
CS-GY 9223 D: Lecture 9
Low-rank approximation and singular value
decomposition

NYU Tandon School of Engineering, Prof. Christopher Musco
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spectral methods

Return to data compression:
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spectral methods

Return to data compression:
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spectral methods

Main difference from randomized methods:

In this section, we will discuss data dependent
transformations. Johnson-Lindenstrauss, MinHash, SimHash
were all data oblivious.
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spectral methods

Advantages of data independent methods:

Advantages of data dependent methods:
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linear algebra reminder

If a square matrix has orthonormal rows, it also have
orthonormal columns:

VTV = I = VVT

Implies that for any vector x, ∥Vx∥22 = ∥x∥22 and ∥VTx∥22.

Equivalently, any vector x, ∥xTVT∥22 = ∥x∥22 and ∥xTV∥22 = ∥x∥22.

Same thing goes for Frobenius norm: for any matrix X,
∥VX∥2F = ∥X∥2F and ∥VTX∥2F = ∥X∥2F.
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linear algebra reminder

The same is not true for rectangular matrices:

VTV = I but VVT ̸= I

For any x, ∥Vx∥22 = ∥x∥22 but ∥VTx∥22 ̸= ∥x∥22 in general.

Equivalently, x, ∥xTVT∥22 = ∥x∥22 but ∥xTV∥22 ̸= ∥x∥22 in general.
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linear algebra reminder

Multiplying a vector by V with orthonormal columns rotates
and/or reflects the vector.
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low-rank data

Suppose x1, . . . , xn ∈ Rd lie on a low-dimensional subspace S
through the origin. I.e. our data set is rank k for k < d.

Let v1, . . . , vk be orthogonal unit vectors spanning S.

For all i, we can write:

xi = ci,1v1 + . . .+ ci,kvk. 10



low-rank data

What are c1, . . . , cn?
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low-rank data

Lots of information preserved:

• ∥xi − xj∥2 = ∥ci − cj∥2 for all i, j.
• xTi xj = cTi cj for all i, j.
• Norms preserved, linear separability preserved,
min ∥Xy− b∥ = min ∥Cz− b∥, etc., etc.
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low-rank data

Formally, C = XVT:

X = CVT ⇒ XV = CVTV

Since V’s columns are an orthonormal basis, VTV = I.

So X = XVVT.
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projection matrices

VVT is a symmetric projection matrix.

When all data points already lie in the subspace spanned by
V’s columns, projection doesn’t do anything. So X = XVVT. 14



low-rank approximation

When X’s rows lie close to a k dimensional subspace, we can
still approximate

X ≈ XVVT.

XVVT is a low-rank approximation for X.

For a given subspace V spanned by the columns in V,

XVVT = argmin
C

∥X− CVT∥2F =
∑
i,j

(Xi,j − (CVT)i,j)2.

15



low-rank approximation

∥xi − xj∥2 ≈ ∥(XVVT)i − (XVVT)j∥2 = ∥(XVT)i − (XVT)j∥2

XV can be used as a compressed version of data matrix X. 16



why is data approximately low-rank?
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dual view

Rows of X (data points) are approximately spanned by k
vectors. Columns of X (data features) are approximately
spanned by k vectors.
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row redundancy

If a data set only had k unique data points, it would be exactly
rank k. If it has k “clusters” of data points (e.g. the 10 digits)
it’s often very close to rank k.
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column redundancy

Colinearity/correlation of data features leads to a low-rank
data matrix.
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other reasons for low-rank structure

When encoded as a matrix, which image has lower
approximate rank?
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applications of low-rank approximation

• XV · VT takes O(k(n+ d)) space to store instead of O(nd).
• Regression problems involving XV · VT can be solved in
O(nk2) instead of O(nd2) time.

• XV can be used for visualization when k = 2, 3.
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applications of low-rank approximation

“Genes Mirror Geography Within Europe” – Nature, 2008.

Each data vector xi contains genetic information for one person in
Europe. Set k = 2 and plot (XV)i for each i on a 2-d plane. Color
points by what country they are from.
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computational question

Given a subspace V spanned by the k columns in V,

∥X− XVVT∥2F = min
C

∥X− CVT∥2F

We want to find the best V ∈ Rd×k:

min
orthonormal V∈Rd×k

∥X− XVVT∥2F (1)

Note that ∥X− XVVT∥2F = ∥X∥2F − ∥XVVT∥2F for all orthonormal V
(since VVT is a projection). Equivalent form:

max
orthonormal V∈Rd×k

∥XVVT∥2F = ∥XV∥2F (2)
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rank 1 case

If k = 1, want to find a single vector v1 which maximizes:

∥Xv1vT1∥2F = ∥Xv1∥2F = ∥Xv1∥22 = vT1XTXv1.

Choose v1 to be the top eigenvector of XTX.

What about higher k?
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singular value decomposition

One-stop shop for computing optimal low-rank
approximations.

Any matrix X can be written:

Where UTU = I, VTV = I, and σ1 ≥ σ2 ≥ . . . σd ≥ 0.

Note that
∑d

i=1 σ
2
i = ∥X∥2F.
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connection to eigendecomposition

• Vk’s columns are called the “top right singular vectors of X”
• Uk’s columns are called the “top left singular vectors of X”
• σ1, . . . , σk are the “top singular values”. σ1, . . . , σd are
sometimes called the “spectrum of X” (although this is
more typically used to refer to eigenvalues).

• U contains the orthonormal eigenvectors of XXT.
• V contains the orthonormal eigenvectors of XTX.
• σ2i = λi(XXT) = λi(XTX)

Exercise: Check this can be checked directly.
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singular value decomposition

Important take away from singular value decomposition.

Multiplying any vector a by a matrix X to form Xa can be
viewed as a composition of 3 operations:

1. Rotate/reflect the vector (multiplication by to VT).
2. Scale the coordinates (multiplication by Σ.
3. Rotate/reflect the vector again (multiplication by U).
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singular value decomposition: rotate/reflect
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singular value decomposition: stretch
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singular value decomposition: rotate/reflect

31



singular value decomposition
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singular value decomposition

Can read off optimal low-rank approximations from the SVD:

Xk = UkΣkVTk = UkUTkX = XVkVTk.

Vk = argmin
orthonormal V∈Rd×k

∥X− XVVT∥2F = argmax
orthonormal V∈Rd×k

∥XVVT∥2F
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singular value decomposition

Connection to Principal Component Analysis:

• Let X̄ = X− 1µT where µ = 1
n
∑n

i=1 xi. I.e. X̄ is obtained by
mean centering X’s rows.

• Let ŪΣ̄V̄T be the SVD of X̄. Ū’s first columns are the “top
principal components” of X. V’s first columns are the
“weight vectors” for these principal components.
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useful observations

Observation 1: The optimal compression XVk has orthogonal
columns.
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useful observations

Observation 2: The optimal low-rank approximation error
Ek = ∥X− XVkVTk∥2F = ∥X∥2F − ∥XVkVTk∥2F can be written:

Ek =
d∑

i=k+1
σ2i .
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spectral plots

Observation 2: The optimal low-rank approximation error
Ek = ∥X− XVkVTk∥2F = ∥X∥2F − ∥XVkVTk∥2F can be written:

Ek =
d∑

i=k+1
σ2i .

Can immediately get a sense of “how low-rank” a matrix is
from it’s spectrum:
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spectral plots
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computing the svd

Suffices to compute right singular vectors V:

• Compute XTX.
• Find eigendecomposition VΛVT = XTX.
• Compute L = XV. Set σi = ∥Li∥2 and Ui = Li/∥Li∥2.

Total runtime ≈

40



computing the svd (faster)

• Compute approximate solution.
• Only compute top k singular vectors/values. Runtime will
depend on k. When k = d we can’t do any better than
classical algorithms based on eigendecomposition.

• Iterative algorithms achieve runtime ≈ O(ndk) vs. O(nd2)
time.

• Krylov subspace methods like the Lanczos method are
most commonly used in practice.

• Power method is the simplest Krylov subspace method,
and still works very well.

What we won’t discuss today: sketching methods and
stochastic methods (which are faster in some settings).
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power method

Today: What about when k = 1?

Goal: Find some z ≈ v1.

Input: X ∈ Rn×d with SVD UΣVT.

Power method:

• Choose z(0) randomly. E.g. z0 ∼ N (0, 1).
• z(0) = z(0)/∥z(0)∥2
• For i = 1, . . . , T

• z(i) = XT · (Xz(i−1))
• ni = ∥z(i)∥2
• z(i) = z(i)/ni

Return z(T)
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power method intuition
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power method formal convergence

Theorem (Basic Power Method Convergence)
Let γ = σ1−σ2

σ1
be parameter capturing the “gap” between the

first and second largest singular values. If Power Method is
initialized with a random Gaussian vector then, with high
probability, after T = O

(
log d/ϵ

γ

)
steps, we have either:

∥v1 − z(T)∥2 ≤ ϵ or ∥v1 − (−z(T))∥2 ≤ ϵ.

Total runtime: O
(
nd · log d/ϵγ

)
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one step analysis of power method

Write z(i) in the right singular vector basis:

z(0) = c(0)1 v1 + c(0)2 v2 + . . .+ c(0)d vd
z(1) = c(1)1 v1 + c(1)2 v2 + . . .+ c(1)d vd
...

z(i) = c(i)1 v1 + c(i)2 v2 + . . .+ c(i)d vd

Note: [c(i)1 , . . . , c(i)d ] = c(i) = VTz(i).

Also:
∑d

j=1

(
c(i)j

)2
= 1.
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one step analysis of power method

Claim: After update z(i) = XTXz(i−1),

c(i)j = σ2j c
(i−1)
j

z(i) = 1
n1

[
c(i−1)1 σ21 · v1 + c(i−1)2 σ22 · v2 + . . .+ c(i−1)d σ2d · vd

]
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multi-step analysis of power method

Claim: After T updates:

z(T) = 1∏T
i=1 ni

[
c(0)1 σ2T1 · v1 + c(0)2 σ2T2 · v2 + . . .+ c(0)d σ2Td · vd

]

Let αj = 1∏T
i=1 ni

c(0)j σ2Tj . Goal: Show that αj ≪ α1 for all j ̸= 1.
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power method formal convergence

Since z(T) is a unit vector,
∑d

i=1 α
2
i = 1. So α1 ≤ 1.

If we can prove that αj
α1

≤
√

ϵ
d then:

α21 ≥ 1− d ·
(√

ϵ

d

)2
=⇒ |α1| ≥ 1− ϵ

∥v1 − z(T)∥2 = 2− 2⟨v1, z(T)⟩ ≤ 2ϵ
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power method formal convergence

Lets proves that αj
α1

≤
√

ϵ
d where αj =

1∏T
i=1 ni

c(0)j σ2Tj

First observation: Starting coefficients are all roughly equal.

For all j O(1/d3) ≤ c(0)j ≤ 1

with probability 1− 1
d . This is a very loose bound, but it’s all

that we will need. Prove at home.

αj
α1

=
σ2Tj
σ2T1

·
c(0)j

c(0)1
≤

Need T =
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power method – no gap dependence

Theorem (Gapless Power Method Convergence)
If Power Method is initialized with a random Gaussian vector
then, with high probability, after T = O

(
log d/ϵ

ϵ

)
steps, we

obtain a z satisfying:

∥X− XzzT∥2F ≤ (1+ ϵ)∥X− Xv1vT1∥2F
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generalizations to larger k

• Block Power Method aka Simultaneous Iteration aka
Subspace Iteration aka Orthogonal Iteration

Power method:

• Choose G ∈ Rd×k be a random Gaussian matrix.
• Z0 = orth(G).
• For i = 1, . . . , T

• Z(i) = XT · (Xz(i−1))
• Z(i) = orth(z(i))

Return Z(T)

Runtime: O
(
log d/ϵ

ϵ

)
iterations to obtain a nearly optimal

low-rank approximation:

∥A− AZZT∥2F ≤ (1+ ϵ)∥A− AVkVkT∥2F. 51


