
New York University Tandon School of Engineering
Computer Science and Engineering

CS-GY 6763: Homework 3.
Due Monday, November 24th, 2021, 11:59pm.

Collaboration is allowed on this problem set, but solutions must be written-up individually. Please list
collaborators for each problem separately, or write “No Collaborators” if you worked alone.

Problem 1: Weak Submodular Optimization
(10 pts) Consider the definition of weak submodularity that Teal introduced in class: For a fixed positive
integer k, we say that a set function f : 2[n] → R is γk-weekly submodular for k if, for all S′ ⊂ {1, . . . , n}
and S ⊂ {1, . . . , n} \ S′ with |S| ≤ k, ∑

e∈S f(e|S′)

f(S|S′)
≥ γk.

A submodular function satisfies this inequality with γk = 1 for all k, but in general we could have γk < 1.
Even if this is the case, it turns out that we can still prove that the greedy algorithm is effective at maximizing
such weakly-submodular functions.

In particular, suppose we select items s1, . . . , sk and let Si = {s1, . . . , si} with S0 = {} equal to the
empty set. The greedy strategy chooses items via the following rule

si = argmax
e∈{1,...,n}\Si−1

f(e | Si).

Prove that, if S∗ = argmaxS:|S|=k f(x), then

f(Sk) ≥ (1− e−γk)f(s∗).

Problem 2: Sparse Regression is Only Easier
(10 pts) Often in machine learning it is desirable to choose a “sparse” model that only involves a subset of
features. Sparse models can help avoid overfitting and are sometimes easier to interpret. Suppose we run
some feature selection algorithm (for example, a submodular maximization based method) to select d′ < d
features (i.e., columns) from a data matrix A ∈ Rn×d with n examples. Let A′ ∈ Rn×d′ be the data matrix
restricted to just those features. Now we want to solve a least squares regression problem minx ∥A′x− b∥22.
Show that the condition number of this convex optimization problem is no worse than that of minx ∥Ax−b∥22.

Problem 3: Approximating Eigenvalues Moments
(15 pts) Let A ∈ Rn×n be a square symmetric matrix, which means it it guaranteed to have an eigendecom-
position with real eigenvalues, λ1 ≥ . . . ≥ λn. While computing these eigenvalues naively takes O(n3) time,
it turns out that we can compute their sum much more quickly: with n operations. This is because

∑n
i=1 λi

is exactly equal to the trace of A, i.e. the sum of its diagonal entries tr(A) =
∑n

i=1 Aii. We can also compute
the sum of squared eigenvalues in O(n2) time by taking advantage of the fact that

∑n
i=1 λ

2
i = ∥A∥2F where

∥A∥2F is the Frobenius norm. What about
∑n

i=1 λ
3
i ? Or

∑n
i=1 λ

4
i ? It turns out that no exact algorithms

faster than a full eigendecomposition are known.
In this problem, however, we show how to approximate

∑n
i=1 λ

k
i for any positive integer k in O(n2k)

time. By the way, this is not a contrived problem – it has a ton of applications in machine learning and data
science that you can ask me about in office hours!

(a) Show that
∑n

i=1 λ
k
i = tr(Ak) where Ak denotes the chain of matrix products A ·A · . . . ·A, repeated

k times. For the remainder of the problem we use the notation B = Ak.

(b) Let x(1), . . . ,x(m) ∈ Rn be m independent random vectors, all with i.i.d. {+1,−1} uniform random
entries. Let Z = 1

m

∑m
i=1(x

(i))TBx(i). We will show that Z is a good estimator for tr(B) and thus for∑n
i=1 λ

k
i . Give a short argument that Z can be computed in O(n2km) time (recall that B = Ak).

(c) Prove that:

E[Z] = tr(B) and Var[Z] ≤ 4

m
∥B∥2F

Hint: Use linearity of variance but be careful about what things are independent!

(d) Show that if m = O(1
ϵ2) then, with probability 9/10,

| tr(B)− Z| ≤ ϵ∥B∥F .

(e) Argue that, when A is positive semidefinite, ϵ∥B∥F ≤ ϵ tr(B), so the above guarantee actually gives
the relative error bound,

(1− ϵ) tr(B) ≤ Z ≤ (1 + ϵ) tr(B),

all with just O(n2k/ϵ2) computation time.

Problem 4: Non-convex Optimization
(10 pts) Consider the problem of computing the top right singular vector v1 of a matrix A ∈ Rn×d.
As mentioned, it is possible to frame this problem as an optimization problem and solve it with gradient
descent. As discussed in class, a benefit of doing so is that it makes it easier to introduce stochastic and
online methods, and possible use projection to add additional constraints.

Recall that A’s right singular vectors are equal to the eigenvectors of ATA and the eigenvalues of ATA
are equal to λ1 = σ2

1 , . . . , λd = σ2
d, where σ1 > . . . σd > 0. You can assume there are no repeat singular

values for this problem, so these are strict inequalities.

1. Quick answer: Assume we have know some coarse upper bound λ̃ ≥ λ1. Let f(x) = λ̃ · xTx −
xTATAx. It is easy to check that v1 = argminx∈S f(x) where S = {y : ∥y∥22 ≥ 1}. Prove that f(x)
is a convex function, but S is not a convex set.
Since S is not convex, our generic analysis of projected gradient descent will give no guarantees for
this problem. However, in class we will prove that the method actually does work for this problem –
with a correctly chosen step size, it is exactly exactly equivalent to power method which we analyze.

2. Consider an alternative approach through unconstrained optimization. Let g(x) = −xTATAx
xTx

. Now
we have that v1 ∈ argmin g(x). Prove that g is non-convex and derive an expression for its gradient
∇g(x). Show that c · vi is a statitionary point of g for any right singular vector vi and scaling c.

3. g’s non-convexity also rules out a direct convergence bound: in theory gradient descent could converge
to any singluar vector of A, not the top one. However, we can argue this is unlikely to happen. In
particular, we claim that for any i ̸= 1, vi is actually just a saddle point of g, not a local minimum.
To prove this, show that for any such vi, and any t > 0,

There exists a perturbation z with ∥z∥2 ≤ t such that g(vi + z) < g(vi).

If you are interested, you can find a some work on proving gradient methods won’t get stuck at saddle
points here https://arxiv.org/abs/1703.00887.

Problem 5: Locating Points via the SVD
(15 pts) Suppose you are given all pairs distances between a set of points x1, . . . ,xn ∈ Rd. You can assume
that d ≪ n. Formally, you are given an n× n matrix D with Di,j = ∥xi − xj∥22. You would like to recover
the location of the original points, at least up to possible rotation and translation (which do not change
pairwise distances).

Since we can only recover up to a translation, it may be easiest to assume that the points are centered
around the origin. I.e. that

∑n
i=1 xi = 0.

https://arxiv.org/abs/1703.00887

1. Under this assumption, describe a polynomial time algorithm for learning
∑n

i=1 ∥xi∥22 from D. Hint:
expand ∥xi − xj∥22 as (xi − xj)

T (xi − xj) and go from there.

2. Next, describe a polynomial time algorithm for learning ∥xi∥22 for each i ∈ 1, . . . , n.

3. Finally, describe an algorithm for recovering a set of points x1, . . . ,xn which realize the distances in
D. Hint: This is where you will use the SVD! It might help to know (and prove to yourself) that D
has rank ≤ d+ 2.

4. Implement your algorithm and run it on the U.S. cities dataset provided in UScities.txt. Note that
the distances in the file are unsquared Euclidean distances, so you need to square them to obtain D.
Plot your estimated city locations on a 2D plot and label the cities to make it clear how the plot is
oriented. Submit these images and your code with the problem set (in the same file, as plaintext) – I
don’t need to be able to run the code.

	Problem 1: Weak Submodular Optimization
	Problem 2: Sparse Regression is Only Easier
	Problem 3: Approximating Eigenvalues Moments
	Problem 4: Non-convex Optimization
	Problem 5: Locating Points via the SVD

