
CS-GY 9223 D: Lecture 9
Low-rank approximation and singular value
decomposition

NYU Tandon School of Engineering, Prof. Christopher Musco

1

spectral methods

Return to data compression:

2

spectral methods

Return to data compression:

3

spectral methods

Main difference from randomized methods:

In this section, we will discuss data dependent
transformations. Johnson-Lindenstrauss, MinHash, SimHash
were all data oblivious.

4

spectral methods

Advantages of data independent methods:

Advantages of data dependent methods:

5

linear algebra reminder

If a square matrix has orthonormal rows, it also have
orthonormal columns:

VTV = I = VVT

Implies that for any vector x, ∥Vx∥22 = ∥x∥22 and ∥VTx∥22.

Equivalently, any vector x, ∥xTVT∥22 = ∥x∥22 and ∥xTV∥22 = ∥x∥22.

Same thing goes for Frobenius norm: for any matrix X,
∥VX∥2F = ∥X∥2F and ∥VTX∥2F = ∥X∥2F.

6

linear algebra reminder

If a square matrix has orthonormal rows, it also have
orthonormal columns:

VTV = I = VVT

Implies that for any vector x, ∥Vx∥22 = ∥x∥22 and ∥VTx∥22.

Equivalently, any vector x, ∥xTVT∥22 = ∥x∥22 and ∥xTV∥22 = ∥x∥22.

Same thing goes for Frobenius norm: for any matrix X,
∥VX∥2F = ∥X∥2F and ∥VTX∥2F = ∥X∥2F.

7

linear algebra reminder

The same is not true for rectangular matrices:

VTV = I but VVT ̸= I

For any x, ∥Vx∥22 = ∥x∥22 but ∥VTx∥22 ̸= ∥x∥22 in general.

Equivalently, x, ∥xTVT∥22 = ∥x∥22 but ∥xTV∥22 ̸= ∥x∥22 in general.

8

linear algebra reminder

Multiplying a vector by V with orthonormal columns rotates
and/or reflects the vector.

9

low-rank data

Suppose x1, . . . , xn ∈ Rd lie on a low-dimensional subspace S
through the origin. I.e. our data set is rank k for k < d.

Let v1, . . . , vk be orthogonal unit vectors spanning S.

For all i, we can write:

xi = ci,1v1 + . . .+ ci,kvk. 10

low-rank data

What are c1, . . . , cn?

11

low-rank data

Lots of information preserved:

• ∥xi − xj∥2 = ∥ci − cj∥2 for all i, j.
• xTi xj = cTi cj for all i, j.
• Norms preserved, linear separability preserved,
min ∥Xy− b∥ = min ∥Cz− b∥, etc., etc.

12

low-rank data

Formally, C = XVT:

X = CVT ⇒ XV = CVTV

Since V’s columns are an orthonormal basis, VTV = I.

So X = XVVT.
13

projection matrices

VVT is a symmetric projection matrix.

When all data points already lie in the subspace spanned by
V’s columns, projection doesn’t do anything. So X = XVVT. 14

low-rank approximation

When X’s rows lie close to a k dimensional subspace, we can
still approximate

X ≈ XVVT.

XVVT is a low-rank approximation for X.

For a given subspace V spanned by the columns in V,

XVVT = argmin
C

∥X− CVT∥2F =
∑
i,j

(Xi,j − (CVT)i,j)2.

15

low-rank approximation

∥xi − xj∥2 ≈ ∥(XVVT)i − (XVVT)j∥2 = ∥(XVT)i − (XVT)j∥2

XV can be used as a compressed version of data matrix X. 16

why is data approximately low-rank?

17

dual view

Rows of X (data points) are approximately spanned by k
vectors. Columns of X (data features) are approximately
spanned by k vectors.

18

row redundancy

If a data set only had k unique data points, it would be exactly
rank k. If it has k “clusters” of data points (e.g. the 10 digits)
it’s often very close to rank k.

19

column redundancy

Colinearity/correlation of data features leads to a low-rank
data matrix.

20

other reasons for low-rank structure

When encoded as a matrix, which image has lower
approximate rank?

21

applications of low-rank approximation

• XV · VT takes O(k(n+ d)) space to store instead of O(nd).
• Regression problems involving XV · VT can be solved in
O(nk2) instead of O(nd2) time.

• XV can be used for visualization when k = 2, 3.

22

applications of low-rank approximation

“Genes Mirror Geography Within Europe” – Nature, 2008.

Each data vector xi contains genetic information for one person in
Europe. Set k = 2 and plot (XV)i for each i on a 2-d plane. Color
points by what country they are from.

23

computational question

Given a subspace V spanned by the k columns in V,

∥X− XVVT∥2F = min
C

∥X− CVT∥2F

We want to find the best V ∈ Rd×k:

min
orthonormal V∈Rd×k

∥X− XVVT∥2F (1)

Note that ∥X− XVVT∥2F = ∥X∥2F − ∥XVVT∥2F for all orthonormal V
(since VVT is a projection). Equivalent form:

max
orthonormal V∈Rd×k

∥XVVT∥2F = ∥XV∥2F (2)

24

rank 1 case

If k = 1, want to find a single vector v1 which maximizes:

∥Xv1vT1∥2F = ∥Xv1∥2F = ∥Xv1∥22 = vT1XTXv1.

Choose v1 to be the top eigenvector of XTX.

What about higher k?

25

singular value decomposition

One-stop shop for computing optimal low-rank
approximations.

Any matrix X can be written:

Where UTU = I, VTV = I, and σ1 ≥ σ2 ≥ . . . σd ≥ 0.

Note that
∑d

i=1 σ
2
i = ∥X∥2F.

26

connection to eigendecomposition

• Vk’s columns are called the “top right singular vectors of X”
• Uk’s columns are called the “top left singular vectors of X”
• σ1, . . . , σk are the “top singular values”. σ1, . . . , σd are
sometimes called the “spectrum of X” (although this is
more typically used to refer to eigenvalues).

• U contains the orthonormal eigenvectors of XXT.
• V contains the orthonormal eigenvectors of XTX.
• σ2i = λi(XXT) = λi(XTX)

Exercise: Check this can be checked directly.

27

singular value decomposition

Important take away from singular value decomposition.

Multiplying any vector a by a matrix X to form Xa can be
viewed as a composition of 3 operations:

1. Rotate/reflect the vector (multiplication by to VT).
2. Scale the coordinates (multiplication by Σ.
3. Rotate/reflect the vector again (multiplication by U).

28

singular value decomposition: rotate/reflect

29

singular value decomposition: stretch

30

singular value decomposition: rotate/reflect

31

singular value decomposition

32

singular value decomposition

Can read off optimal low-rank approximations from the SVD:

Xk = UkΣkVTk = UkUTkX = XVkVTk.

Vk = argmin
orthonormal V∈Rd×k

∥X− XVVT∥2F = argmax
orthonormal V∈Rd×k

∥XVVT∥2F

33

singular value decomposition

Connection to Principal Component Analysis:

• Let X̄ = X− 1µT where µ = 1
n
∑n

i=1 xi. I.e. X̄ is obtained by
mean centering X’s rows.

• Let ŪΣ̄V̄T be the SVD of X̄. Ū’s first columns are the “top
principal components” of X. V’s first columns are the
“weight vectors” for these principal components.

34

useful observations

Observation 1: The optimal compression XVk has orthogonal
columns.

35

useful observations

Observation 2: The optimal low-rank approximation error
Ek = ∥X− XVkVTk∥2F = ∥X∥2F − ∥XVkVTk∥2F can be written:

Ek =
d∑

i=k+1
σ2i .

36

spectral plots

Observation 2: The optimal low-rank approximation error
Ek = ∥X− XVkVTk∥2F = ∥X∥2F − ∥XVkVTk∥2F can be written:

Ek =
d∑

i=k+1
σ2i .

Can immediately get a sense of “how low-rank” a matrix is
from it’s spectrum:

37

spectral plots

Observation 2: The optimal low-rank approximation error
Ek = ∥X− XVkVTk∥2F = ∥X∥2F − ∥XVkVTk∥2F can be written:

Ek =
d∑

i=k+1
σ2i .

Can immediately get a sense of “how low-rank” a matrix is
from it’s spectrum:

38

spectral plots

Observation 2: The optimal low-rank approximation error
Ek = ∥X− XVkVTk∥2F = ∥X∥2F − ∥XVkVTk∥2F can be written:

Ek =
d∑

i=k+1
σ2i .

Can immediately get a sense of “how low-rank” a matrix is
from it’s spectrum:

39

computing the svd

Suffices to compute right singular vectors V:

• Compute XTX.
• Find eigendecomposition VΛVT = XTX.
• Compute L = XV. Set σi = ∥Li∥2 and Ui = Li/∥Li∥2.

Total runtime ≈

40

computing the svd (faster)

• Compute approximate solution.
• Only compute top k singular vectors/values. Runtime will
depend on k. When k = d we can’t do any better than
classical algorithms based on eigendecomposition.

• Iterative algorithms achieve runtime ≈ O(ndk) vs. O(nd2)
time.

• Krylov subspace methods like the Lanczos method are
most commonly used in practice.

• Power method is the simplest Krylov subspace method,
and still works very well.

What we won’t discuss today: sketching methods and
stochastic methods (which are faster in some settings).

41

power method

Today: What about when k = 1?

Goal: Find some z ≈ v1.

Input: X ∈ Rn×d with SVD UΣVT.

Power method:

• Choose z(0) randomly. E.g. z0 ∼ N (0, 1).
• z(0) = z(0)/∥z(0)∥2
• For i = 1, . . . , T

• z(i) = XT · (Xz(i−1))
• ni = ∥z(i)∥2
• z(i) = z(i)/ni

Return z(T)
42

power method intuition

43

power method formal convergence

Theorem (Basic Power Method Convergence)
Let γ = σ1−σ2

σ1
be parameter capturing the “gap” between the

first and second largest singular values. If Power Method is
initialized with a random Gaussian vector then, with high
probability, after T = O

(
log d/ϵ

γ

)
steps, we have either:

∥v1 − z(T)∥2 ≤ ϵ or ∥v1 − (−z(T))∥2 ≤ ϵ.

Total runtime: O
(
nd · log d/ϵγ

)

44

one step analysis of power method

Write z(i) in the right singular vector basis:

z(0) = c(0)1 v1 + c(0)2 v2 + . . .+ c(0)d vd
z(1) = c(1)1 v1 + c(1)2 v2 + . . .+ c(1)d vd
...

z(i) = c(i)1 v1 + c(i)2 v2 + . . .+ c(i)d vd

Note: [c(i)1 , . . . , c(i)d] = c(i) = VTz(i).

Also:
∑d

j=1

(
c(i)j

)2
= 1.

45

one step analysis of power method

Claim: After update z(i) = XTXz(i−1),

c(i)j = σ2j c
(i−1)
j

z(i) = 1
n1

[
c(i−1)1 σ21 · v1 + c(i−1)2 σ22 · v2 + . . .+ c(i−1)d σ2d · vd

]

46

multi-step analysis of power method

Claim: After T updates:

z(T) = 1∏T
i=1 ni

[
c(0)1 σ2T1 · v1 + c(0)2 σ2T2 · v2 + . . .+ c(0)d σ2Td · vd

]

Let αj = 1∏T
i=1 ni

c(0)j σ2Tj . Goal: Show that αj ≪ α1 for all j ̸= 1.

47

power method formal convergence

Since z(T) is a unit vector,
∑d

i=1 α
2
i = 1. So α1 ≤ 1.

If we can prove that αj
α1

≤
√

ϵ
d then:

α21 ≥ 1− d ·
(√

ϵ

d

)2
=⇒ |α1| ≥ 1− ϵ

∥v1 − z(T)∥2 = 2− 2⟨v1, z(T)⟩ ≤ 2ϵ

48

power method formal convergence

Lets proves that αj
α1

≤
√

ϵ
d where αj =

1∏T
i=1 ni

c(0)j σ2Tj

First observation: Starting coefficients are all roughly equal.

For all j O(1/d3) ≤ c(0)j ≤ 1

with probability 1− 1
d . This is a very loose bound, but it’s all

that we will need. Prove at home.

αj
α1

=
σ2Tj
σ2T1

·
c(0)j

c(0)1
≤

Need T =

49

power method – no gap dependence

Theorem (Gapless Power Method Convergence)
If Power Method is initialized with a random Gaussian vector
then, with high probability, after T = O

(
log d/ϵ

ϵ

)
steps, we

obtain a z satisfying:

∥X− XzzT∥2F ≤ (1+ ϵ)∥X− Xv1vT1∥2F

50

generalizations to larger k

• Block Power Method aka Simultaneous Iteration aka
Subspace Iteration aka Orthogonal Iteration

Power method:

• Choose G ∈ Rd×k be a random Gaussian matrix.
• Z0 = orth(G).
• For i = 1, . . . , T

• Z(i) = XT · (Xz(i−1))
• Z(i) = orth(z(i))

Return Z(T)

Runtime: O
(
log d/ϵ

ϵ

)
iterations to obtain a nearly optimal

low-rank approximation:

∥A− AZZT∥2F ≤ (1+ ϵ)∥A− AVkVkT∥2F. 51

