
CS-GY 9223 D: Lecture 8
Acceleration, preconditioning, coordinate
methods

NYU Tandon School of Engineering, Prof. Christopher Musco

1

improving gradient descent

We now have a good understanding of gradient descent.

Number of iterations for ϵ error:

G-Lipschitz β-smooth
R bounded start O

(
G2R2
ϵ2

)
O
(
βR2
ϵ

)
α-strong convex O

(
G2
αϵ

)
O
(
β
α log(1/ϵ)

)

How do we use this understanding to design faster algorithms?

2

acceleration

2

accelerated gradient descent

Nesterov’s accelerated gradient descent:

• x(1) = y(1) = z(1)
• For t = 1, . . . , T

• y(t+1) = x(t) − 1
β∇f(x(t))

• x(t+1) =
(
1+

√
κ−1√
κ+1

)
y(t+1) +

√
κ−1√
κ+1

(
y(t+1) − y(t)

)
Theorem (AGD for β-smooth, α-strongly convex.)
Let f be a β-smooth and α-strongly convex function. If we run
AGD for T steps we have:

f(x(t))− f(x∗) ≤ κe−(t−1)
√
κ
[
f(x(1))− f(x∗)

]

Corollary: If T = O (
√
κ log(κ/ϵ)) achieve error ϵ.

3

intuition behind acceleration

Level sets of ∥Ax− b∥22.

Other terms for similar ideas:

• Momentum
• Heavy-ball methods

What if we look back beyond two iterates?

4

preconditioning

4

preconditioning

Main idea: Instead of minimizing f(x), find another function
g(x) with the same minimum but which is better suited for first
order optimization (e.g., has a smaller conditioner number).

Claim: Let h(x) : Rd → Rd be an invertible function. Let
g(x) = f(h(x)). Then

min
x
f(x) = min

x
g(x) and argmin

x
f(x) = h

(
argmin

x
g(x)

)
.

5

preconditioning

First Goal: We need g(x) to still be convex.

Claim: Let P be an (invertible) d× d matrix and let g(x) = f(Px).

g(x) is always convex.

If y∗ = argming(y), then x∗ = Py∗ minimizes f(x).

6

preconditioning

Second Goal:

g(x) should have better condition number κ than f(x).

High dimensional chain rule:

If g(x) = f(Px), ∇2g(x) = ∇2PTf(Px)P.

Recall that the condition number is equal to:

max
x

λmax
(
∇2g(x)

)
λmin (∇2g(x))

7

preconditioning

Example:

• f(x) = ∥Ax− b∥22. ∇f(x) = 2ATA. κf = λ1(ATA)
λd(ATA)

.

• g(x) = ∥APx− b∥22. ∇g(x) = 2PTATAP κg =
λ1(PTATAP)
λd(PTATAP)

.

Ideal preconditioner: Choose P so that PTATAP = I. For
example, could set P =

√
(ATA)−1. But obviously this is too

expensive to compute.

8

diagonal preconditioner

Third Goal: P should be easy to compute.

Many, many problem specific preconditioners are used in
practice. There design is usually a heuristic process.

Example: Diagonal preconditioner for least squares problems.

• Let D = diag(ATA)
• Want PATAP to be close to identity I.
• Let P =

√
D−1

P is often called a Jacobi preconditioner. Often works very
well in practice!

9

diagonal preconditioner

10

diagonal preconditioner intuition

g(x) = f(∥APx− b∥22) is the same least squares problem as
f(x) = ∥Ax− b∥22, but with each feature (column of A) scaled
differently. The ith column is scaled by Pii.

Feature scaling can have a huge impact on conditioning. 11

diagonal preconditioner intuition

g(x) = f(∥APx− b∥22) is the same least squares problem as
f(x) = ∥Ax− b∥22, but with each feature (column of A) scaled
differently. The ith column is scaled by Pii.

Feature scaling can have a huge impact on conditioning. 12

adaptive stepsizes

Another view: If g(x) = f(Px) then ∇g(x) = PT∇f(Px).

∇g(x) = P∇f(Px) when P is symmetric.

Gradient descent on g:

• For t = 1, . . . , T,
• x(t+1) = x(t) − ηP

[
∇f(Px(t))

]
Gradient descent on g:

• For t = 1, . . . , T,
• y(t+1) = y(t) − ηP2

[
∇f(y(t))

]
When P is diagonal, this is just gradient descent with a

different step size for each parameter!
13

adaptive stepsizes

Less clear how to set P for general optimization problems
where the Hessian is changing, but lots of heuristic
algorithms based on this idea:

• AdaGrad, AdaDelta
• RMSprop
• Adam optimizer

(Pretty much all of the most widely used optimization methods
for training neural networks.)

14

coordinate descent

14

stochastic methods

Main idea: Trade slower convergence (more iterations) for
cheaper iterations.

Stochastic Gradient Descent: When f(x) =
∑n

i=1 fi(x),
approximate ∇f(x) with ∇fi(x) for randomly chosen i.

15

stochastic methods

Main idea: Trade slower convergence (more iterations) for
cheaper iterations.

Stochastic Coordinate Descent: Only compute a single random
entry of ∇f(x) on each iteration:

∇f(x) =

∂f
∂x1 (x)
∂f
∂x2 (x)...
∂f
∂xd (x)

 ∇if(x) =

0

∂f
∂xi (x)...
0

Update: x(t+1) ← x(t) − η∇if(x(t)).

16

coordinate descent

When x has d parameters, computing ∇if(x) sometimes costs
just a 1/d fraction of what it costs to compute ∇f(x)

Example: f(x) = ∥Ax− b∥22 for A ∈ Rn×d, x ∈ Rd,b ∈ Rn.

• ∇f(x) = 2ATAx− 2ATb.
• ∇if(x) = 2

[
ATAx

]
i − 2

[
ATb

]
i.

Computing full gradient takes O(nd) time. Can we do better
here?

17

coordinate descent

When x has d parameters, computing ∇if(x) sometimes costs
just a 1/d fraction of what it costs to compute ∇f(x)

Example: f(x) = ∥Ax− b∥22 for A ∈ Rn×d, x ∈ Rd,b ∈ Rn.

• ∇f(x) = 2ATAx− 2ATb.
• ∇if(x) = 2

[
ATAx

]
i − 2

[
ATb

]
i.

• Ax(t+1) = A
(
x(t) + c · ei

)
O(n) time

• 2
[
AT

(
Ax(t+1) − b

)]
i O(n) time

18

stochastic coordinate descent

Stochastic Coordinate Descent:

• Choose number of steps T and step size η.
• For t = 1, . . . , T:

• Pick random j ∈ 1, . . . ,d uniformly at random.
• x(t+1) = x(t) − η∇jf(x(i))

• Return x̂ = 1
T
∑T

t=1 x(t).

19

stochastic coordinate descent

Theorem (Stochastic Coordinate Descent convergence)
Given a G-Lipschitz function f with minimizer x∗ and initial
point x(1) with ∥x(1) − x∗∥2 ≤ R, SCD with step size η = 1

Rd
satisfies the guarantee:

E[f(x̂)− f(x∗)] ≤ 2GR√
T/d

20

importance sampling

Often it doesn’t make sense to sample i uniformly at random:

A =

0 0 1 0 0 0
0 0 2 0 0 0
0 0 −1 0 0 0
0 0 −.5 0 0 0
0 0 3 0 0 0
0 0 −2 0 0 0

b =

10
42
−11
−51
34
−22

Select indices i proportional to ∥ai∥22:

Pr[select index i to update] = ∥ai∥22∑d
j=1 ∥aj∥22

=
∥ai∥22
∥A∥2F

Let’s analyze this approach.

21

stochastic coordinate descent

Specialization of SCD to ∥Ax− b∥22:

Randomized Coordinate Descent (Strohmer, Vershynin 2007 /
Leventhal, Lewis 2018)

• For iterate x(t), let r(t) be the residual:

r(t) = Ax(t) − b

• x(t+1) = x(t) − cej.
• r(t+1) = r(t) − caj. Here aj is the ith column of A.

Typically c depends on fixed learning rate. Here we will choose
it optimally – similar idea to gradient descent with line search.

22

stochastic coordinate descent

What choice for c minimizes ∥r(t+1)∥22?

• ∥r(t+1)∥22 = ∥r(t) − caj∥22
• Requires projecting r(t) onto perpendicular of aj.

• c =
aTj r

(t)

∥aj∥22

Note that ∥r(t+1)∥22 = ∥r(t)∥22 − ∥caj∥22 = ∥r(t)∥22 −
(aTj r

(t))2

∥aj∥22

23

stochastic coordinate descent

Specialization of SCD to ∥Ax− b∥22:

Randomized Coordinate Descent

• Choose number of steps T.
• Let x(1) = 0 and r(1) = b.
• For t = 1, . . . , T:

• Pick random j ∈ 1, . . . ,d. Index j is selected with
probability proportional to ∥aj∥22/∥A∥2F.

• Set c = aTj r(t)/∥aj∥22
• x(t+1) = x(t) − cej
• r(t+1) = r(t) − caj

• Return x(T).

24

convergence

Claim

E∥r(t+1)∥22 = ∥r(t)∥22 −
1
∥A∥2F

∥ATr(t)∥22

25

convergence

Any residual r can be written as r = r∗ + r̄ where r∗ = Ax∗ − b
and r̄ = A(xt − x∗). Note that ATr∗ = 0 and r̄ ⊥ r∗.
Claim

E∥r̄(t+1)∥22 ≤ ∥r̄(t)∥22 −
λmin(ATA)
∥A∥2F

E∥r̄(t+1)∥22 + ∥r∗∥22 ≤ ∥r̄(t)∥22 + ∥r∗∥22 −
1
∥A∥2F

∥ATr̄(t)∥22∥r̄(t)∥22

Exercise: Because r̄ is in the column span of A,

∥ATr̄(t)∥22 ≥ λmin(ATA)∥r̄(t)∥22
26

convergence

Theorem (Randomized Coordinate Descent convergence)
After T steps of RCD with importance sampling run on
f(x) = ∥Ax− b∥22, we have:

E[f(x(t))− f(x∗)] ≤
(
1− λmin(ATA)

∥A∥2F

)t
[f(x(0))− f(x∗)]

Corollary: After T = O(∥A∥2F
λmin(ATA)

log 1
ϵ) we obtain error ϵ∥b∥22.

Is this more or less iterations than the T = O(λmax(A
TA)

λmin(ATA)
log 1

ϵ)

required for gradient descent to converge? 27

comparison

Recall useful linear algebraic fact:

∥A∥2F = tr(ATA) =
d∑
i=1

λi(ATA)

λmax(ATA) ≤ ∥A∥2F ≤ d · λmax(ATA)

For solving ∥Ax− b∥22,

(# GD Iterations) ≤ (# RCD Iterations) ≤ d · (# GD Iterations)

But RCD iterations are cheaper by a factor of d.

28

comparison

When does ∥A∥2F = tr(ATA) = d · λmax(ATA)?

When does ∥A∥2F = tr(ATA) = 1 · λmax(ATA)?

29

comparison

Roughly:

Stochastic Gradient Descent performs well when data points
(rows) are repetitive.

Stochastic Coordinate Descent performs well when data
features (columns) are repetitive.

30

non-convex optimization

30

stationary points

We understand much less about optimizing non-convex
functions in comparison to convex functions, but not nothing.
In many cases, we’re still figuring out the right questions to ask

Definition (Stationary point)
For a differentiable function f, a stationary point is any x with:

∇f(x) = 0

local/global minima - local/global maxima - saddle points

31

stationary points

Reasonable goal: Find an approximate stationary point x̂ with

∥∇f(x̂)∥22 ≤ ϵ.

32

smoothness for non-convex funtions

Definition
A differentiable (potentially non-convex) function f is β
smooth if for all x, y,

∥∇f(x)−∇f(y)∥2 ≤ β∥x− y∥2

Corollary: For all x, y∣∣∇f(x)T(x− y)− [f(x)− f(y)]
∣∣ ≤ β

2 ∥x− y∥
2
2.

33

gradient descent finds approximate stationary points

Theorem
If GD is run with step size η = 1

β on a differentiable function f
with global minimum x∗ then after T = O(β[f(x

(1))−f(x∗)]
ϵ) we will

find an ϵ-approximate stationary point x̂.

• ∇f(x(t))T(x(t) − x(t+1))− f(x(t)) + f(x(t+1)) ≤ β
2 ∥x(t) − x(t+1)∥22.

• f(x(t+1]))− f(x(t)) ≤ β
2 η

2∥∇f(x(t))∥22 − η∥∇f(x(t))∥22
• f(x(t+1]))− f(x(t)) ≤ −η

2 ∥∇f(x(t))∥22
• 1
T
∑T

t=1
η
2∥f(x(t))∥22 ≤

1
T
∑T

t=1 f(x(t))− f(x(t+1))
• η
2 mint ∥f(x(t))∥22 ≤

1
T
[
f(x)(1) − f(x)(T))

]

34

questions in non-convex optimization

If GD can find a stationary point, are there algorithms which
find a stationary point faster using preconditioning,
acceleration, stocastic methods, etc.?

35

questions in non-convex optimization

What if my function only has global minima and stationary
points? Randomized methods (SGD, perturbed gradient
methods, etc.) can “escape” stationary points under some
minor assumptions.

Example: minx −xTATAx
xTx

• Global minimum: Top eigenvector of ATA (i.e., top principal
component of A).

• Stationary points: All other eigenvectors of A.

Useful for lots of other matrix factorization problems beyond
vanilla PCA.

36

