CS-GY 9223 D: Lecture 8
Acceleration, preconditioning, coordinate
methods

NYU Tandon School of Engineering, Prof. Christopher Musco



IMPROVING GRADIENT DESCENT

We now have a good understanding of gradient descent.

Number of iterations for € error:

R bounded start

a-strong convex

How do we use this understanding to design faster algorithms?




ACCELERATION



ACCELERATED GRADIENT DESCENT

Nesterov's accelerated gradient descent:
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- XD = (1 - %) y(E+1), @ (1) _ y(0)

Theorem (AGD for 3-smooth, a-strongly convex.)
Let f be a s-smooth and a-strongly convex function. If we run
AGD for T steps we have:

F0) = f(x) < remEIVE [1(xD) — f(x*)

Corollary: If Q



INTUITION BEHIND ACCELERATION

Level sets @
Other terms for similar ideas:

- Momentum

- Heavy-ball methods



PRECONDITIONING



PRECONDITIONING

Main idea: Instead of minimizing f(x), find another function
g(x) with the same minimum but which is better suited for first
order optimization (e.g., has a smaller conditioner number).

Claim: Let h(x) : RY — RY be an invertible function. Let
g(x) = f(h(x)). Then

min f(x) = min g(x) dand aigmmf( ) = <a|gm|ng( >
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PRECONDITIONING

First Goal: We need g(x) to still be convex.

Claim: Let P be an (invertible) d x d matrix and let g(x) = f(Px)

—_—

g(x) is always convex.
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lfl— =argming(y), then };Z/P/L minimizes f(x).




PRECONDITIONING

Ig%-y L7 | APx -L W22

hould have b £ (ﬂré,f*’) prAf(Ah?x /\9>
g(x) should have better condition number x than f(x). Prqxc(\’x)

Second Goal:

High dimensional chain rule:
D

Ifg&/)ﬁl = f(PX), V2g(x) = .
0@ e )V

Recall that the condition number is equal to:
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PRECONDITIONING

Example: 5’(@/‘) = ‘7(10

- f(X) = ||AX — b|[Z. Vf(x) = 2ATA. k= 2AA)
2 f

—_— Ad(ATA).
M (PTATAP
+ g(x) = ||APx — b[}3. Vg(x) = 2PTATAR. rig { 3520
Ideal preconditioner: Chgese-Rgo that PTATAP é; JFor
example, could set P = ut obviously this is too
expensive to campute.
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DIAGONAL PRECONDITIONER

Third Goal: P should be easy to compute.

Many, many problem specific preconditioners are used in
practice. There design is usually a heuristic process.

Example: Diagonal preconditioner for least squares problems.

LD diag(a'a) }W}ﬂ 0lud)

- Want PATAP to be close to identity I. w=1

.
. — /p— Tat
LetP_7I?__ Q)Iﬁ /}P:I v e }}TA s
P is often called a Jacobi preconditioner. Often works very c(7<>5=-m\

well in practice! DA nh
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DIAGONAL PRECONDITIONER

A=
-734 1 33 9111 ]
-31 -2 108 5946 -19
232 -1 101 3502 10
426 0 -65 12503 9
-373 0 26 9298 ]
-236 -2 -94 2398 =il
2024 0 =132 -6904 =25
-2258 <l 92 -6516 6
2229 0 ) 11921 -22
338 1 = -16118 -23
>> cond(A'xA) >> P-= sqrt(inv(diag(diag(A'xA))));

>> cond(PxA'%AxP) —
— -

ans =
ans =

8.4145e+
/ﬂ 10.3878



DIAGONAL PRECONDITIONER INTUITION

g(x) = f(||ARK}- b||2) is the same least squares problem as
f(X)= ||Ax — b 22, but with each feature (column of A) scaled
differently. The it" column is scaled by P;;.

N

P ~

number of bedrooms

size oftﬁe—in acres
Pr

Feature scaling can have a huge impact on conditioning. n



DIAGONAL PRECONDITIONER INTUITION

g(x) = f(||APx — b||3) is the same least squares problem as
f(x) = ||Ax — b]|3, but with each feature (column of A) scaled
differently. The it" column is scaled by Pj;.

P P
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Feature scaling can have a huge impact on conditioning. 12



ADAPTIVE STEPSIZES

Another view: If g(x) = f(Px) then Vg(x) = PTVf(Px).
Vg(x) = PVf(Px) when P is symmetric.
e re——-

Gradient descent on g: g'; NS e D L‘(Q
Y @ (x ”)) 3
- Fort=1,....T
PR B0 FEO)
bm . P

When P is diagonal, this is just gradient descent with a
different step size for each parameter!
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ADAPTIVE STEPSIZES

Less clear how to set P for general optimization problems
where the Hessian is changing, but lots of heuristic
algorithms based on this idea:

- AdaGrad, AdaDelta

- RMSprop
-ptimizer

(Pretty much all of the most widely used optimization methods
for training neural networks.)

A:M{ X . Output
IO/ 9¢

Hidden Layers
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COORDINATE DESCENT



STOCHASTIC METHODS

Main idea: Trade slower convergence (more iterations) for
cheaper iterations.

Stochastic Gradient Descent: When f(x) = "I, fi(x),
approximate Vf(x) with Vfi(x) for randomly chosen i.
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STOCHASTIC METHODS

Main idea: Trade slower convergence (more iterations) for
cheaper iterations.

Stochastic Coordinate Descent: Only compute a single random
entry of Vf(x) on each iteration: VA Meopes (weybo)

X
VixX) = |~ Vif(x) =

Update: x(t+) « x(O — 5 v,f(x®).

5
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COORDINATE DESCENT

= I l — O(=<d)
When x has d parameters, computing V,f(x) sometifes costs
just a 1/d fraction of what it costs to compute Vf(x)

Example: f(x) = [|Ax — b||3 for A€ R™? x € R% b € R".

L Vf(x) = 24T 287b.  OC4 d)
+ Vif(x) = 2 [ATAX], — 2 [ATh].. nd 4 wd v d

s

Computing full gradient#ékes O(nd) time. Can we do better
here? /4" (A ><>
/ﬁ =
1)
DEE—— -
v \'LC\ 3 M T4 17



COORDINATE DESCENT

When x has d parameters, computing V;f(x) sometimes costs
just a 1/d fraction of what it costs to compute Vf(x)

Example: f(x) = [|Ax — b||3 for A€ R"™9 x ¢ R, b € R".
- Vf(x) = 2ATAx — 2ATb. (
o
v,f(x) — 2 [ATAX], — 2 [ATH] . o)
ey Ax4T s A che

41:_:4&

S

x(t +/. 0(n) time

(t ) — O(n) time
) g ca;
/LX/ % ﬂe,‘ .
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STOCHASTIC COORDINATE DESCENT

Stochastic Coordinate Descent:

- Choose number of steps T and step size 7.
- For t = 1 ser ] T:

P|cI< random/j_/e 1,...,d uniformly at random.

o T
- Return R = 137/, xO.

19



STOCHASTIC COORDINATE DESCENT

Theorem (Stochastic Coordinate Descent convergence)
Given a G-Lipschitz function f with minimizer x* and initial
point XM with [|[x() — x*||, < R, SCD with step size n = 25
satisfies the guarantee: -

E[f(%) — f(x )Lﬁ/i

D( 22 B b e e e

oL
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IMPORTANCE SAMPLING

| fx Wl
Often it doesn’'t make sense to sample i uniformly at random:
[ 1 Jolo o] [10 ]
2 [0/0 O 42
Off0f—=1/0/0 O =11
A = b =

0[O0/ —=5]0f 0 O =51
010 3 \0f 0 O 34

| ~2 0 0] | —22]

Select indices i proportional to ||a;||%:

)
. . a
Pr[select index i to update] = O|I| ill2 2 %

Let’s analyze this approach.
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STOCHASTIC COORDINATE DESCENT

Specialization of SCD to ||Ax — b||3:

Randomized Coordinate Descent (Strohmer, Vershynin 2007 /
Leventhal, Lewis 2018)

- For iterate x(, let r® be the residual:

r) = ax(® — b

e
< xtH) — x(0) ce;. C U\) 0’
2 * J
- 1t = ¢(O) _ ca;. Here a; is the jth cokt]h'f?‘o? A 4
5 J N o
Ax(hl) N = Adxu)__Ce;) -, = Axu L - (,ACJ

Typically ¢ depends on fixed learning rate. Here we will choose
it optimally - similar idea to gradient descent with line search.
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STOCHASTIC COORDINATE DESCENT

What choice for ¢ minimizes ||r(t+)
( U]

/’7>|~o( o)
= e ED)E = (IO — cay||3
- Requires projecting r® onto perpendicular of a.

.3°-> LERY

Tr(t)
ar

l3jll3

c C=

Note that [|[r("#D]3 = |rO3 — lcayll3 = [rV]

4
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Teey 12



STOCHASTIC COORDINATE DESCENT

Specialization of SCD to ||Ax — b||3:

Randomized Coordinate Descent

- Choose number of steps T.
- Let X =0 and r() = b.
- Fort=1,...,T:
- Pickrandomj € 1,...,d. Indexj is selected with
probability proportional to ||aj|3/[|All?
- Setc=alrO/|laj3
- XD = X0 e,

o r(t+1) — r(t) — Ca;

- Return x(M.
24
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CONVERGENCE

vt oz Axt v 0
Any residual r can be written as r = r* + 7 where r* = Ax* — b
and ¥ = A(x! — x*). Note that ATr* =0 and ¥ L r*.

Claim  ¢® () _¢*

Amin(ATA)

E F(H—'I) 2 ~ F(t) 2

E[FED13 + 1r 13 < IFO)3 + (|3 — 2HAT' rO307O 3

IAlE

Exercise: Because T is in the column span of A,

IATFOUZ = Aruin (ATA) [FO]13
26



CONVERGENCE

Theorem (Randomized Coordinate Descent convergence)
After T steps of RCD with importance sampling run on

f(x) = ||AX — b]]3, we have: _ l/o loy /<)
(AT t
BIf()  fx)] < (w - 28 ) 1) o)
e VAL

i o= (A4 )
Corollary: After T = Of log ) we obtain erroreH H%
A——/'



COMPARISON

"
.7 /\WQ_XUV Pﬁ)

= A' /\‘L«Q;(Ckr/#)

Recall useful linear algebraic fact:

1Al = tr(A'A)

Amax(ATA) < [|A[IF < d - Amax(AA)

For solving [|Ax — b||3,

(# GD lIterations) < (# RCD lIterations) < d - (# GD lIterations)
e __\ [ —

But RCD iterations are cheaper by a factor of d.

28



COMPARISON

When does ||A||2 = tr(ATA) = d - Amax(ATA)?

T N =4 KRt

- ' 1
' vor = 1
) )[ =

1 Aty =
When does ||A||2 = tr(ATA) = 1 w

| ” A ”51/ = ‘fﬁ)./\mx )

e
\

‘ .
| L
|‘((|5
A
/((,
R
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COMPARISON

Roughly:

Stochastic Gradient Descent performs well when data points
(rows) are repetitive.

Stochastic Coordinate Descent performs well when data
features (columns) are repetitive.

30



NON-CONVEX OPTIMIZATION



STATIONARY POINTS

We understand much less about optimizing non-convex
functions in comparison to convex functions, but not nothing.
In many cases, we're still figuring out the right questions to ask

Definition (Stationary point)
For a differentiable function f, a stationary point is any x with:

Vi(x) = 0
\l 'U&“(x) “;‘- 6

local/global minima - local/global maxima - saddle points
!
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STATIONARY POINTS

Reasonable goal: Find an approximate stationary point X with
D=0

IVAR)II3
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SMOOTHNESS FOR NON-CONVEX FUNTIONS

Definition

A differentiable (potentially non-convex) function fis 8
smooth if for all x,y,

IVAX) = VAY)ll2 < Blix = yll2

Corollary: For all x,y

)T (x ) =~ [700) — Fl < 2 1x — i
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GRADIENT DESCENT FINDS APPROXIMATE STATIONARY POINTS

Theorem
fGD IS run with step size n _”Eyon a differentiable function f

vv/th global minimum x* then after T = O(M) we will
find an e-approximate stationary point X.

VAKOYTXO - X(C+) — fxO) 4+ fxt+0) < £xO — xR
FxE) — A(xO) < 20| VAXD)|3 — 5] VAXD)|I3
((””) f(x®) < S VAXD)|12

) 17 t= ngf(X(t | Zt 1 ( ) f(x(t“))

)z <
< Zming [AxO)[3 < 1 [f00 — fx) )]
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QUESTIONS IN NON-CONVEX OPTIMIZATION

If GD can find a stationary point, are there algorithms which
find a stationary point faster using preconditioning,
acceleration, stocastic methods, etc.?
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QUESTIONS IN NON-CONVEX OPTIMIZATION

4Q&.d. (e
What if my function only has global minima and stattonary

points? Randomized methods (SGD, perturbed gradient
methods, etc.) can “escape” stationary points undersome

minor assumptions.
Example: miny ‘XxﬁxAX
- Global minimum: Top eigenvector of ATA (i.e., top principal

component of A).

- Stationary points: All other eigenvectors of A.

Usefu for lots of other matrix factorization problems beyond
2-vanilla PCA.

PR
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