
New York University Tandon School of Engineering
Computer Science and Engineering

CS-GY 9223D: Midterm Practice.

Logistics

• Exam will be released at 12am ET on Monday, 10/26.

• You can complete the exame during any 2 hour window until midnight ET on Friday, 10/30.

• Solutions can be typed or handwritten, as long as they are converted to a PDF. Clearly mark solutions
so I know what problem they are for.

• The exam will be administered on Gradescope or a similar platform (stay tuned for details). After you
download it, you will be able to submit a PDF of your solutions until exactly 2 hours, 15 minutes after
downloading, which allows 15 min. buffer time to scan and upload your work.

• You can use any resources from the class (your own notes, my notes, etc.) but no outside resources.

• Questions can be asked privately on Piazza, but I likely will not be able to respond to them all in time.
So if something is not clear about a problem, very clearly state any assumptions you needed to make,
and move forward with writing your solution. You let me know on Piazza after submitting if there was
some confusion, so I can take this into account when grading.

• Absolutely no discussion or collaboration with other students is allowed. This midterm must represent
your own work. Please do no take any risks here, as noticing overlap in solutions is very easy, and I
don’t want anyone to get in trouble with the school.

Concepts to Know

Random variables and concentration.

• Linearity of expectation and variance.

• Indicator random variables and how to use them.

• Markov’s inequality, Chebyshev’s inequality (should know from memory).

• Union bound (should know from memory).

• Chernoff and Bernstein bounds (don’t need to memorize the exact bounds, but can apply if given).

• General idea of law of large numbers and central limit theorem.

• The probability that a normal random variablesN (0, σ2) falls further than kσ away from its expectation

is ≤ O(e−k2/2).

Hashing, Dimensionality Reduction, High Dimensional Vectors

• Random hash functions.

• Random hashing for load balancing.

• Random hashing for distinct elements estimation.

• What’s a streaming algorithm? What’s a sketching algorithm?

• Locality sensitive hash functions.



• MinHash and SimHash for Jaccard Similarity and Cosine Similarity.

• S-curve tuning.

• Statement of Johnson-Lindenstrauss lemma (know from memory).

• Statement of distributional JL lemma and how it can be used to prove JL.

Convex optimization

• Gradient descent, stochastic gradient descent, and online gradient descent algorithms.

• Definition(s) of convex function.

• When can stochastic gradient descent be faster than gradient descent?

• Definitions of G-Lipschitz, β-smooth, α-strongly convex.

• How do these properties effect the convergence of gradient descent?

• Be able to compute gradients of basic functions from Rd → R.

• How much time does it take to multiply an n× d matrix by a d×m matrix?

Practice Problems

Random variables and concentration.

From Foundations of Data Science book (https://www.cs.cornell.edu/jeh/book.pdf):

• Exercises: 2.1, 2.5, 2.9, 2.28, 2.29, 2.28, 2.36, 2.41, 6.6, 6.10.

1. Show that for any random variable X, E[X2] ≥ E[X]2.

2. Show that for independent X and Y with E[X] = E[Y ] = 0, var[X · Y ] = var[X] · var[Y ].

3. Given a random variable X, can we conclude that E[1/X] = 1/E[X]? If so, prove this. If not, give an
example where the equality does not hold.

4. Indicate whether each of the following statements is always true, sometimes true, or never true.
Provide a short justification for your choice.

(a) Pr[X = s and Y = t] > Pr[X = s]. ALWAYS SOMETIMES NEVER

(b) Pr[X = s or Y = t] ≤ Pr[X = s] + Pr[Y = t]. ALWAYS SOMETIMES NEVER

(c) Pr[X = s and Y = t] = Pr[X = s] · Pr[Y = t]. ALWAYS SOMETIMES NEVER

5. Assume there are 1000 registered users on your site u1, . . . , u1000, and in a given day, each user visits
the site with some probability pi. The event that any user visits the site is independent of what the
other users do. Assume that

∑1000
i=1 pi = 500.

(a) Let X be the number of users that visit the site on the given day. What is E[X]?

(b) Apply a Chernoff bound to show that Pr[X600].01.

(c) Apply Markovs inequality and Chebyshevs inequality to bound the same probability. How do
they compare?

6. Give an example of a random variable and a deviation t where Markovs inequality gives a tighter bound
than Chebyshevs inequality.

https://www.cs.cornell.edu/jeh/book.pdf


Hashing, Dimensionality Reduction, High Dimensional Vectors

1. SimHash can be applied to binary vectors y, q ∈ {0, 1}d. How does doing so compare to MinHash?
How is the Jaccard similarity J(y, q) related to the cosine similarity cos(θ(y, q))?

2. Suppose there is some unknown vector µ. We receive noise perturbed random samples of the form
Y1 = µ + X1, . . . ,Yk = µ + Xk where each Xi is a random vector with each of its entries distributed
as an independent random normal N (0, 1). From our samples Y1, . . . ,Yk we hope to estimate µ by

µ̃ = 1
k

∑k
i=1 Yi.

(a) How many samples k do we require so that max |µ− µ̃| ≤ ε with probability 9/10?

(b) How many samples k do we require so that ‖µ− µ̃‖2 ≤ ε with probability 9/10?

3. Let Π be a random Johnson-Lindenstrauss matrix (e.g. scaled random Gaussians) with O(log(1/δ)/ε2)
rows. Prove that with probability (1− δ),

min
x
‖ΠAx−Πb‖22 ≤ (1 + ε) min

x
‖Ax− b‖22

Is the following also true with high probability?

(1− ε) min
x
‖Ax− b‖22 ≤ min

x
‖ΠAx−Πb‖22

Convex optimization

From Convex Optimization book (https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf):

• Exercises: 3.7, 3.10, 3.11 (first part), 3.21 (lots of other problems if you want more practice, but
many are on the harder si)

1. Let f1(x), . . . , fn(x) be β-smooth convex functions and let g(x) = 1
n

∑n
i=1 fi(x) be their average. Show

that g is β-smooth.

2. Let f : R → R be a β-smooth, α-strongly convex function. Let g(x) = f(c · x) for some constant
0 < c < 1. How does g’s smoothness and strong convexity compare to that of f? How about g’s
condition number?

3. Let f(x) = x4. Is f G-Lipschitz for finite G? Is f β-smooth for finite B?

https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
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