CS-GY 9223 D: Lecture 9
Low-rank approximation and singular value
decomposition

NYU Tandon School of Engineering, Prof. Christopher Musco



SPECTRAL METHODS
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SPECTRAL METHODS

Main difference from randomized methods:
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width d = d features width k = k features

In this section, we will discuss data dependent
transformations. Johnson-Lindenstrauss, MinHash, SimHash
were all data oblivious.




SPECTRAL METHODS

Advantages of data independent methods:

Advantages of data dependent methods:



LINEAR ALGEBRA REMINDER

If a square matrix has orthonormal rows, it also have
orthonormal columns:

VIV =1=w"

Implies that for any vector x, |

V|13 = [[x[13 and [[VTX[I3.
Equivalently, any vector x, [[X"VT||3 = |x||3 and ||x"V|]3 = ||x||3.

Same thing goes for Frobenius norm: for any matrix X,
IVX|[Z = [IX[|? and [IVTX|[? = [X]|7.
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LINEAR ALGEBRA REMINDER

The same is not true for rectangular matrices:

1
- |1 T |5 17 -2
VT \' - 111 ' \ = |16 -4442 -15
7.8 42 -5- .67

-2 20 11 80

-15 .55 32 5
67 -2.8-2.4 16
9.0 87 -7.7 7.8

ViV = | but W £ |

For any x, [[Vx||3 = [|x13 but [[V'X|[3 # |[x||3 in general.
XIVT|3 = [[x[13 but [Ix"V[3 # [[x]3 in general.

Equivalently, x,



LINEAR ALGEBRA REMINDER

Multiplying a vector by V with orthonormal columns rotates
and/or reflects the vector.
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LOW-RANK DATA

Suppose X1, ...,X, € R? lie on a low-dimensional subspace S
through the origin. l.e. our data set is for k < d.

Let vq,...,V, be orthogonal unit vectors spanning S.

vV For all i, we can write:

DLVZ Xi = C,'71V1 + ...+ C,'J?Vh,. 10



LOW-RANK DATA
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LOW-RANK DATA

Lots of information preserved:

. ||X,‘ = Xj||2 =S HC,‘ = Cj||2 for all I,j

Ty — cTe -
X;X; = ¢;c; foralli,j.

- Norms preserved, linear separability preserved,
min ||[Xy — b|| = min ||Cz — b]|, etc,, etc.
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LOW-RANK DATA

d k d
—— —— ——
X o . e—
X Cz \—.Vk—l
- matrix VT
Xn C,
matrix X matrix C

Formally, C = XV
X=CV = Xxv=cVv'v

Since V's columns are an orthonormal basis, VIV = 1.
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PROJECTION MATRICES

W/ is a symmetric projection matrix.

X

VT B

When all data points already lie in the subspace spanned by
V's columns, projection doesn’t do anything. So X = XVV'. 14



LOW-RANK APPROXIMATION

When X's rows lie close to a k dimensional subspace, we can
still approximate

X ~ XW/'.

XVWVT is a low-rank approximation for X.

For a given subspace V spanned by the columns inV,

Xw' = argcmin X —CVT| = Z(Xi,j — (V7))
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LOW-RANK APPROXIMATION

Xn.

X o (xWT),

0w,
° (XVVT), o X,

1Xi = Xi[l2 & [[(XVVT); — (XWT)j[2 = [[(XVT); — (XVT)j]]2

XV can be used as a compressed version of data matrix X. 16



WHY IS DATA APPROXIMATELY LOW-RANK?



DUAL VIEW

Rows of X (data points) are approximately spanned by k
vectors. Columns of X (data features) are approximately

spanned by k vectors.
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ROW REDUNDANCY

If a data set only had k unique data points, it would be exactly
rank k. If it has k “clusters” of data points (e.g. the 10 digits)
it's often very close to rank k.

projections onto 15
784 dimensional vectors  dimensional space  orthonormal basis vy, ...,V4s
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COLUMN REDUNDANCY

Colinearity/correlation of data features leads to a low-rank

data matrix.
bedrooms| bathrooms| sq.ft.|floors| |i
home 1 2 2 1800 | 2
home 2 4 2.5 2700 [ 1
home n 5 35 [3600| 3
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OTHER REASONS FOR LOW-RANK STRU

When encoded as a matrix, which image has lower
approximate rank?
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APPLICATIONS OF LOW-RANK APPROXIMATION

d k
— —
X ) | XV

+ XV - VT takes O(k(n + d)) space to store instead of O(nd).

- Regression problems involving XV - VT can be solved in
O(nk?) instead of O(nd?) time.
- XV can be used for visualization when k= 2,3.
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APPLICATIONS OF LOW-RANK APPROXIMATION

“Genes Mirror Geography Within Europe” — Nature, 2008.

Each data vector x; contains genetic information for one person in
Europe. Set k =2 and plot (XV); for each i on a 2-d plane. Color
points by what country they are from.
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COMPUTATIONAL QUESTION

Given a subspace V spanned by the k columnsinV,

X=XV = min X — cV7|

We want to find the best V € Rk

min [X — XWVT||2 (1)

orthonormal VERdxk

Note that ||[X — XVWVT||Z = ||X||2 — |[XVVT||2 for all orthonormal V
(since W/ is a projection). Equivalent form:

max XTI = V|2 @

orthonormal VeRdxk
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RANK 1 CASE

If k =1, want to find a single vector v; which maximizes:
”XV1V1 HF ||XV1”F = ||XVWH2 = V1XTXV1

Choose v, to be the top eigenvector of X'X.

What about higher k?
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SINGULAR VALUE DECOMPOSITION

Any matrix X can be written:

d left singular vectors  singular values right singular vectors

0,
0,

X = ) b3 VT
n Og-q

Oy

WhereUTU=1,VIV=1,and o1 > 0, > ...04 > 0.

26
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CONNECTION TO EIGENDECOMPOSITION

- Vi's columns are called the “top right singular vectors of X”
- Ug's columns are called the “top left singular vectors of X"

- 01,...,0, are the “top singular values”. o1,...,04 are
sometimes called the “spectrum of X" (although this is
more typically used to refer to eigenvalues).

- U contains the orthonormal eigenvectors of XX.
- V contains the orthonormal eigenvectors of X'X.
- o2 = N(XXT) = N(XTX)

Exercise: Check this can be checked directly.
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SINGULAR VALUE DECOMPOSITION

Important take away from singular value decomposition.
Multiplying any vector a by a matrix X to form Xa can be
viewed as a composition of 3 operations:

1. Rotate/reflect the vector (multiplication by to V7).
2. Scale the coordinates (multiplication by X.

3. Rotate/reflect the vector again (multiplication by U).
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SINGULAR VALUE DECOMPOSITION: ROTATE/REFLECT
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SINGULAR VALUE DECOMPOSITION: STRETCH
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SINGULAR VALUE DECOMPOSITION: ROTATE/REFLECT
ZV}E}/ sVTb UsVTa
\uz\

UZVTb
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SINGULAR VALUE DECOMPOSITION
a UZVTZ<
Eb J

UsV'b
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SINGULAR VALUE DECOMPOSITION

Can read off optimal low-rank approximations from the SVD:

d left singular vectors  singular values right singular vectors

'l

0,
Oy

Xi | ={Uk 2

X = UpERV] = UpUIX = XV,,V.
Vo= argmin  |X=XW'||2=  argmax | XW|}?

orthonormal VERdxk orthonormal VERYxk
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SINGULAR VALUE DECOMPOSITION

Connection to Principal Component Analysis:

- Let X =X—1p” where p =137 x;. l.e. X is obtained by
mean centering X's rows.

- Let UEV™ be the SVD of X. U’s first columns are the “top
principal components” of X. V's first columns are the
“weight vectors” for these principal components.
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USEFUL OBSERVATIONS

d left singular vectors  singular values right singular vectors

0, va

Ok

X = [ Uy z,

Observation 1: The optimal compression XV, has orthogonal
columns.
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USEFUL OBSERVATIONS

d left singular vectors  singular values right singular vectors
o, =
o vk

X | =]y 5

Observation 2: The optimal low-rank approximation error
Er = ||X — XVRVL||2 = ||[X||2 — |[XV,V]||# can be written:

d
E, = Z 0,-2.

I=R+1

36



SPECTRAL PLOTS

Observation 2: The optimal low-rank approximation error
Er = ||X — XVRVI||2 = ||X]|2 — [XV,V]||2 can be written:

d
Ek: Z 0,2.

I=R+1
Can immediately get a sense of “how low-rank” a matrix is
from it's spectrum:

784 dimensional vectars

E singular

value g,
)
--



SPECTRAL PLOTS

Observation 2: The optimal low-rank approximation error
Er = X — XVRVL[|2 = |IX||2 — [[XV,VE||# can be written:

d
Er = Z 0,»2.

i=R+1
Can immediately get a sense of “how low-rank” a matrix is
from it's spectrum:

784 dimensional vectors

singular
value o,




SPECTRAL PLOTS

Observation 2: The optimal low-rank approximation error
Er = X — XVRVL[|2 = |IX||2 — [[XV,VE||# can be written:

d
Er = Z 0,»2.

I=R+1
Can immediately get a sense of “how low-rank” a matrix is
from it's spectrum:

® o0 singular |
o= value g,
N
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COMPUTING THE SVD

Suffices to compute right singular vectors V:

- Compute X'X.
- Find eigendecomposition VAV™ = X'X.
- Compute L = XV. Set g; = ||Li||> and U; = L;/||Lj||.

Total runtime ~

40



COMPUTING THE SVD (FASTER)

- Compute approximate solution.

- Only compute top k singular vectors/values. Runtime will
depend on k. When k = d we can't do any better than
classical algorithms based on eigendecomposition.

- Iterative algorithms achieve runtime ~ O(ndk) vs. O(nd?)
time.

- Krylov subspace methods like the Lanczos method are
most commonly used in practice.

- Power method is the simplest Krylov subspace method,
and still works very well.

What we won’t discuss today: sketching methods and
stochastic methods (which are faster in some settings).
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POWER METHOD

Today: What about when k =1?
Goal: Find some z ~ v,.

Input: X € R"*? with SVD UZV'.

Power method:

- Choose z(%) randomly. Fg 2o ~ N(0,1).
20 =20/,

For/_1,...,T
z() = XT. (Xz(i—1))

= [120]I2

- 200 = 200 /n;

Return z(M

42



0 iterations 1 iterations 2 iterations
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POWER METHOD FORMAL CONVERGENCE

Theorem (Basic Power Method Convergence)

Let v = ‘”a;fz be parameter capturing the “gap” between the
first and second largest singular values. If Power Method is
initialized with a random Gaussian vector then, with high
probability, after T= 0 (%) steps, we have either:

vi =202 < e or Vi = (=2D)|lz < .
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ONE STEP ANALYSIS OF POWER METHOD

Write z{) in the right singular vector basis:

(0)

_ (0) (0)

0) Vi+ G Vo + ...+ Cy Vg

2(

20 = vy + vy + .+ vy

20— iy 4 vy 4.+ Uy

Note: [cgi), o cfji)] = c() = yTz(),

2

Also: Zj; (c}i)) =1.
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ONE STEP ANALYSIS OF POWER METHOD

Claim: After update z() = XTXz(—",

. '] g . 5 5 j— 9)
S — [q(' Vo2 .y + cg’ Vo2 vy + ...+ cfj' Vol vy
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MULTI-STEP ANALYSIS OF POWER METHOD

Claim: After T updates:

1 Pl ) )
z(N [Cgo)ﬁJ Vi + Cgo)nzT sVR FoooTr Céo)(rfj 0 Vd]

=
[Tizini

Let o = HT1 - c/(o)frfT. Goal: Show that a; < oy for allj # 1.
i=1"1 g
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POWER METHOD FORMAL CONVERGENCE

Since 2 is a unit vector, 2% a? = 1. So ay < 1.

If we can prove that —‘ < ,/5 then:

2
a$21—d-< 2) = |a1| >1—¢

v =22 = 2 = 2w, 27) < 2¢
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POWER METHOD FORMAL CONVERGENCE

Lets proves that =/ < /¢ where oj =

:

I_LT:“ n; ] ]

First observation: Starting coefficients are all roughly equal.
For allj 0(1/d?) < C(O) <1

with probability 1 — 5. This is a very loose bound, but it’s all
that we will need. Prove at home.

0

o o C( )
& _ 7 <
ar ol CSO) -
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POWER METHOD — NO GAP DEPENDENCE

Theorem (Gapless Power Method Convergence)

If Power Method is initialized with a random Gaussian vector
then, with high probability, after T= O (%) steps, we
obtain a z satisfying:

X = XezT|[2 < (1 + &)X — Xvy] |2
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GENERALIZATIONS TO LARGER R

- Block Power Method aka Simultaneous Iteration aka
Subspace Iteration aka Orthogonal Iteration

Power method:

- Choose G € R¥** be a random Gaussian matrix.
- Zo = orth(G).
- Fori=1,...,T
. z(0) = XT. (Xz(’”))
- Z0) = orth(z()
Return (D

Runtime: O (%)iterations to obtain a nearly optimal
low-rank approximation:

JA = AZZTI2 < (1+ €)|A — AV, i}



