CS-GY 9223 D: Lecture 8 Acceleration, preconditioning, coordinate methods

NYU Tandon School of Engineering, Prof. Christopher Musco

IMPROVING GRADIENT DESCENT

We now have a good understanding of gradient descent.

Number of iterations for ϵ error:

How do we use this understanding to design faster algorithms?

ACCELERATED GRADIENT DESCENT

Nesterov's accelerated gradient descent:

$$\begin{array}{c}
x^{(1)} = y^{(1)} \\
\cdot \text{ For } t = 1, \dots, T \\
\cdot y^{(t+1)} = \underline{x}^{(t)} - \frac{1}{\beta} \nabla \underline{f}(\underline{x}^{(t)}) \\
\cdot \underline{x}^{(t+1)} = \left(1 + \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right) \underline{y}^{(t+1)} + \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \underline{y}^{(t+1)} - \underline{y}^{(t)}
\end{array}$$

Theorem (AGD for β -smooth, α -strongly convex.)

Let f be a β -smooth and α -strongly convex function. If we run AGD for T steps we have:

$$f(\mathbf{x}^{(t)}) - f(\mathbf{x}^*) \le \kappa e^{-(t-1)\sqrt{\kappa}} \left[f(\mathbf{x}^{(1)}) - f(\mathbf{x}^*) \right]$$

Corollary: If $T = O(\sqrt{\kappa} \log(\kappa/\epsilon))$ achieve error ϵ .

INTUITION BEHIND ACCELERATION

Other terms for similar ideas:

- Momentum
- Heavy-ball methods

What if we look back beyond two iterates?

Main idea: Instead of minimizing f(x), find another function $q(\mathbf{x})$ with the same minimum but which is better suited for first order optimization (e.g., has a smaller conditioner number).

Claim: Let $h(\mathbf{x}) : \mathbb{R}^d \to \mathbb{R}^d$ be an invertible function. Let $q(\mathbf{x}) = f(h(\mathbf{x}))$. Then

$$\frac{\min f(x) = \min g(x)}{x} \text{ and } \underset{x}{\operatorname{arg min}} f(x) = h \left(\underset{x}{\operatorname{arg min}} g(x)\right).$$

$$\underset{x}{\operatorname{min}} f(x) \leq \min g(x) \qquad \underset{x}{\operatorname{arg min}} g(x) \qquad \underset{x}{\operatorname{min}} f(x) \leq f \left(\underset{x}{\operatorname{min}} g(x)\right).$$

$$\underset{x}{\operatorname{min}} g(x) \leq \min g(x) \qquad \underset{x}{\operatorname{min}} g(x) \qquad \underset{x}{\operatorname{min}} f(x) \leq f \left(\underset{x}{\operatorname{min}} g(x)\right).$$

$$\underset{x}{\operatorname{min}} g(x) \leq \lim_{x \to x} f(x) \qquad \underset{x}{\operatorname{min}} g(x) \leq g \left(\underset{x}{\operatorname{min}} g(x)\right).$$

$$\underset{x}{\operatorname{min}} g(x) \leq \lim_{x \to x} f(x) \qquad \underset{x}{\operatorname{min}} g(x) \leq g \left(\underset{x}{\operatorname{min}} g(x)\right).$$

$$\underset{x}{\operatorname{min}} g(x) \leq \lim_{x \to x} f(x) \qquad \underset{x}{\operatorname{min}} g(x) \qquad \underset{x}{\operatorname{min}} g(x)$$

$$\underset{x}{\operatorname{min}} g(x) \leq \lim_{x \to x} f(x) \qquad \underset{x}{\operatorname{min}} g(x)$$

$$\underset{x}{\operatorname{min}} g(x) \leq \lim_{x \to x} f(x)$$

$$\underset{x}{\operatorname{min}} g(x)$$

First Goal: We need $g(\mathbf{x})$ to still be convex.

Claim: Let \underline{P} be an (invertible) $\underline{d \times d}$ matrix and let $\underline{g(x)} = \underline{f(Px)}$.

 $g(\mathbf{x})$ is always convex.

$$M(x) = Px$$

$$M(x) = Px$$

$$M(x) = Px$$

$$M(x) = f(x) = f(x) = f(x) = f(x) = f(x)$$

$$M(x) = f(x) = f(x) = f(x) = f(x)$$

$$M(x) = f(x) = f(x) = f(x)$$

$$M(x) = f(x) = f(x) = f(x)$$

$$M(x) = f(x)$$

High dimensional chain rule:

If
$$g(x) = f(Px)$$
, $\nabla^2 g(x) = \frac{P^T (Px)}{P^T (Px)}$

Recall that the condition number is equal to:

Example:
$$f(\mathbb{P} \times) = g(\mathbb{A})$$

$$f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2}. \ \nabla f(\mathbf{x}) = 2\mathbf{A}^{\mathsf{T}}\mathbf{A}. \ \kappa_{f} = \frac{\lambda_{1}(\mathbf{A}^{\mathsf{T}}\mathbf{A})}{\lambda_{d}(\mathbf{A}^{\mathsf{T}}\mathbf{A})}.$$

$$g(\mathbf{x}) = \|\mathbf{A}\mathbf{P}\mathbf{x} - \mathbf{b}\|_{2}^{2}. \ \nabla g(\mathbf{x}) = 2\mathbf{P}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{P}. \ \kappa_{g} = \frac{\lambda_{1}(\mathbf{P}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{P})}{\lambda_{d}(\mathbf{P}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{P})}.$$

Ideal preconditioner: Choose P so that P^TA^TAP For example, could set $P = \sqrt{(A^TA)^{-1}}$. But obviously this is too expensive to compute.

(
$$A^{1}A$$
) \rightarrow $O(yd^{2} + d^{3})$ time

DIAGONAL PRECONDITIONER

Third Goal: P should be easy to compute.

Many, many problem specific preconditioners are used in practice. There design is usually a heuristic process.

Example: Diagonal preconditioner for least squares problems.

• Let
$$D \neq \text{diag}(\underline{A^T A})$$
• Want $PA^T AP$ to be close to identity I.

• Let
$$P = \sqrt{D^{-1}}$$

• Let $P = \sqrt{D^{-1}}$

• P is often called a Jacobi preconditioner. Often works very dropool well in practice!

11ATA-SIIF JD" ~ TATA)"

DIAGONAL PRECONDITIONER

DIAGONAL PRECONDITIONER INTUITION

 $g(\mathbf{x}) = f(\|\mathbf{A}\mathbf{P}(\mathbf{x}) - \mathbf{b}\|_2^2)$ is the same least squares problem as $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$, but with each feature (column of **A**) scaled differently. The i^{th} column is scaled by P_{ii} .

Feature scaling can have a huge impact on conditioning.

DIAGONAL PRECONDITIONER INTUITION

 $g(\mathbf{x}) = f(\|\mathbf{A}\mathbf{P}\mathbf{x} - \mathbf{b}\|_2^2)$ is the same least squares problem as $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$, but with each feature (column of **A**) scaled differently. The i^{th} column is scaled by P_{ii} .

Feature scaling can have a huge impact on conditioning.

ADAPTIVE STEPSIZES

Another view: If g(x) = f(Px) then $\nabla g(x) = P^T \nabla f(Px)$.

$$\nabla g(\mathbf{x}) = \mathbf{P} \nabla f(\mathbf{P} \mathbf{x})$$
 when \mathbf{P} is symmetric.

Xª = Pna A= ordain 2 (2)

Gradient descent on q:

For
$$t = 1, ..., T$$
, $\nabla \mathcal{G}(x^{(t+1)})$

$$\nabla \mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \eta \mathbf{P}[\nabla f(\mathbf{P}\mathbf{x}^{(t)})]$$

y (i) = P (i)

Gradient descent on q:

For
$$t$$
 \dots , T , $y^{(t+1)} = y^{(t)} - \eta P^2 \left[\nabla f(y^{(t)})\right]$

When **P** is diagonal, this is just gradient descent with a different step size for each parameter!

ADAPTIVE STEPSIZES

Less clear how to set P for general optimization problems where the Hessian is changing, but lots of heuristic algorithms based on this idea:

- · AdaGrad, AdaDelta
- · RMSprop · Adam optimizer

(Pretty much all of the most widely used optimization methods for training neural networks.)

STOCHASTIC METHODS

Main idea: Trade slower convergence (more iterations) for cheaper iterations.

Stochastic Gradient Descent: When $f(\mathbf{x}) = \sum_{i=1}^{n} f_i(\mathbf{x})$, approximate $\nabla f(\mathbf{x})$ with $\nabla f_i(\mathbf{x})$ for randomly chosen i.

STOCHASTIC METHODS

Main idea: Trade slower convergence (more iterations) for cheaper iterations.

Stochastic Coordinate Descent: Only compute a single random

entry of $\nabla f(\mathbf{x})$ on each iteration:

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(\mathbf{x}) \\ \frac{\partial f}{\partial x_2}(\mathbf{x}) \\ \vdots \\ \frac{\partial f}{\partial x_d}(\mathbf{x}) \end{bmatrix} \qquad \nabla_i f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(\mathbf{x}) \\ \vdots \\ \frac{\partial f}{\partial x_d}(\mathbf{x}) \end{bmatrix}$$

Update:
$$\mathbf{x}^{(t+1)} \leftarrow \mathbf{x}^{(t)} - \eta \nabla_{\underline{i}} f(\mathbf{x}^{(t)})$$
.

COORDINATE DESCENT

When \mathbf{x} has d parameters, computing $\nabla_i f(\mathbf{x})$ sometimes costs just a 1/d fraction of what it costs to compute $\nabla f(\mathbf{x})$

Example:
$$f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$
 for $\mathbf{A} \in \mathbb{R}^{n \times d}, \mathbf{x} \in \mathbb{R}^d, \mathbf{b} \in \mathbb{R}^n$.

$$\cdot \nabla f(\mathbf{x}) = 2\mathbf{A}^{\mathsf{T}}(\mathbf{A}\mathbf{x}) - 2\mathbf{A}^{\mathsf{T}}\mathbf{b}.$$
 O(4 d)

$$\nabla_i f(\mathbf{x}) = 2 \left[\mathbf{A}^T \mathbf{A} \mathbf{x} \right]_i - 2 \left[\mathbf{A}^T \mathbf{b} \right]_i$$
 Nd 17d + vd

Computing full gradient takes O(nd) time. Can we do better here? $A^{\dagger} (A \times)$

D(n)

17

COORDINATE DESCENT

When \mathbf{x} has d parameters, computing $\nabla_i f(\mathbf{x})$ <u>sometimes</u> costs just a 1/d fraction of what it costs to compute $\nabla f(\mathbf{x})$

Example: $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$ for $\mathbf{A} \in \mathbb{R}^{n \times d}, \mathbf{x} \in \mathbb{R}^d, \mathbf{b} \in \mathbb{R}^n$.

$$\nabla f(\mathbf{x}) = 2\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x} - 2\mathbf{A}^{\mathsf{T}}\mathbf{b}.$$

$$\nabla_{i}f(\mathbf{x}) = 2\left[\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x}\right]_{i} - 2\left[\mathbf{A}^{\mathsf{T}}\mathbf{b}\right]_{i}.$$

$$A\mathbf{x}^{(t+1)} = \mathbf{A}\mathbf{x}^{(t+1)} + c(\mathbf{e}_{i})$$

$$2\left[\mathbf{A}^{\mathsf{T}}(\mathbf{A}\mathbf{x}^{(t+1)} - \mathbf{b})\right]_{i}$$

$$\mathbf{A}\mathbf{x}^{(t)} = \begin{bmatrix} \delta \\ \delta \\ \delta \end{bmatrix} A\mathbf{e}_{i}$$

$$\mathbf{A}\mathbf{e}_{i}$$

$$\mathbf{A}\mathbf{x}^{(t+1)} = \mathbf{A}\mathbf{x}^{(t+1)} + c(\mathbf{e}_{i})$$

Stochastic Coordinate Descent:

- Choose number of steps T and step size η .
- For $t=1,\ldots,1$:
- Pick random $j \in 1, ..., d$ uniformly at random. $\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} \eta \sum_{t=1}^{T} \mathbf{x}^{(t)}$. Return $\hat{\mathbf{x}} = \frac{1}{T} \sum_{t=1}^{T} \mathbf{x}^{(t)}$.

Theorem (Stochastic Coordinate Descent convergence)

Given a G-Lipschitz function f with minimizer \mathbf{x}^* and initial point $\mathbf{x}^{(1)}$ with $\|\mathbf{x}^{(1)} - \mathbf{x}^*\|_2 \le R$, SCD with step size $\eta = \frac{1}{Rd}$ satisfies the guarantee:

$$\mathbb{E}[f(\hat{\mathbf{x}}) - f(\mathbf{x}^*)] \le \frac{2GR}{\sqrt{T/d}} = \mathcal{E}$$

$$T = O\left(\frac{6^2 R^2}{2^{-1}}\right) \cdot d$$
 your error ϵ

IMPORTANCE SAMPLING

Often it doesn't make sense to sample *i* uniformly at random:

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -.5 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & -2 & 0 & 0 & 0 \end{bmatrix} \qquad b = \begin{bmatrix} 10 \\ 42 \\ -11 \\ -51 \\ 34 \\ -22 \end{bmatrix}$$

Select indices i proportional to $\|\mathbf{a}_i\|_2^2$:

$$\Pr[\text{select index } i \text{ to update}] = \frac{\|\mathbf{a}_i\|_2^2}{\sum_{j=1}^d \|\mathbf{a}_j\|_2^2} = \frac{\|\mathbf{a}_i\|_2^2}{\|\mathbf{A}\|_F^2}$$

Let's analyze this approach.

Specialization of SCD to $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$:

Randomized Coordinate Descent (S<u>trohmer, Vershynin 200</u>7 / Leventhal, Lewis 2018)

• For iterate $\mathbf{x}^{(t)}$, let $\mathbf{r}^{(t)}$ be the <u>residual</u>:

$$\mathbf{r}^{(t)} = \mathbf{A}\mathbf{x}^{(t)} - \mathbf{b}$$

$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - c\mathbf{e}_{j}.$$

$$\mathbf{r}^{(t+1)} = \mathbf{r}^{(t)} - c\mathbf{a}_{j}. \text{ Here } \mathbf{a}_{j} \text{ is the } i^{th} \text{ column of } \mathbf{A}.$$

$$\mathbf{A}\mathbf{x}^{(t+1)} - \mathbf{b} = \mathbf{A}(\mathbf{x}^{(t)} - c\mathbf{e}_{j}) - \mathbf{b} = \mathbf{A}\mathbf{x}^{(t)} - \mathbf{b} - c\mathbf{A}\mathbf{e}_{j}.$$
Typically c depends on fixed learning rate. Here we will choose it optimally – similar idea to gradient descent with line search.

What choice for c minimizes
$$\|\mathbf{r}^{(t+1)}\|_2^2$$
?
$$\cdot \|\mathbf{r}^{(t+1)}\|_2^2 = \|\mathbf{r}^{(t)} - c\mathbf{a}_j\|_2^2$$

· Requires <u>projecting</u> $\mathbf{r}^{(t)}$ onto perpendicular of \mathbf{a}_{j} .

Specialization of SCD to $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$:

Randomized Coordinate Descent

- · Choose number of steps T.
- Let $x^{(1)} = 0$ and $r^{(1)} = b$.
- For $t = 1, \ldots, T$:
 - Pick random $j \in 1, ..., d$. Index j is selected with probability proportional to $\|\mathbf{a}_i\|_2^2/\|\mathbf{A}\|_F^2$.
 - Set $c = \mathbf{a}_{i}^{T} \mathbf{r}^{(t)} / \|\mathbf{a}_{j}\|_{2}^{2}$
 - $\mathbf{x}^{(t+1)} = \dot{\mathbf{x}^{(t)}} c\mathbf{e}_i$
 - $\cdot \mathbf{r}^{(t+1)} = \mathbf{r}^{(t)} c\mathbf{a}_j$
- Return $\mathbf{x}^{(T)}$.

CONVERGENCE

$$\begin{aligned}
& \mathbb{E} \| r^{(t+1)} \|_{2}^{2} - \mathbb{E} \left[\| r^{(t)} \|_{2}^{2} - \frac{(\alpha_{j}^{+} r^{(t)})^{2}}{\| \alpha_{j}^{+} \|_{2}^{2}} \right] \\
&= \mathbb{E} \left[\frac{\| \alpha_{j}^{+} \|_{2}^{2}}{\| A \|_{F}^{2}} \cdot (\| r^{(t)} \|_{2}^{2} - \frac{(\alpha_{j}^{+} r^{(t)})^{2}}{\| \alpha_{j}^{+} \|_{2}^{2}} \right] \\
&= \| r^{(t)} \|_{2}^{2} - \mathbb{E} \left[\frac{\| r^{(t)} \|_{2}^{2}}{\| A \|_{F}^{2}} - \frac{(\alpha_{j}^{+} r^{(t)})^{2}}{\| A \|_{F}^{2}} \right] \\
&= \| r^{(t)} \|_{2}^{2} - \frac{1}{\| A \|_{F}^{2}} \frac{2}{|r^{(t)}|^{2}} \left[\alpha_{j}^{+} r^{(t)} \right]^{2} \\
&= \| r^{(t)} \|_{2}^{2} - \frac{1}{\| A \|_{F}^{2}} \frac{2}{|r^{(t)}|^{2}} \left[\alpha_{j}^{+} r^{(t)} \right]^{2}
\end{aligned}$$

25

CONVERGENCE

Any residual r can be written as $r = \underline{r}^* + \overline{r}$ where $r^* = Ax^* - b$ and $\overline{r} = A(x^t - x^*)$. Note that $A^T r^* = 0$ and $\overline{r} \perp r^*$.

Claim
$$\mathbb{E} \|\overline{\mathbf{r}}^{(t+1)}\|_{2}^{2} \leq \underline{\|\overline{\mathbf{r}}^{(t)}\|_{2}^{2}} - \frac{\lambda_{\min}(\mathbf{A}^{T}\mathbf{A})}{\|\mathbf{A}\|_{F}^{2}}$$

$$\mathbb{E}\|\overline{\mathbf{r}}^{(t+1)}\|_{2}^{2} + \|\mathbf{r}^{*}\|_{2}^{2} \leq \|\overline{\mathbf{r}}^{(t)}\|_{2}^{2} + \|\mathbf{r}^{*}\|_{2}^{2} - \frac{1}{\|\mathbf{A}\|_{F}^{2}}\|\mathbf{A}^{T}\overline{\mathbf{r}}^{(t)}\|_{2}^{2}\|\overline{\mathbf{r}}^{(t)}\|_{2}^{2}$$

Exercise: Because \bar{r} is in the column span of A,

$$\|\mathbf{A}^T \mathbf{\bar{r}}^{(t)}\|_2^2 \ge \lambda_{\min}(\mathbf{A}^T \mathbf{A}) \|\mathbf{\bar{r}}^{(t)}\|_2^2$$

CONVERGENCE

Theorem (Randomized Coordinate Descent convergence)

After T steps of RCD with importance sampling run on $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$, we have:

$$\mathbb{E}[f(\mathbf{x}^{(t)}) - f(\mathbf{x}^*)] \le \left(1 - \frac{\lambda_{\min}(\mathbf{A}^T \mathbf{A})}{\|\mathbf{A}\|_F^2}\right)^t [f(\mathbf{x}^{(0)}) - f(\mathbf{x}^*)]$$

Corollary: After
$$T = O\left(\frac{\|\mathbf{A}\|_F^2}{\lambda_{\min}(\mathbf{A}^T\mathbf{A})}\log\frac{1}{\epsilon}\right)$$
 we obtain error $\epsilon \|\mathbf{b}\|_2^2$.

Is this more or less iterations than the $T = O(\frac{\lambda_{\max}(\mathbf{A}^T\mathbf{A})}{\lambda_{\min}(\mathbf{A}^T\mathbf{A})}\log\frac{1}{\epsilon})$ required for gradient descent to converge?

COMPARISON

Recall useful linear algebraic fact: $||A||_F^2 = \operatorname{tr}(A^T A) = \sum_{i=1}^d \lambda_i (A^T A) \leq d \wedge \operatorname{u.e.}(A^T A)$

$$\lambda_{\max}(\mathbf{A}^{\mathsf{T}}\mathbf{A}) \leq \|\mathbf{A}\|_F^2 \leq d \cdot \lambda_{\max}(\mathbf{A}^{\mathsf{T}}\mathbf{A})$$

For solving $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$,

$$(\# \underline{\mathsf{GD}} \ \mathsf{Iterations}) \leq (\# \underline{\mathsf{RCD}} \ \mathsf{Iterations}) \leq d \underline{\cdot (\# \mathsf{GD} \ \mathsf{Iterations})}$$

But RCD iterations are cheaper by a factor of d.

COMPARISON

When does
$$\|A\|_F^2 = \operatorname{tr}(A^TA) = d \cdot \lambda_{\max}(A^TA)$$
?

$$\|A\|_F^2 = d \quad A^{\dagger}A = I$$

$$\text{eigenvalues ell } I$$

$$\text{fluex} = I$$

$$J \cdot \lambda_{\max}(A^TA) = d$$
When does $\|A\|_F^2 = \operatorname{tr}(A^TA) = 1 \cdot \lambda_{\max}(A^TA)$?

$$\|A\|_F^2 \leq \operatorname{vol}(A^TA) \cdot \lambda_{\max}(A^TA)$$

COMPARISON

Roughly:

Stochastic Gradient Descent performs well when $\underline{\text{data points}}$ (rows) are repetitive.

Stochastic Coordinate Descent performs well when <u>data</u> <u>features</u> (columns) are repetitive.

STATIONARY POINTS

We understand much less about optimizing non-convex functions in comparison to convex functions, but not nothing. In many cases, we're still figuring out the right questions to ask

Definition (Stationary point)

For a differentiable function f, a stationary point is any x with:

$$\nabla f(x) = 0$$

$$\| \nabla f(x) \|_{\mathcal{C}} = 0$$

local/global minima - local/global maxima - saddle points

STATIONARY POINTS

Reasonable goal: Find an approximate stationary point \hat{x} with

SMOOTHNESS FOR NON-CONVEX FUNTIONS

Definition

A differentiable (potentially non-convex) function f is β smooth if <u>for all</u> \mathbf{x} , \mathbf{y} ,

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_2 \le \beta \|\mathbf{x} - \mathbf{y}\|_2$$

Corollary: For all x, y

$$\left|\nabla f(\mathbf{x})^{\mathsf{T}}(\mathbf{x}-\mathbf{y}) - [f(\mathbf{x}) - f(\mathbf{y})]\right| \leq \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2}.$$

GRADIENT DESCENT FINDS APPROXIMATE STATIONARY POINTS

Theorem

If GD is run with step size $\eta = \frac{1}{\beta}$ on a differentiable function f with global minimum \mathbf{x}^* then after $T = O(\frac{\beta[f(\mathbf{x}^{(1)}) - f(\mathbf{x}^*)]}{\epsilon})$ we will find an ϵ -approximate stationary point $\hat{\mathbf{x}}$.

$$\cdot \nabla f(\mathbf{x}^{(t)})^{\mathsf{T}}(\mathbf{x}^{(t)} - \mathbf{x}^{(t+1)}) - f(\mathbf{x}^{(t)}) + f(\mathbf{x}^{(t+1)}) \le \frac{\beta}{2} \|\mathbf{x}^{(t)} - \mathbf{x}^{(t+1)}\|_{2}^{2}.$$

•
$$f(\mathbf{x}^{(t+1]}) - f(\mathbf{x}^{(t)}) \le \frac{\beta}{2} \eta^2 \|\nabla f(\mathbf{x}^{(t)})\|_2^2 - \eta \|\nabla f(\mathbf{x}^{(t)})\|_2^2$$

•
$$f(\mathbf{x}^{(t+1]}) - f(\mathbf{x}^{(t)}) \le \frac{-\eta}{2} ||\nabla f(\mathbf{x}^{(t)})||_2^2$$

$$\frac{1}{T} \sum_{t=1}^{T} \frac{\eta}{2} \| f(\mathbf{x}^{(t)}) \|_{2}^{2} \le \frac{1}{T} \sum_{t=1}^{T} f(\mathbf{x}^{(t)}) - f(\mathbf{x}^{(t+1)})$$

$$\cdot \frac{\eta}{2} \min_{t} \|f(\mathbf{x}^{(t)})\|_{2}^{2} \le \frac{1}{7} \left[f(\mathbf{x})^{(1)} - f(\mathbf{x})^{(7)} \right]$$

QUESTIONS IN NON-CONVEX OPTIMIZATION

If GD can find a stationary point, are there algorithms which find a stationary point faster using preconditioning, acceleration, stocastic methods, etc.?

QUESTIONS IN NON-CONVEX OPTIMIZATION

What if my function only has global minima and stationary points? Randomized methods (SGD, perturbed gradient methods, etc.) can "escape" stationary points under some minor assumptions.

Example: $\min_{\mathbf{x}} \frac{-\mathbf{x}^{\mathsf{T}} \mathbf{A}^{\mathsf{T}} \mathbf{A} \mathbf{x}}{\mathbf{y}^{\mathsf{T}} \mathbf{y}}$

fadd le

- component of A). • Stationary points: All other eigenvectors of A.
- Useful for lots of other matrix factorization problems beyond

2 Pr [x zi]