CS-GY 9223 D: Lecture 8
Acceleration, preconditioning, coordinate
methods

NYU Tandon School of Engineering, Prof. Christopher Musco



IMPROVING GRADIENT DESCENT

We now have a good understanding of gradient descent.

Number of iterations for ¢ error:

\ G-Lipschitz B-smooth
R bounded start | O (Gifz) 0 (B—Rz)

€

a-strong convex | O (G—2> 0 (g log(T/e))

e

How do we use this understanding to design faster algorithms?




ACCELERATION



ACCELERATED GRADIENT DESCENT

Nesterov's accelerated gradient descent:

s fFort=1,...,T
. y(pﬂ) — x(® _ %Vf(x(t))

. x(EF) = (1 X ﬁj) YD % (y(t+1) — y()

Theorem (AGD for 3-smooth, a-strongly convex.)

Let f be a -smooth and a-strongly convex function. If we run
AGD for T steps we have:

F) = f(x) < wem IR [xO) - fx)]

Corollary: If



INTUITION BEHIND ACCELERATION

>

Level sets of ||Ax — b||3.

Other terms for similar ideas:

+ Momentum
- Heavy-ball methods



PRECONDITIONING



PRECONDITIONING

Main idea: Instead of minimizing f(x), find another function
g(x) with the same minimum but which is better suited for first
order optimization (e.g, has a smaller conditioner number).

Claim: Let h(x) : R — RY be an invertible function. Let
g9(x) = f(h(x)). Then

mxmf(x) = mxm g(x) and argminf(x)=nh <arg min g(x)> .



PRECONDITIONING

First Goal: We need g(x) to still be convex.

Claim: Let P be an (invertible) d x d matrix and let g(x) = f(Px).

g(x) is always convex.

If y* =argming(y), then x* = Py* minimizes f(x).



PRECONDITIONING

Second Goal:

g(x) should have better condition number « than f(x).

High dimensional chain rule:
If g(x) = f(Px), V2g(x) = V2PTf(Px)P.
Recall that the condition number is equal to:

Amax (Vzg(x))
& i (V29(%)



PRECONDITIONING

Example:

T
f0) = 1%~ BIE. 9f00) = 2478 vy = 3o

TAT
. Q(X) = HAPX - bH% VQ(X) = ZPTATAP Ky = %

Ideal preconditioner: Choose P so that PTATAP = I. For
example, could set P = /(ATA)~T. But obviously this is too
expensive to compute.



DIAGONAL PRECONDITIONER

Third Goal: P should be easy to compute.

Many, many problem specific preconditioners are used in
practice. There design is usually a heuristic process.

Example: Diagonal preconditioner for least squares problems.
- Let D = diag(A'A)
- Want PATAP to be close to identity I.
- Let P =+vD~’

P is often called a Jacobi preconditioner. Often works very
well in practice!



DIAGONAL PRECONDITIONER

A =
-734 1 33 9111 0
31 -2 108 5946 -19
232 = 101 3502 10
426 0 -65 12503 9
-373 0 26 9298 0
-236 . -94 2398 -1
2024 0 -132 -6904 -25
-2258 ] 92 -6516 6
2229 0 0 11921 -22
338 1 -5 -16118 -23
>> cond(A'*A) >> P = sqrt(inv(diag(diag(A'xA))));
>> cond (PxA"'*xAxP)
ans =
ans =
8.4145e+07
10.3878
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DIAGONAL PRECONDITIONER INTUITION

g(x) = f(||APx — b||3) is the same least squares problem as
f(x) = ||Ax — b||3, but with each feature (column of A) scaled
differently. The it column is scaled by P;;.

number of bedrooms

size of house in acres

Feature scaling can have a huge impact on conditioning. n



DIAGONAL PRECONDITIONER INTUITION

g(x) = f(||APx — b||3) is the same least squares problem as
f(x) = ||Ax — b||3, but with each feature (column of A) scaled
differently. The it column is scaled by P;;.

size of plot in ft2

number of bedrooms

Feature scaling can have a huge impact on conditioning. 12



ADAPTIVE STEPSIZES

Another view: If g(x) = f(Px) then Vg(x) = PTVf(PXx).
Vg(x) = PVf(Px) when P is symmetric.

Gradient descent on g:

s Fort=1,...,T,
. X(t'H) = X(t) _ nP [Vf(Px(t))]

Gradient descent on g:
« Fort=1,...,T,
-yt =y — P2 [Vf(yO)]

When P is diagonal, this is just gradient descent with a
different step size for each parameter!
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ADAPTIVE STEPSIZES

Less clear how to set P for general optimization problems
where the Hessian is changing, but lots of heuristic
algorithms based on this idea:

- AdaGrad, AdaDelta
+ RMSprop
- Adam optimizer

(Pretty much all of the most widely used optimization methods
for training neural networks.)

Hidden Layers

14



COORDINATE DESCENT



STOCHASTIC METHODS

Main idea: Trade slower convergence (more iterations) for
cheaper iterations.

Stochastic Gradient Descent: When f(x) = >°, fi(x),
approximate Vf(x) with Vf;(x) for randomly chosen i.

15



STOCHASTIC METHODS

Main idea: Trade slower convergence (more iterations) for
cheaper iterations.

Stochastic Coordinate Descent: Only compute a single random
entry of Vf(x) on each iteration:

v = | v = |7
25 () 0

Update: x(1) «— x(O — v f(x®).



COORDINATE DESCENT

When x has d parameters, computing V,f(x) sometimes costs
just a 1/d fraction of what it costs to compute Vf(x)
Example: f(x) = ||Ax — b||3 for Ac R x ¢ RY b € R".

* Vf(x) = 2ATAx — 2ATb.

© Vif(x) = 2 [ATAx]. — 2 [ATb] .

Computing full gradient takes O(nd) time. Can we do better
here?



COORDINATE DESCENT

When x has d parameters, computing V,f(x) sometimes costs
just a 1/d fraction of what it costs to compute Vf(x)

Example: f(x) = ||Ax — b||3 for Ac R x ¢ RY b € R".

- Vf(x) = 2ATAx — 2ATb.
© Vif(x) = 2 [ATAx]. — 2 [ATb] .

- AX(HD) — A (x(t) +c-e) O(n) time
- 2 [AT (A — b)]. 0(n) time

I



STOCHASTIC COORDINATE DESCENT

Stochastic Coordinate Descent:

- Choose number of steps T and step size 7.
- Fort=1,...,T:

- Pick randomj € 1,...,d uniformly at random.
< x) — x () nvjf(x(‘))
- Return X = 17 xO.
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STOCHASTIC COORDINATE DESCENT

Theorem (Stochastic Coordinate Descent convergence)
Given a G-Lipschitz function f with minimizer x* and initial
point XM with |x(V — x*||; < R, SCD with step size n = 25
satisfies the guarantee:

E[fR) — f(x)] < —2

E
Q.

20



IMPORTANCE SAMPLING

Often it doesn’t make sense to sample i uniformly at random:

(00 1 0 0 O] [ 10 ]
00 2 00O 42
00 -1 0 0 O =
A b— M
0 0 =50 00 =5
00 3 000 34
00 -2 0 0 0] |22
Select indices i proportional to ||a;|3:
a3 _ lail3

Pr[select index i to update] = — = T
S llail  lIAllE

Let’s analyze this approach.
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STOCHASTIC COORDINATE DESCENT

Specialization of SCD to ||Ax — b||3:
Randomized Coordinate Descent (Strohmer, Vershynin 2007 /
Leventhal, Lewis 2018)
- For iterate x( let r() be the residual:
r) = ax() — p

- xE#) = xO — ce,.

- 1) = 1O — ca;. Here a; is the /™" column of A.

Typically c depends on fixed learning rate. Here we will choose
it optimally — similar idea to gradient descent with line search.

22



STOCHASTIC COORDINATE DESCENT

What choice for ¢ minimizes ||[r(t+1)]3?

= IrEIE = (e — cayll3

- Requires projecting r® onto perpendicular of a;.

)
o)
Z [|a

Note that || 13 = ||r®)12 — ||ca;||3 = [|rY)|3 -
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STOCHASTIC COORDINATE DESCENT

Specialization of SCD to ||Ax — b||3:

Randomized Coordinate Descent

- Choose number of steps T.
- Letx(M =0and rM = b,
- Fort=1,...,T:
- Pick randomj € 1,...,d. Indexj is selected with
probability proportional to ||a;||3/||Al|2.
- Setc =alr0/||aj|3
- X)) — () _ ce;
- ) = () — cq;
- Return x(M.
24



CONVERGENCE

Claim

1

E[r™V)3 = |Ir®)3 R
F

IATF3
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CONVERGENCE

Any residual r can be written asr = r* +r where r* = Ax* — b
and T = A(x' — x*). Note that ATr* =0 and ¥ L r*.

Claim

)\min (ATA)

E”F(HUH% < HF(t)H% - HAHZ
’L'

1

N3+ I3 < IIFONS + 11r)13 — AL
F

IATF 37013

Exercise: Because T is in the column span of A,

IATFO3 > Arin (ATA) [FO))13
26



CONVERGENCE

Theorem (Randomized Coordinate Descent convergence)
After T steps of RCD with importance sampling run on
f(x) = ||Ax — b||3, we have:

/\min(ATA

Bfix) )] < (1= 2258 ) ) - o)

A2
)‘mm(ATA)

Corollary: After T = O( log 1) we obtain error €||b|3.
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COMPARISON

Recall useful linear algebraic fact:

d
Al = tr(ATA) = Y~ Ni(ATA)
=1

Amax(ATA) < [JA12 < d - Amax(ATA)

For solving ||Ax — b||3,

(# GD Iterations) < (# RCD Iterations) < d - (# GD Iterations)
But RCD iterations are cheaper by a factor of d.

28



COMPARISON

When does ||A[|Z = tr(ATA) = d - Amax(ATA)?

When does ||A[|Z = tr(ATA) = 1 Amax(ATA)?

29



COMPARISON

Roughly:

Stochastic Gradient Descent performs well when data points
(rows) are repetitive.

Stochastic Coordinate Descent performs well when data
features (columns) are repetitive.

30



NON-CONVEX OPTIMIZATION



STATIONARY POINTS

We understand much less about optimizing non-convex
functions in comparison to convex functions, but not nothing.
In many cases, we're still figuring out the right questions to ask

Definition (Stationary point)
For a differentiable function f, a stationary point is any x with:

Vf(x) =0

local/global minima - local/global maxima - saddle points

31



STATIONARY POINTS

Reasonable goal: Find an approximate stationary point X with

IVARIIZ < e
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SMOOTHNESS FOR NON-CONVEX FUNTIONS

Definition

A differentiable (potentially non-convex) function fis g8
smooth if for all x,y,

IVF(x) = VAY)ll2 < Blx = yll2

Corollary: For all x,y

0)7(x )~ [0~ Fl| < 2 1x — v

33



GRADIENT DESCENT FINDS APPROXIMATE STATIONARY POINTS

Theorem
If GD is run with step size n = % on a differentiable function f

with global minimum x* then after T = O(w) we will
find an e-approximate stationary point X.

VAKOYT(XO - x(E) — fx(0) + fx(t+1) < O - xG+|2.
fxt) — f(Xt))SanHVf(X(t)Hz AIVAO)B
FD) — f(x0) < S VAKO) 2

> 23 <
m

IFX3 < 3 320 Fx) = f(xHD)
ine [f(x®)]3

< 7 [0 = fx)M)]

. .
NS =
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QUESTIONS IN NON-CONVEX OPTIMIZATION

If GD can find a stationary point, are there algorithms which
find a stationary point faster using preconditioning,
acceleration, stocastic methods, etc.?
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QUESTIONS IN NON-CONVEX OPTIMIZATION

What if my function only has global minima and stationary
points? Randomized methods (SGD, perturbed gradient

methods, etc.) can “escape” stationary points under some
minor assumptions.

o TAT
Example: min, =% £ A%

- Global minimum: Top eigenvector of ATA (i.e., top principal
component of A).

- Stationary points: All other eigenvectors of A.

Useful for lots of other matrix factorization problems beyond
vanilla PCA.
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