ. I.e. that:

‖Πx‖ࠁࠁ = ‖SHDx‖ࠁࠁ ≈ ‖x‖ࠁࠁ

ࠅࠄ

JOHNSON-LINDENSTRAUSS WITH SHRTS

Theorem (The Fast JL Lemma)
Let Π = SHD ∈ Rm×n be a subsampled randomized
Hadamard transform with m = O

(
log(n/δ) log(ࠀ/δ)

εࠁ

)
rows. Then

for any fixed x,

−ࠀ) ε)‖x‖ࠁࠁ ≤ ‖Πx‖ࠁࠁ ≤ +ࠀ) ε)‖x‖ࠁࠁ

with probability −ࠀ) δ).

Very little loss in embedding dimension compared to full
random matrix, and Π can be multiplied by x in O(n log n)

(nearly linear) time.

ࠆࠄ

RANDOMIZED HADAMARD ANALYSIS

SHRT mixing lemma proof: Need to prove (zi)ࠁ ≤
c log(n/δ)

n ‖z‖ࠁࠁ
for all i.

Let hT
i be the ith row of H. zi = hT

i Dx where:

hT
i D =

√ࠀ
n

[
ࠀ ࠀ . . . ࠀ− ࠀ−

]





Dࠀ

Dࠁ
. . .

Dn





where Dࠀ, . . . ,Dn are random .s’ࠀ±

This is equivalent to

hT
i D =

√ࠀ
n

[
Rࠀ Rࠁ . . . Rn

]
,

where Rࠀ, . . . ,Rn are random .s’ࠀ±
ࠇࠄ

RANDOMIZED HADAMARD ANALYSIS

So we have, for all i, zi = hT
i Dx = √ࠀ

n
∑n

i=ࠀ Rixi.

• zi is a random variable with mean ߿ and variance ࠀ
n‖x‖

ࠁ
,ࠁ

and is a sum of independent random variables.
• By Central Limit Theorem, we expect that:

Pr[|zi| ≥ t · ‖x‖ࠁ√
n
] ≤ e−O(tࠁ).

• Setting t =
√

log(n/δ), we have for constant c,

Pr

[
|zi| ≥ c

√
log(n/δ)

n
‖y‖ࠁ

]
≤ δ

n
.

• Applying a union bound to all n entries of z gives the SHRT
mixing lemma.

ࠈࠄ

RADEMACHER CONCENTRATION

Formally, need to use Bernstein type concentration inequality
to prove the bound:

Lemma (Rademacher Concentration)
Let Rࠀ, . . . ,Rn be Rademacher random variables (i.e. uniform
.(s’ࠀ± Then for any vector a ∈ Rn,

Pr

[n∑

i=ࠀ

Riai ≥ t‖a‖ࠁ

]
≤ e−tࠁ/ࠁ.

This is call the Khintchine Inequality. It is specialized to sums
of scaled ,s’ࠀ± and is a bit tighter and easier to apply than
using a generic Bernstein bound.

߿ࠅ

FINISHING UP

With probability −ࠀ δ, we have that all zi ≤
√

c log(n/δ)
n ‖c‖ࠁ.

As shown earlier, we can thus guarantee that:

−ࠀ) ε)‖z‖ࠁࠁ ≤ ‖Sz‖ࠁࠁ ≤ +ࠀ) ε)‖z‖ࠁࠁ

as long as S ∈ Rm×n is a random sampling matrix with

m = O
(
log(n/δ) log(ࠀ/δ)

εࠁ

)
rows.

‖Sz‖ࠁࠁ = ‖SHDx‖ࠁࠁ = ‖Πx‖ࠁࠁ and ‖z‖ࠁࠁ = ‖x‖ࠁࠁ, so we are done.

ࠀࠅ

JOHNSON-LINDENSTRAUSS WITH SHRTS

Theorem (The Fast JL Lemma)
Let Π = SHD ∈ Rm×n be a subsampled randomized
Hadamard transform with m = O

(
log(n/δ) log(ࠀ/δ)

εࠁ

)
rows. Then

for any fixed x,

−ࠀ) ε)‖x‖ࠁࠁ ≤ ‖Πx‖ࠁࠁ ≤ +ࠀ) ε)‖x‖ࠁࠁ

with probability −ࠀ) δ).

Upshot for regression: Compute ΠA in O(nd log n) time instead
of O(ndࠁ) time. Compress problem down to Ã with O(dࠁ)

dimensions.

ࠁࠅ

BRIEF COMMENT ON OTHER METHODS

O(nd log n) is nearly linear in the size of A when A is dense.

Clarkson-Woodruff ,ࠂࠀ߿ࠁ STOC Best Paper: Possible to
compute Ã with poly(d) rows in:

O (nnz(A)) time.

Π is chosen to be an ultra-sparse random matrix. Uses totally
different techniques (you can’t do JL + ε-net).

Lead to a whole close of matrix algorithms (for regression, SVD,
etc.) which run in time:

O (nnz(A)) + poly(d, ε).

ࠂࠅ

WHAT WERE AILON AND CHAZELLE THINKING?

Simple, inspired algorithm that has been used for accelerating:

• Vector dimensionality reduction

• Linear algebra

• Locality sensitive hashing
(SimHash)

• Randomized kernel learning
methods (we will discuss after
Thanksgiving)

ࠃࠅ

WHAT WERE AILON AND CHAZELLE THINKING?

The Hadamard Transform is closely related to the Discrete
Fourier Transform.

Fj,k = e−ࠁπi j·kn , F∗F = I.

Real part of Fj,k.

Fy computes the Discrete Fourier Transform of the vector y.
Can be computed in O(n log n) time using a divide and conquer
algorithm (the Fast Fourier Transform). ࠄࠅ

THE UNCERTAINTY PRINCIPAL

The Uncertainty Principal (informal): A function and it’s
Fourier transform cannot both be concentrated.

Vector y. Fourier transform Fy.

ࠅࠅ

SPARSE RECOVERY/COMPRESSED SENSING

What do we know?

ࠆࠅ

THE UNCERTAINTY PRINCIPAL

Sampling does not preserve norms, i.e. ‖Sy‖ࠁ .≈ ‖y‖ࠁ when y
has a few large entries.

Taking a Fourier transform exactly eliminates this hard case,
without changing y’s norm.

One of the central tools in the field of sparse recovery aka
compressed sensing.

ࠇࠅ

