CS-GY 9223 D: Lecture 9
Low-rank approximation and singular value
decomposition

NYU Tandon School of Engineering, Prof. Christopher Musco



SPECTRAL METHODS
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SPECTRAL METHODS

Main difference from randomized methods: & =@<1
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width d = d features width k = k features

In this section, we will discuss data dependent

transformations. Johnson-Lindenstrauss, MinHash, SimHash

were all data oblivious.



SPECTRAL METHODS

Advantages of data independent methods:
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LINEAR ALGEBRA REMINDER

If a matrix has orthonormal rows, it also have

orthonormal columns: | peter

9 ectriebe
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V = 11,|1
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VIv=1=w'

5 (U)T Vx = ATV = XRE

/’)T’

Implies that for any vecto_ XI5 and [|VTx||3.
,|1x

I3 = [Ix3 and [Ix"V[13 = [Ix]I3.

Equivalently,

Same thing goes for Frobenius norm: for any matrix X,

HVXHF = |‘LXH2 and ”VTXHF = HX!
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LINEAR ALGEBRA REMINDER

If @ square matrix has orthonormal rows, it also have
orthonormal columns:

1 1
111 111
1 1
- 1 — 1
VT v = v v =

Implies that for anyVector x, |[|Vx||3 = ||x||3 and ||Vx||2.
Equivalently,ahy vector x, [|x'VT||3 = ||x||3 and [|x"V||2 = ||x]|3.

Same thihg goes for Frobenius norm: for any matrix X,
V47 = IX]12 and [VTX[2 = [X]2



LINEAR ALGEBRA REMINDER

The same is not true fo

r rectangular matrices:

VT V| =

1 T 2 S5 -1 7 -2
L 1 V ( V = |16 -4442 -15
78 42 -5- .67

Vv =1

Ny, = w0tV Tyx = x7x

For any x, ||Vx||3 = |||
T

Equivalently, x

(Vi) (VRD = X

1
\\_/ 2 20 11 80

15 55 32 5

67 -2.8 24 16
90 87 -7.7 7.8

but WIEL
2 but J|Vx|13 # [Ix[3 in general.

2=TIxI2 but [X"VI;3 # [Ix]}3 in general.
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LINEAR ALGEBRA REMINDER

Multiplying a vector by V with orthonormal columns rotates

and/or reflects the vector. (\)a/ V>
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LOW-RANK DATA

Suppose Xi, . .., Xn € RY lie on a low-dimensional subspace S
through the origin. l.e. our data set is for k < d.

Let vq,..., Vv, be orthogonal unit vectors spanning S.

Vv For all i/, we can write:

OLZ 24 1+ ... KGC Ve 10



LOW-RANK DATA

X3 trix VT
matrix
Xy s =
. S ° X, -
. e s
X1 Xn

matrix X
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LOW-RANK DATA

X C g
X G|+ —
matrix VT
T"
< c X GV
matrix X matrix C
¢ K- (D
Formally, C = XV~

X=cV = Xv=cvly V= C

Since V's columns are an orthonormal basis, VIV = 1.
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PROJECTION MATRICES

W/ is a symmetric projection matrix.

X] T (U\, \‘)

X4 - v

VT B

)‘{1/

When all data points already lie in the subspace spanned by
V's columns, projection doesn’t do anything. So X = XVV'. 14



LOW-RANK APPROXIMATION

When X's rows lie close to a k dimensional subspace, we can

still approximate

X ~ XV’

XW' is a low-rank approximation for X.

For a given subspace V spanned by the columns in 'V,

xv': argmin X — V7|2 = Z(Xi,j — (CV)i))%.
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LOW-RANK APPROXIMATION

\\\J&\\»__ \“/\{:4 m oy (Xv ).
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XV can be used as a compressed version of data matrix X. 16



WHY IS DATA APPROXIMATELY LOW-RANK?
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DUAL VIEW

Rows of X (data points) are approximately spanned by k
vectors. Columns of X (data features) are approximately
spanned by k vectors.
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ROW REDUNDANCY

If a data set only had k unique data points, it would be exactly
rank k. If it has k “clusters” of data points (e.g. the 10 digits)
it's often very close to rank k.

projections onto 15
d dimensional spgs orthonormal basis vy, ..., Vis

784 dimensional vector:
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COLUMN REDUNDANCY

Colinearity/correlation of data features leads to a low-rank

data matrix.

home 1
home 2

home n

q
edroom

bathrooms

sq.ft.

floors

2
4

2
2.5

3.5

1800
2700

3600

2
1
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OTHER REASONS FOR LOW-RANK STRUCTURE

< v < \’Y \\'3;
\\LL'\ /(,';) \ \\/p \t\\f (‘(:\/;3) \\ Y . \\) d(\&'(Q g
o « SRRV

When encoded as a matrix, which image has lower
approximate rank?
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APPLICATIONS OF LOW-RANK APPROXIMATION

N = (| [
&)
N

- XV - VT takes O(k(n + d)) space to store instead of O(nd).

- Regression problems involving XV - VT can be solved in
. P e
O(nk% instead of O(nd?) time.

- XV can be used for visualization when k = 2, 3.
i WXV LMD = X2 -1} 06y
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APPLICATIONS OF LOW-RANK APPROXIMATION

“Genes Mirror Geography Within Europe” — Nature, 2008.

Each data vector x; contains genetic information for one person in
Europe. Set k =2 and plot (XV); for each i on a 2-d plane. Color
points by what country they are from.
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COMPUTATIONAL QUESTION

Given a subspace V spanned by the k columns inV,
XV = minx— vV
~— C —

X7 - Ixvvrll2

We want to find the best V € RI*k: )
a»
min X — Xw' (1)
orthonormal VeRAxk HD@

Note that ||X — XWV'||2 IXWVT||2 for all orthonormal V
(since W/ is a projectiom—Equivalent form:

max [XWHE = XV @

orthonormal VERAX

o (x -5 (x-x 99"
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RANK 1 CASE

If R =1, want to find a single vector v4 which maximizes:

XV = (X 2 = Xl

—_— T

Choose v; to be the top eigenvector of X'X.

What about higher k?

25



SINGULAR VALUE DECOMPOSITION

Any matrix X can be written:

d left singular vectors  singular values right singular vectors

o, 02 O
X = ) 2 A

n ~ 0 Og1

Oy

A

Ssvhe - Wele
WhereUTU =1, VIV=1land o1 >0y > ...04 > 0.

26
Note that 3¢ o? = ||IX]|2.



CONNECTION TO EIGENDECOMPOSITION

- Vi's columns are called the “top right singular vectors of X"
- Ug's columns are called the “top left singular vectors of X"

- o01,...,0p are the “top singular values”. o4,...,04 are
sometimes called the “spectrum of X" (although this is
more typically used to refer to eigenvalues).

- U contains the orthonormal eigenvectors

. V contains the orthonormal eigenvectors of X’X.
- o? = N(XXT) = N\(XTX)

Exercise: Check this can be checked directly.
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SINGULAR VALUE DECOMPOSITION

Important take away from singul ar ue omposition.

BN CHCE )
Multiplying any vector a by a matrix X to form Xa can be
viewed as a composition of 3 operations:

1. Rotate/reflect the vector (multiplication by to V).
2. Scale the coordinates (multiplication by X.

3. Rotate/reflect the vector again (multiplication by U).

28



SINGULAR VALUE DECOMPOSITION: ROTATE/REFLECT
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SINGULAR VALUE DECOMPOSITION: STRETCH
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SINGULAR VALUE DECOMPOSITION: ROTATE/REFLECT

u,

ZV}E}/ SVTb UsVTa
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u,

U,
UzVTh
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SINGULAR VALUE DECOMPOSITION

M

UzVvVb
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SINGULAR VALUE DECOMPOSITION

W=V2Z W = L | 2 |Us Vb Vb
Can read off &ptimal low-rank dpproximations from the SVD:

d ‘\lileft singular vectors singular values rightsSingula rs
Q\)- 0
l,\f\ o, 4 VkT
X, |[=|vu /
k k
n / f\ 7
, T
J—J Uf \/ V 2 Uu Zw. &t_
@_ UV = U,UIX :@VT
Vo= argmin  |X—=XW'||2=  argmax [ XWT|2
orthonormal VERIxk ___— orthonormalVeRdX’f
Ve 20 D WS
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SINGULAR VALUE DECOMPOSITION

Connection to Principal Component Analysis:

- Let X =X —1ul where p = 1577 x;. l.e. X is obtained by
mean centering X's rows.

- Let UZVT be the SVD of X. U’s first columns are the “top
principal components” of X. V's first columns are the
“weight vectors” for these principal components.
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USEFUL OBSERVATIONS

d left singular vectors  singular values  right singular vectors

o,
Ok

X = | Uy 2,

Observation 1: The optimal compression XV, has orthogonal
columns.
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USEFUL OBSERVATIONS

d left singular vectors  singular values right singular vectors

v, 7

L
Ok

X |=|u 3

" )

Observation 2: The optimal low-rank approximation error
Er = X — XVLVL||2 = ||X||z — [[XV,VE||# can be written:

k/w/'?

Y2 “ = We( 36



SPECTRAL PLOTS

Observation 2: The optimal low-rank approximation error
Er = X — XVLVL||2 = [|X||# — [[XV,V}||# can be written:

d
Er = Z 0,2.

i=k+1
Can immediately get a sense of “how low-rank” a matrix is
from it's spectrum:

784 dimensional vectors

E singular

N
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SPECTRAL PLOTS

Observation 2: The optimal low-rank approximation error
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SPECTRAL PLOTS

Observation 2: The optimal low-rank approximation error
Er = X — XVLVL||2 = [|X||# — [[XV,V}||# can be written:

d
Er = Z 0,2.

i=k+1
Can immediately get a sense of “how low-rank” a matrix is
from it's spectrum:

'..'. singular
e value g,
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COMPUTING THE SVD

Suffices to compute right singular vectors V: . .
7 T
sV 2V s V2V
- Compute X'X. (Uiu ¢ 2 /

T T
- Find eigendecomposition YA\E -V f:_a v

- Compute L = XV. Set g; = ||Li||2 and U; = L;/||L;||>.

Xy = LRV =US -2 5y

Total runtime ~ ®O(w A,”)
3 O(d?*)

O (VE - [scu»_%'%”\é 5\~w\\>)
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COMPUTING THE SVD (FASTER)

- Compute approximate solution.

- Only compute top k singular vectors/values. Runtime will
depend on k. When k = d we can’t do any better than
classical algorithms based on eigendecomposition.

- Iterative algorithms achieve runtime ~ O(ndk) vs. O(nd?)

2 —_— S
time. -
- Krylov subspace methods like the Lanczos method are

mosteormqnly used in practice.
P od Is the simplest Krylov subspace method,

\44,\') .
// and still works very well.

What we won't discuss today: sketching methods and
stochastic methods (which are faster in some settings).

41



POWER METHOD

Today: What about when kR =1?

Goal: Find some z ~ vi. [z-vn, <£

Input: X € R"*% with SVD U@

N\

¥
Power method: /7 "

+ Choose 29 randomly. E.g. zg ~ N(0,1).

20 = z(0) /|Z(O ll2
- Fori=1,.
20) — XT (XZ(’ 1)) 7&9 . XT/{/ = Gi-)
. L,% | i) ——
=l /I’) 7 T
Return z(N v
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POWER METHOD INTUITION

RV AR 6'&,,_00\
. '-¢ . . . .
0 iterations 1 iterations 2 iterations

Vs

-
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POWER METHOD FORMAL CONVERGENCE

Theorem (Basic Power Method Convergence)

Let v = ‘”U;fz be parameter capturing the “gap” between the
first and second largest singular values. If Power Method is
initialized with a rando jan vector then, with high
probability, after T = teps, we have either:

v 2 <e or v — (~2D)|2 < e.
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ONE STEP ANALYSIS OF POWER METHOD

Write z() in the right singular vector basis:

29 = Oy, + Cgo)\!—z +.- Cgo)m

20 = vy + vy + ..+ vy

20) 1 +cdhvy+ .+ c(d’)vd

Note: [c{”,..., )] = () = vTz().

Also: Z/‘?; (c}i)>2 =1
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ONE STEP ANALYSIS OF POWER METHOD

Cue\r‘/ yeival
-\ 2V 0$\f
=\ zZP\

Claim: After update z(') = XTXz(’
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MULTI-STEP ANALYSIS OF POWER METHOD

Claim: After T updates:

)

o) \\«
\\1/ 1)
Lo» 2

v v

Y de :
54 v,

.\,,\
Let o = = /(O)rrf/. Goal: Show that a)-<or allj #1.

= 11/
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POWER METHOD FORMAL CONVERGENCE

Since (M is a unit vector, Y% e?=1S0a; <.

If we can prove that =- < |/ then: o5 < G

2
a%ZT—d-< 2) = || >1—c¢

oﬂ”:]’i"? z 4(5

1
qu—z )y =2~ 2 < 2
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POWER METHOD FORMAL CONVERGENCE

e 1 (0 o1
Lets proves th /5 where o) = o ¢ g

First observation: Starting coefficients are all r roughly equal.
For allj 0(1/d®) < ¢© <1

with probability 1 — %. This is a very loose bound, but it’s all
that vve will need. Prove at home.

Ve,
(( X) o b o \;(5\\‘\\”6’
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POWER METHOD — NO GAP DEPENDENCE

Theorem (Gapless Power Method Convergence)

If Power Method is initialized with a random Gaussian vector
then, with high probability, after T= 0 (%) steps, we
obtain a z satisfying:

IX —Xzzl[[? < (1+ €)X = Xvavi||?

T————=
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GENERALIZATIONS TO LARGER R

- Block Power Methad aka Simultaneous Iteration aka

Subspace Iteration aka Orthogonal Iteration

Power method:

- Choose G € RY*k be a random Gaussian matrix.

J_ orth( )
- Fori _1

0] (XZ(.’ 1)
() = orth Z’

Return Z(T)

Runtime: O (%)iterations to obtain a nearly optimal
low-rank approximation:

1K = K2ZT|1? < (1+ €)|1X — AviviT| 2.
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