CS-GY 6763: Lecture 10
Spectral clustering, spectral graph theory.

NYU Tandon School of Engineering, Prof. Christopher Musco



LOW-RANK APPROXIMATION

Write X as a rank k factorization by projecting onto the
subspace spanned by an orthonormal matrix V € R9xF

VT }k




SINGULAR VALUE DECOMPOSITION

Any matrix X can be written:

d left singular vectors  singular values right singular vectors
0,
0,

X = U 2 A

Where UTU=1,VIV=1l,and g1 > 02> ...04 > 0.



SINGULAR VALUE DECOMPOSITION

Can read off optimal low-rank approximations from the SVD:

d left singular vectors  singular values right singular vectors

A

0,
Oy

xk = Uk ik

Xp = UpXpV], = UpULX = XV, V).
X, = arg min ||X — B||2.
rank k B
Can be computed efficiently using power method or more
advanced Krylov subspace methods. =



APPLICATION OF PARTIAL SVD: ENTITY EMBEDDINGS

Corpus of Documents Term Document Matrix X
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Low-Rank Approximation via
SVD

Words tend to map to “similar” columns in z if they have
similar meaning.



APPLICATION OF PARTIAL SVD: ENTITY EMBEDDINGS

Words tend to map to similar columns in z (i.e. similar vectors)
if they have similar meaning.

linguistics
mathematics

mathematical

i i students
i teachers
research -Studylng
developmental 4y “institution
Ry % teaching
reading wtaught
sycholo :
ey & creation learning
i learn
medical
processes learned
exploring
viewing
behavior listening
motivation
understanding
knowing

Kastrati, Kurti, Imran 2020



EXAMPLE: LATENT SEMANTIC ANALYSIS

Corpus of Documents Term Document Matrix X

SVD

[z ]

- {yi,Zq) ~ 1 when doc; contains word,.
- If doc; and doc; both copfain wordy, (Vi,Za) =~ (Vj,Za) = 1.
Y

Vi



EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix X Low-Rank Approximation via SVD
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- The columns 71,2, ... give representations of words, with
Z; and Z; tending to have high dot product if word; and
word; appear in many of the same documents.

- Z corresponds to the top k right singular vectors: the
eigenvectors of X'X. In words, what are the entries in X'X?

- (XTX);j =



EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix X Low-Rank Approximation via SVD
o )%, %, %

o8 ot [z ]
:- X z

- Similarly the rows i, V5, ... give representations of
documents, with y; and y; tending to have high dot
product if doc; and doc; share many words.

.
o
o
D

1
1
0
o
0

- Can also be used for document search (this was the
original application).

- Can naturally be combined with search methods like LSH.



EXAMPLE: WORD EMBEDDINGS

Not obvious how to convert a word into a feature vector that
captures the meaning of that word. Approach suggested by
LSA: build a d x d symmetric “similarity matrix” M between
words, and factorize: M ~ F'F for rank k F.

- Similarity measures: How often do word;, word; appear in
the same sentence, in the same window of w words, in
similar positions of documents in different languages?

- Replacing X"X with these different metrics (sometimes
appropriately transformed) leads to popular word

embedding algorithms: word2vec, GloVe, etc.
10



EXAMPLE: WORD EMBEDDINGS

woman
irl
an g slower

\\ father o
cat King 9ueen

faster slowest

dog \ mother
\ cats daughter fast
dogs France
England longer
/ he fastest
Paris / Italy long
Londo%

hlmself
longest
herself E
Rome

word2vec was originally described as a neural-network
method, but Levy and Goldberg show that it is simply low-rank
approximation of a specific similarity matrix. Neural word
embedding as implicit matrix factorization.

n



APPLICATION: UNSUPERVISED TRANSLATION

12


www.earthspecies.org
www.projectceti.org

APPLICATION: UNSUPERVISED TRANSLATION

Why not monkey or whale language?

Earth Species Project (www.earthspecies.org), CETI Project

(www.projectceti.org) 12


www.earthspecies.org
www.projectceti.org

SPECTRAL GRAPH THEORY

Main idea: Understand graph data by constructing natural
matrix representations, and studying that matrix’s spectrum
(eigenvalues/eigenvectors).

For now assume G = (V,E) is an undirected, unweighted graph

with n nodes.
13



MATRIX REPRESENTATIONS OF GRAPHS

Two most common representations: n x n adjacency matrix A
and graph Laplacian L = D — A where D is the diagonal degree
matrix.
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Also common to look at normalized versions of both of these:
A=D""2AD""2and L=1- D~"2AD~"/2,
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SPECTRAL GRAPH THEORY TIDBITS

- If L have k eigenvalues equal to 0, then G has k connected
components.

- Sum of cubes of A’s eigenvalues is equal to number of
triangles in the graph times 6.

- Sum of eigenvalues to the power g is proportional to the
number of g cycles.

15



THE LAPLACIAN VIEW

X4 A
3 000 0100 100
4 0300 1011 14311
X —_
? = [ bo20|for101 =012
0002 0110 0 -1-1
X3

L = BB where B is the signed “edge-vertex incidence” matrix.

B —



THE LAPLACIAN VIEW

B'B = bib] + byb] + ...+ bybl,

where b; is the it row of B (each row corresponds to a single

edge).
1 -
1 bT 1 -1
“ 2 = i
b,

- =
'
- -

1111 1
= bT
1 =
b,



THE LAPLACIAN VIEW

Conclusions from L = B'B

- L is positive semidefinite: x'Lx > 0 for all x.

- L=VEZ2VT where UXVT is B's SVD. Columns of V are
eigenvectors of L.

n

+ For any vector x € R",

xTLx = (x(i) = x(j))*.

(ij)€E



THE LAPLACIAN VIEW

XTLx = 37 nee(X(i) = x(j))% So x"Lx is small if x is a “smooth”
function with respect to the graph.

X, X X;

Eigenvectors of the Laplacian with small eigenvalues
correspond to smooth functions over the graph.
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SMALLEST LAPLACIAN EIGENVECTOR

Courant-Fischer min-max principle

LetV = [w,...,Vn] be the eigenvectors of L.

Vp = argminVv'Lv
[[vI[="

Vp_1 = argmin viLv
[lv]|=1,vLvn

Vo) = arg min v/Lv
[|v]|=1,vLvn,vy_1

Vi = argmin V'Lv
[[V[[=1,vLvn,...,vo

20



LARGEST LAPLACIAN EIGENVECTOR

Courant-Fischer min-max principle

LetV = [w,...,Vn] be the eigenvectors of L.

Vv, = arg maxV’Lv
lIvi=1

Vo = argmax V'Lv
[v]|=1,vLv,

V3 = argmax vLv
[|v]|=1,vLvq,vy

Vp = argmax  V'Lv
IVI[=T,vLva,....vn—1

21



EXAMPLE APPLICATION OF SPECTRAL GRAPH THEORY

- Study graph partitioning problem important in 1)
understanding social networks 2) nonlinear clustering in
unsupervised machine learning (spectral clustering).

- See how this problem can be solved approximately using
Laplacian eigenvectors.

- Give a full analysis of the method for a common random
graph model.

- Use two tools: matrix concentration and eigenvector
perturbation bounds.
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BALANCED CUT

Common goal: Given a graph G = (V, E), partition nodes along
a cut that:

- Has few crossing edges: |[{(u,v) € E:u € S,v e T} is small.
- Separates large partitions: |S|, |T| are not too small.
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(a) Zachary Karate Club Graph
Important in understanding community structure in social
networks.
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SOCIAL NETWORKS IN THE 1970S

Wayne W. Zachary (1977). An Information Flow Model for
Conflict and Fission in Small Groups.

“The network captures 34 members of a karate club, documenting
links between pairs of members who interacted outside the club.
During the study a conflict arose between the administrator "John A”
and instructor "Mr. Hi" (pseudonyms), which led to the split of the
club into two. Half of the members formed a new club around Mr. Hi;
members from the other part found a new instructor or gave up
karate. Based on collected data Zachary correctly assigned all but
one member of the club to the groups they actually joined after the
split” — Wikipedia

Beautiful paper - definitely worth checking out!

2%



BALANCED CUT

Common goal: Given a graph G = (V, E), partition nodes along
a cut that:

- Has few crossing edges: |[{(u,v) € E:u € S,v e T} is small.
- Separates large partitions: |S|, |T| are not too small.
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(a) Zachary Karate Club Graph
Important in understanding community structure in social
networks.

25



SPECTRAL CLUSTERING

Idea: Construct synthetic graph for data that is hard to cluster.

e.g. k-nn N
’//\/_5\
graph XN i
Q’\:' |§£/"/l\/
b </ //
< e P >
N \_\/_/\\,‘7’.7/

Spectral Clustering, Laplacian Eigenmaps, Locally linear

embedding, Isomap, etc.
26



SPECTRAL GRAPH THEORY

There are many way's to formalize Zachary's problem:

(B-Balanced Cut:
msin cut(S,V\'S) suchthat min(|S|,|V\S])>pgforps<.5

Sparsest Cut:

L cut(S,V\S)
5" min (IS, ]V S])

Most formalizations lead to computationally hard problems.
Lots of interest in designing polynomial time approximation
algorithms, but tend to be slow. In practice, much simpler
methods based on the graph spectrum are used.

27



THE LAPLACIAN VIEW

Another conclusion from L = B'B:

For a cut indicator vector ¢ € {—1,1}" with ¢(/) = —1fori e S

andc(i)=1forieT=V\S:
c'le= )" (c(i) = c(j))* = 4~ cut(S,T). (1)

(i))eE

28



THE LAPLACIAN VIEW
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(a) Zachary Karate Club Graph

For a cut indicator vector c € {—1,1}" with ¢(/) = —1fori € S
andc(i)=1forieT:

- c'Lc =4 - cut(S,T).
- c1=|T| -8

Want to minimize both c¢’Lc (cut size) and ¢’1 (imbalance).
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THE LAPLACIAN VIEW
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(a) Zachary Karate Club Graph

Equivalent formulation if we divide everything by v/n so that ¢

has norm 1. Then c € {——--—-}" and:

v /n
4
- c'le= 2 - cut(S,T).
c 1= ﬁ(ITI —|S]).
Want to minimize both c¢’Lc (cut size) and ¢'1 (imbalance).
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SMALLEST LAPLACIAN EIGENVECTOR

The smallest eigenvector/singular vector v, satisfies:

Vp=—=-1= argmin VLV
Vvn VER" with [[v]|=1
eyl v, —
with v,Lv, = 0.
X4
o 1100
X ) [13-1-1
’ 0 -12 -1
0-1-12
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SECOND SMALLEST LAPLACIAN EIGENVECTOR

By Courant-Fischer, v,_1 is given by:

Vp—_1 = argmin viLv
Ivl=1, viv=0

If v,_1 were binary {—ﬁ, %}” it would have:

v _,Lvp_q = Lcut(S,T) as small as possible given that
Vi 1=1TI =S| =0.
- Vo1 would indicate the smallest perfectly balanced cut.

Vh_1 € R" is not generally binary, but a natural approach is to
‘round’ the vector to obtain a cut.

Same idea as in the LP relaxation lecture!
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CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

Find a good partition of the graph by computing

V1= arg min viLv
veR" with ||v||=1, vT1=0

Set S to be all nodes with v,_1(i) < 0, and T to be all with

Vp—1(i) > 0.
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CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

Find a good partition of the graph by computing

V1= arg min viLv
veRM with |lv||=1, vI1=0

Set S to be all nodes with v,_1(i) < 0, and T to be all with

Vp—1(i) > 0.
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SPECTRAL PARTITIONING IN PRACTICE

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the
normalized Laplacian L = D~'/2LD~"/2,

Important consideration: What to do when we want to split
the graph into more than two parts?
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SPECTRAL PARTITIONING IN PRACTICE

Spectral Clustering:

- Compute smallest k eigenvectors vp_1,...,Vy_p Of L.

- Represent each node by its corresponding row in V € R"*¢
whose rows are vp_1,...Vp_g.

- Cluster these rows using k-means clustering (or really any
clustering method).

- Often we choose ¢ = k, but not necessarily.

35



LAPLACIAN EMBEDDING

Original Data: (not linearly separable)
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LAPLACIAN EMBEDDING

k-Nearest Neighbors Graph:

37



LAPLACIAN EMBEDDING

Embedding with eigenvectors v, _1,v,_,: (linearly separable)

38



WHY DOES THIS WORK?

Intuitively, since v € vy, ...V, are smooth over the graph,
> (Il = Vi)
I,jeE
is small for each coordinate. I.e. this embedding explicitly
encourages nodes connected by an edge to be placed in
nearby locations in the embedding.

Also useful e.g,, in graph drawing.

39



TONS OF OTHER APPLICATIONS!

Fast balanced partitioning algorithms are also use in
distributing data in graph databases, for partitioning finite
element meshes in scientific computing (e.g., that arise when
solving differential equations), and more.

Lots of good software packages (e.g. METIS).

40



GENERATIVE MODELS

So far: Showed that spectral clustering partitions a graph
along a small cut between large pieces.

- No formal guarantee on the ‘quality’ of the partitioning.
- Would be difficult to analyze for general input graphs.

Common approach: Design a natural generative model that
produces random but realistic inputs and analyze how the
algorithm performs on inputs drawn from this model.

- Very common in algorithm design and analysis. Great way
to start approaching a problem.

- This is also the whole idea behind Bayesian Machine
Learning (can be used to justify ¢, linear regression,
k-means clustering, PCA, etc.)

41



STOCHASTIC BLOCK MODEL

Ideas for a generative model for social network graphs that
would allow us to understand partitioning?

)



STOCHASTIC BLOCK MODEL

Stochastic Block Model (Planted Partition Model):

Let Gn(p, q) be a distribution over graphs on n nodes, split
equally into two groups B and C, each with n/2 nodes.

- Any two nodes in the same group are connected with
probability p (including self-loops).
- Any two nodes in different groups are connected with

prob. g < p.
L L
'w.[?& .Ez
o ﬁ%o: &
e O o
¥ s
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LINEAR ALGEBRAIC VIEW

Let G be a stochastic block model graph drawn from Gu(p, q).

- Let A € R"™" be the adjacency matrix of G. What is E[A]?

B Cc
(n/2 nodes)  (n/2 nodes)
L

B —
(n/2 nodes)

C
(n/2 nodes) ]

Note that we are arbitrarily ordering the nodes in A by group.

In reality A would look “scrambled” as on the right. "



EXPECTED ADJACENCY SPECTRUM

Letting G be a stochastic block model graph drawn from
Gn(p,q) and A € R™" be its adjacency matrix. (E[A]);; = p for
I,j in same group, (E[A]);; = g otherwise.

B

(n/2 nodes) T

C
(n/2 nodes)

B C
(n/2 nodes)  (n/2 nodes)
| A

E[A]

What are the
eigenvectors and
eigenvalues of E[A]?
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EXPECTED LAPLACIAN

What is the expected Laplacian Gn(p,q)?

A and L have the same eigenvectors and eigenvalue are equal
up to a shift.

46



EXPECTED ADJACENCY SPECTRUM

Letting G be a stochastic block model graph drawn from
Gn(p,q) and A € R™" be its adjacency matrix, what are the
eigenvectors and eigenvalues of E[A]?

47



EXPECTED ADJACENCY SPECTRUM

B C
/2 nod /2 nod
'(n nlo es)' (n :10 es)l V A vT
1 1[5 11111111
1 1 .
p q 11 Ll 17111-1-1-1-1
=11 1
E[A] 1 -1
1 -1
q p 1 -1
1 -1

- vy ~ 1 with eigenvalue Ay = @07,
© vy ~ xp,c With eigenvalue \, = £=07
- xsc(l) ="1ifie Band xpc(i) = —1forieC

If we compute v, then we recover the communities B and C!
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EXPECTED LAPLACIAN SPECTRUM

Upshot: The second smallest eigenvector of E[L], equivalently
the second largest of E[A], is xg,c — the indicator vector for the
cut between the communities.

- If the random graph G (equivilantly A and L) were exactly
equal to its expectation, partitioning using this
eigenvector would exactly recover communities B and C.

How do we show that a matrix (e.g., A) is close to its
expectation? Matrix concentration inequalities.

- Analogous to scalar concentration inequalities like
Markovs, Chebyshevs, Bernsteins.

49



MATRIX CONCENTRATION

Matrix Concentration Inequality: If p > O ("’%f”), then
with high probability

|IA —E[A]ll2 < O(v/pn).

where || - ||, is the matrix spectral norm (operator norm).

For X € R™, ||X||2 = maxyega 1,=1 X2]l2-

For the stochastic block model application, we want to show
that the second eigenvectors of A and E[A] are close. How
does this relate to their difference in spectral norm?

50



EIGENVECTOR PERTURBATION

Davis-Kahan Eigenvector Perturbation Theorem: Sup-
pose A/A € RI*9 are symmetric with ||A — Al < e
and eigenvectors vq,Vs,...,Vy and v, Vs, ..., V4. Letting
0(v;, ;) denote the angle between v; and v;, for all I:

€
Sln[ (VI7VI)] = m|n}?é, ’)\I _ )\}|

where \q,..., Ay are the eigenvalues of A.

The error gets larger if there are eigenvalues with similar
magnitudes.
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EIGENVECTOR PERTURBATION

A A A-A
1+¢ 0 1 0 e 0

0 1 0 1+¢ 0 ¢
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APPLICATION TO STOCHASTIC BLOCK MODEL

Claim 1 (Matrix Concentration): For p > O (@)
|A —E[A]|l, < O(v/pn).
a a N log"
Claim 2 (Davis-Kahan): For p > O (%”)

O(yv/pn) o(vpn) VP
minji |Ai — Ajl = (p—aq)n/2 ! <(D = @)vﬂ)

sin 9(V27 Vz) <

Recall: E[A], has eigenvalues \j = (p?)”, A = (p_z‘””, A\ =0fori>3.

- : (p—q)n
rjn;ln |Ai = Aj| = min (qn, — )

Assume ‘w — 0| will be the minimum of the two gaps. l.e.

smaller than ’M — =) _ gn,
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APPLICATION TO STOCHASTIC BLOCK MODEL

So Far: sinf(v,,v,) <O ((p \qf)f) What does this give us?

- Can show that this implies ||v, — %2 < O (W) (exercise).

RV RIS ﬁxs,ci the community indicator vector.

B C

(n/2 nodes) (n/2 nodes)

1 1 1 1 1 1 1 1
Vi Vi Vn n Ya yn Yn ym
Z
- Every i where vy(i), ¥2(i) contributes > 1 to

V2 — Volf5.

- So they differ in sign in at most O ((p ar ) positions.
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APPLICATION TO STOCHASTIC BLOCK MODEL

Upshot: If G is a stochastic block model graph with adjacency
matrix A, if we compute its second large eigenvector v, and
assign nodes to communities according to the sign pattern of
this vector, we will correctly assign all but O (ﬁ) nodes.

(n/2 nodes) (n/2 nodes) (n/2 nodes) (n/2 nodes)
f ' ¥ . \ f . Y ! \
1 111 1 1 1 1
.03 .—.01.02.01 —.04 —.03 —.01 —.03 ‘ R R R R A
~
V2 ~ XB.c

- Why does the error increase as g gets close to p?

- Even when p — g = 0(1/+/n), assign all but an O(n) fraction
of nodes correctly. E.g., assign 99% of nodes correctly.
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RANDOMIZED NUMERICAL LINEAR ALGEBRA

Forget about the previous problem, but still consider the
matrix M = E[A].

- Dense n x n matrix.

- Computing top eigenvectors takes ~ 0(n?/./e) time.

If someone asked you to speed this up and return approximate
top eigenvectors, what could you do?

We will discuss this more next class!
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