CS-GY 9223 I: Lecture 7
Preconditioning, acceleration, coordinate
decent, etc.

NYU Tandon School of Engineering, Prof. Christopher Musco



GRADIENT DESCENT

Conditions:

- Convexity: fis a convex function, S is a convex set.
- Bounded initial distant:

X — x|, <
- Bounded gradients (Lipschitz function):
IVi(x)| < Gforallx e S.

Theorem

GD Convergence Bound] (Projected) Gradient Descent returns
X with f(X) < minges f(X) + € after

ZG2
= — Iterations.
€



ONLINE GRADIENT DESCENT

x* = ming I, fi(x*) (the offline optimum)
Conditions:

* f1,...,frare all convex.
- Each is G-Lipschitz: for all x, |,
- Starting radius: ||x* —xM]; <

Theorem (OGD Regret Bound)
After T steps, [ZL f,-(xU))} - [z,; f,-(x*)} < RGVT. le. the

average regret 1 [Z,—Tﬂf,—(x("))} is < e after:

Vi)l <

ZGZ
= —5 Iterations.
€



STOCHASTIC GRADIENT DESCENT

Conditions:

- Finite sum structure: f(x) = 7, fi(x), with f1,..., f all
convex.
- Lipschitz functions: for all x, j, | Vfi(x)|]2 <
- Starting radius: ||x* — x|, <
Theorem (SGD Regret Bound)
Stochastic Gradient Descent returns X with
E[f(X)] < minxes f(X) + € after

2 G/Z

T= iterations.

€2

We always have that G’ > G, but iterations are typically
cheaper by a factor of n.



BEYOND THE BASIC BOUNDS

Can our convergence bounds be tightened for certain
functions? Can they guide us towards faster algorithms?

Goals:

- Improve e dependence below 1/¢2.
- Ideally 1/¢ or log(1/e).
- Reduce or eliminate dependence on G and R.

- Further take advantage of structure in the data (e.g.
repetition in features in addition to data points).



SMOOTHNESS

Definition (8-smoothness)
A function fis 5 smooth if, for all x, y

IVF(X) = VIY)ll2 < Flx = yll2

After some calculus (see Lem. 3.4 in Bubeck’s book), this

implies: 7(y) — )] = VIX)(y — x) < g”x — |3

For a scalar valued function f, equivalent to f’(x) < .


https://arxiv.org/pdf/1405.4980.pdf

SMOOTHNESS

Recall from definition of convexity that:
fly) — f(x) > VAX)(y — X)

So now we have an upper and lower bound.

0 < [fty) — 0] — VA0 — ) < 2~y



GUARANTEED PROGRESS

Previously learning rate/step size n depended on G. Now
choose it based on g:

(t+1) (t) —V
X — X 5 f( )

Progress per step of gradient descent:

[AD) — fx0)] ~ FAXOY (D — x0) < £ - x02

[FO) = F0)] + ZIVAO)R < S5 VX

@Hf
2°p

fx®) — fxED) > — || VAxO)|]3



CONVERGENCE GUARANTEE

Theorem (GD convergence for 3-smooth functions.)
Let f be a 3 smooth convex function and assume we have
Ix* = xM|[; < R. If we run GD for T steps with n = § we have:

2
_ 28R

FD) = fxr) < 2

Corollary: If we have f(x(N) — f(x*) < e.



STRONG CONVEXITY

Definition (a-strongly convex)
A convex function fis a-strongly convex if, for all x, y

[7(y) = F001 = VAT(y = ) > SIx— vl

a is a parameter that will depend on our function.

For a twice-differentiable scalar valued function f, equivalent

to f'(x) > a.
10



GD FOR STRONGLY CONVEX FUNCTION

Gradient descent for strongly convex functions:

- Choose number of steps T.
- Fori=1,...,T:

$ 1= G

- x0HD) = x() — pvf(x()

- Return X = argmin, f(x1).

"



CONVERGENCE GUARANTEE

Theorem (GD convergence for a-strongly convex functions.)
Let f be an a-strongly convex function and assume we have

that, for all x, || Vf(x)|| < G. If we run GD for T steps (with
adaptive step sizes) we have:

Corollary: If we have f(X) — f(x*) < e

12



CONVERGENCE GUARANTEE

What if fis both 8-smooth and a-strongly convex?

%I =yl < VA0~ y) = [ — ) < - x = v
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CONVERGENCE GUARANTEE

Ix = yl3 < VAX) (x = y) = [f(x) = f(y)] <~ lIx = yI3.

Theorem (GD for 3-smooth, a-strongly convex.)
Let f be a -smooth and a-strongly convex function. If we run
GD for T steps (with step size n = %) we have:

XM — x*(3 < e D5 x( — x*|13

is called the “condition number” of f.

Is it better if « is large or small?
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SMOOTH AND STRONGLY CONVEX

Converting to more familiar form: Using that fact the
Vf(x*) = 0 along with

% ¢~ yI < VA0~ y) — [Fx) — Fv)] < 5k~ vIE,

we have:

N

I — x5 < = [7xD) - )|
7<) = 1)

=INQ

XD —x*3 >
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CONVERGENCE GUARANTEE

Corollary (GD for s-smooth, a-strongly convex.)
Let f be a 8-smooth and a-strongly convex function. If we run
GD for T steps (with step size n = %) we have:

D) = o) < Be T3 ) )

(07

Corollary: If we have:
FD) = F¢7) < e [fxO) = fx)]

Alternative Corollary: If we have:



THE LINEAR ALGEBRA OF CONDITIONING

Let f be a twice differentiable function from R — R. Let the
Hessian H = Vf(x) contain all of its second derivatives at a
point x. So H € R9*4. We have:

0°f

Hi,j = [vzf(x)];yj = aT,X/

For vector x,:

V(x) = VAy) = [V*f(X)] (x - ).



THE LINEAR ALGEBRA OF CONDITIONING

Let f be a twice differentiable function from R — R. Let the
H = V?f(x) contain all of its second derivatives at a
point x. So H € R9*4. We have:
0°f
Hi = [V(X)].. = ,
1,) [v f(x)] i, aX,X/

Example: Let f(x) = [|Ax — b||3. Recall that Vf(x) = 2AT(Ax — b).

aj|dy| ... [Q4




HESSIAN MATRICES AND POSITIVE SEMIDEFINITENESS

Claim: If fis twice differentiable, then it is convex if and only if
the matrix H = V?f(x) is positive semidefinite for all x.

Definition (Positive Semidefinite (PSD))

A square, symmetric matrix H € R9%? s positive semidefinite
(PSD) for any vectory € RY, y"Hy > 0.

This is a natural notion of “positivity” for symmetric matrices.
To denote that H is PSD we will typically use “Loewner order”
notation (\succeq in LaTex):

H> 0.

We write B = A or equivalently A > B to denote that (B — A) is
positive semidefinite. This gives a partial ordering on matrices.
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HESSIAN MATRICES AND POSITIVE SEMIDEFINITENESS

Claim: If fis twice differentiable, then it is convex if and only if
the matrix H = V?f(x) is positive semidefinite for all x.

Definition (Positive Semidefinite (PSD))

A square, symmetric matrix H € R9%? s positive semidefinite
(PSD) for any vectory € RY, y"Hy > 0.

For the least squares regression loss function:
f(x) = ||Ax — b||3, H = V?f(x) = 2ATA for all x. Is H PSD?
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THE LINEAR ALGEBRA OF CONDITIONING

If fis B-smooth and a-strongly convex then at any point x,
H = V?f(x) satisfies:

alyxg 2 H =X Blyxd,

where lgyq IS a d x d identity matrix.

This is the natural matrix generalization of the statement for
scalar valued functions:

a<f'(x) < B.
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SMOOTH AND STRONGLY CONVEX HESSIAN

algxd 2 H = Blgxg-
Equivalently for any z,
allz|l; < z'Hz < B|z|3.
Exercise: Show that for f(x) = ||Ax — b|}3,
[f(x) = f(Y)] = VAX)(y = x) = (x = y)" 2ATA] (x —y).

This would imply:

%~ 1B < 100 — Fy)] — V(Y ~ %) < 2~y
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SIMPLE EXAMPLE

Let f(x) = ||Dx — b||3 where D is a diagaonl matrix. For now

imagine we're in two dimensions: x = [X1], D= [Ch O].
X2 0 d2
What are «, 3 for this problem?

ollzll7 < 2'Hz < Bljzl3
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GEOMETRIC VIEW

@

Level sets of ||Dx — b||2 when d? = 1,d5 = 1.



GEOMETRIC VIEW

==—>

Level sets of ||Dx — b||3 when d? = 1,d? = 2.
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EIGENDECOMPOSITION VIEW

Any symmetric matrix H has an orthogonal, real valued
eigendecomposition.

d eigenvectors eigenvalues eigenvectors
M
A
d H = Vv A V'
Mg
Ay

A Vg

Here V is square and orthogonal, so VIV = W' = |. And for
each v;, we have:

Hv; = \v;.

That's what makes v, ..., vy eigenvectors.
26



EIGENDECOMPOSITION VIEW

Recall W™ = VvV = 1.

d eigenvectors eigenvalues eigenvectors
A
A
d H = Vv A vr
Mg
Ay

ViV, Vg

Claim: H< A, ..., \y > 0.
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EIGENDECOMPOSITION VIEW

Recall W™ = VvV = 1.

d eigenvectors eigenvalues eigenvectors
A
A
d H = Vv A vr
Mg
Ay

ViV, Vg

Claim: al K H=2 Bl a < M, ..., \g < 6.
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EIGENDECOMPOSITION VIEW

Recall W™ = VvV = 1.

d eigenvectors eigenvalues eigenvectors
A

A

d H = '} A AL

A
A

V,V, Vq

In other words, if we let Amax(H) and Apin(H) be the smallest
and largest eigenvalues of H, then for all z we have:

2'Hz > Apin(H) - |12/
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EIGENDECOMPOSITION VIEW

If f(x) is B-smooth and a-strongly convex, then for any x we
have the the maximum eigenvalue of H = V?f(x) = 8 and the
minimum eigenvalue of H = V?f(x) = a.
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POLYNOMIAL VIEW POINT

Theorem (GD for 3-smooth, a-strongly convex.)
Let f be a -smooth and a-strongly convex function. If we run
GD for T steps (with step size n = %) we have:

XD =l < X -

31



ALTERNATIVE VIEW OF GRADIENT DESCENT

Richardson Iteration view:
(xT+) —x*) = <I — 1ATA) (x( — x*)

)\max

What is the maximum eigenvalue of the symmetric matrix
(I — ﬁATA) in terms of the eigenvalues

Amax = A1 > ... > Ay = A\pin Of ATA?
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UNROLLED GRADIENT DESCENT

.
(x(+) — x*) = (I - ATA> (x() — x*)

)\max

What is the maximum eigenvalue of the symmetric matrix
(l _— ATA)T?

)\max

So we have ||x(N — x*||, <
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IMPROVING GRADIENT DESCENT

We now have a really good understanding of gradient descent.

Number of iterations for ¢ error:

\ G-Lipschitz B-smooth
R bounded start | O (Gifz) 0 (B—Rz)

€

a-strong convex | O (2—1) 0 (g log(T/e))

How do we use this understanding to design faster algorithms?
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