
CS-GY 9223 I: Lecture 7
Preconditioning, acceleration, coordinate
decent, etc.

NYU Tandon School of Engineering, Prof. Christopher Musco
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gradient descent

Conditions:

• Convexity: f is a convex function, S is a convex set.
• Bounded initial distant:

∥x(0) − x∗∥2 ≤ R

• Bounded gradients (Lipschitz function):

∥∇f(x)∥2 ≤ G for all x ∈ S.

Theorem
GD Convergence Bound] (Projected) Gradient Descent returns
x̂ with f(x̂) ≤ minx∈S f(x) + ϵ after

T = R2G2
ϵ2

iterations.
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online gradient descent

x∗ = minx
∑T

i=1 fi(x∗) (the offline optimum)

Conditions:

• f1, . . . , fT are all convex.
• Each is G-Lipschitz: for all x, i, ∥∇fi(x)∥2 ≤ G.
• Starting radius: ∥x∗ − x(1)∥2 ≤ R.

Theorem (OGD Regret Bound)

After T steps,
[∑T

i=1 fi(x(i))
]
−
[∑T

i=1 fi(x∗)
]
≤ RG

√
T. I.e. the

average regret 1T
[∑T

i=1 fi(x(i))
]
is ≤ ϵ after:

T = R2G2
ϵ2

iterations.
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stochastic gradient descent

Conditions:

• Finite sum structure: f(x) =
∑n

i=1 fi(x), with f1, . . . , fn all
convex.

• Lipschitz functions: for all x, j, ∥∇fj(x)∥2 ≤ G′
n .

• Starting radius: ∥x∗ − x(1)∥2 ≤ R.
Theorem (SGD Regret Bound)
Stochastic Gradient Descent returns x̂ with
E[f(x̂)] ≤ minx∈S f(x) + ϵ after

T = R2G′2
ϵ2

iterations.

We always have that G′ > G, but iterations are typically
cheaper by a factor of n.
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beyond the basic bounds

Can our convergence bounds be tightened for certain
functions? Can they guide us towards faster algorithms?

Goals:

• Improve ϵ dependence below 1/ϵ2.
• Ideally 1/ϵ or log(1/ϵ).

• Reduce or eliminate dependence on G and R.
• Further take advantage of structure in the data (e.g.
repetition in features in addition to data points).
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smoothness

Definition (β-smoothness)
A function f is β smooth if, for all x, y

∥∇f(x)−∇f(y)∥2 ≤ β∥x− y∥2

After some calculus (see Lem. 3.4 in Bubeck’s book), this
implies:

[f(y)− f(x)]−∇f(x)T(y− x) ≤ β

2 ∥x− y∥
2
2

For a scalar valued function f, equivalent to f′′(x) ≤ β.
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smoothness

Recall from definition of convexity that:

f(y)− f(x) ≥ ∇f(x)T(y− x)

So now we have an upper and lower bound.

0 ≤ [f(y)− f(x)]−∇f(x)T(y− x) ≤ β

2 ∥x− y∥
2
2
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guaranteed progress

Previously learning rate/step size η depended on G. Now
choose it based on β:

x(t+1) ← x(t) − 1
β
∇f(x(t))

Progress per step of gradient descent:[
f(x(t+1))− f(x(t))

]
−∇f(x(t))T(x(t+1) − x(t)) ≤ β

2 ∥x
(t) − x(t+1)∥22

[
f(x(t+1))− f(x(t))

]
+
1
β
∥∇f(x(t))∥22 ≤

β

2 ∥
1
β
∇f(x(t))∥22

f(x(t))− f(x(t+1)) ≥ 1
2β ∥∇f(x

(t))∥22 8



convergence guarantee

Theorem (GD convergence for β-smooth functions.)
Let f be a β smooth convex function and assume we have
∥x∗ − x(1)∥2 ≤ R. If we run GD for T steps with η = 1

β we have:

f(x(T))− f(x∗) ≤ 2βR2
T− 1

Corollary: If T = O
(
βR2
ϵ

)
we have f(x(T))− f(x∗) ≤ ϵ.
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strong convexity

Definition (α-strongly convex)
A convex function f is α-strongly convex if, for all x, y

[f(y)− f(x)]−∇f(x)T(y− x) ≥ α

2 ∥x− y∥
2
2

α is a parameter that will depend on our function.

For a twice-differentiable scalar valued function f, equivalent
to f′′(x) ≥ α.
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gd for strongly convex function

Gradient descent for strongly convex functions:

• Choose number of steps T.
• For i = 1, . . . , T:

• η = 2
α·(i+1)

• x(i+1) = x(i) − η∇f(x(i))
• Return x̂ = argminx(i) f(x(i)).
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convergence guarantee

Theorem (GD convergence for α-strongly convex functions.)
Let f be an α-strongly convex function and assume we have
that, for all x, ∥∇f(x)∥2 ≤ G. If we run GD for T steps (with
adaptive step sizes) we have:

f(x̂)− f(x∗) ≤ 2G2
α(T− 1)

Corollary: If T = O
(
G2
αϵ

)
we have f(x̂)− f(x∗) ≤ ϵ
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convergence guarantee

What if f is both β-smooth and α-strongly convex?

α

2 ∥x− y∥
2
2 ≤ ∇f(x)T(x− y)− [f(x)− f(y)] ≤ β

2 ∥x− y∥
2
2.
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convergence guarantee

α

2 ∥x− y∥
2
2 ≤ ∇f(x)T(x− y)− [f(x)− f(y)] ≤ β

2 ∥x− y∥
2
2.

Theorem (GD for β-smooth, α-strongly convex.)
Let f be a β-smooth and α-strongly convex function. If we run
GD for T steps (with step size η = 1

β ) we have:

∥x(T) − x∗∥22 ≤ e
−(T−1)α

β ∥x(1) − x∗∥22

κ = β
α is called the “condition number” of f.

Is it better if κ is large or small?
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smooth and strongly convex

Converting to more familiar form: Using that fact the
∇f(x∗) = 0 along with

α

2 ∥x− y∥
2
2 ≤ ∇f(x)T(x− y)− [f(x)− f(y)] ≤ β

2 ∥x− y∥
2
2,

we have:

∥x(1) − x∗∥22 ≤
2
α

[
f(x(1))− f(x∗)

]
∥x(T) − x∗∥22 ≥

2
β

[
f(x(T))− f(x∗)

]
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convergence guarantee

Corollary (GD for β-smooth, α-strongly convex.)
Let f be a β-smooth and α-strongly convex function. If we run
GD for T steps (with step size η = 1

β ) we have:

f(x(T))− f(x∗) ≤ β

α
e−(T−1)α

β ·
[
f(x(1))− f(x∗)

]

Corollary: If T = O
(
β
α log(β/αϵ)

)
= O(κ log(κ/ϵ)) we have:

f(x(T))− f(x∗) ≤ ϵ
[
f(x(1))− f(x∗)

]
Alternative Corollary: If T = O

(
β
α log(Rβ/ϵ)

)
we have:

f(x(T))− f(x∗) ≤ ϵ
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the linear algebra of conditioning

Let f be a twice differentiable function from Rd → R. Let the
Hessian H = ∇2f(x) contain all of its second derivatives at a
point x. So H ∈ Rd×d. We have:

Hi,j =
[
∇2f(x)

]
i,j =

∂2f
∂xixj

.

For vector x, y:

∇f(x)−∇f(y) ≈
[
∇2f(x)

]
(x− y).
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the linear algebra of conditioning

Let f be a twice differentiable function from Rd → R. Let the
Hessian H = ∇2f(x) contain all of its second derivatives at a
point x. So H ∈ Rd×d. We have:

Hi,j =
[
∇2f(x)

]
i,j =

∂2f
∂xixj

.

Example: Let f(x) = ∥Ax− b∥22. Recall that ∇f(x) = 2AT(Ax− b).
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hessian matrices and positive semidefiniteness

Claim: If f is twice differentiable, then it is convex if and only if
the matrix H = ∇2f(x) is positive semidefinite for all x.
Definition (Positive Semidefinite (PSD))
A square, symmetric matrix H ∈ Rd×d is positive semidefinite
(PSD) for any vector y ∈ Rd, yTHy ≥ 0.

This is a natural notion of “positivity” for symmetric matrices.
To denote that H is PSD we will typically use “Loewner order”
notation (\succeq in LaTex):

H ⪰ 0.

We write B ⪰ A or equivalently A ⪰ B to denote that (B− A) is
positive semidefinite. This gives a partial ordering on matrices.
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hessian matrices and positive semidefiniteness

Claim: If f is twice differentiable, then it is convex if and only if
the matrix H = ∇2f(x) is positive semidefinite for all x.

Definition (Positive Semidefinite (PSD))
A square, symmetric matrix H ∈ Rd×d is positive semidefinite
(PSD) for any vector y ∈ Rd, yTHy ≥ 0.

For the least squares regression loss function:
f(x) = ∥Ax− b∥22, H = ∇2f(x) = 2ATA for all x. Is H PSD?
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the linear algebra of conditioning

If f is β-smooth and α-strongly convex then at any point x,
H = ∇2f(x) satisfies:

αId×d ⪯ H ⪯ βId×d,

where Id×d is a d× d identity matrix.

This is the natural matrix generalization of the statement for
scalar valued functions:

α ≤ f′′(x) ≤ β.
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smooth and strongly convex hessian

αId×d ⪯ H ⪯ βId×d.

Equivalently for any z,

α∥z∥22 ≤ zTHz ≤ β∥z∥22.

Exercise: Show that for f(x) = ∥Ax− b∥22,

[f(x)− f(y)]−∇f(x)T(y− x) = (x− y)T
[
2ATA

]
(x− y).

This would imply:

α

2 ∥x− y∥
2
2 ≤ [f(x)− f(y)]−∇f(x)T(y− x) ≤ β

2 ∥x− y∥
2
2
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simple example

Let f(x) = ∥Dx− b∥22 where D is a diagaonl matrix. For now

imagine we’re in two dimensions: x =
[
x1
x2

]
, D =

[
d1 0
0 d2

]
.

What are α, β for this problem?

α∥z∥22 ≤ zTHz ≤ β∥z∥22
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geometric view

Level sets of ∥Dx− b∥22 when d21 = 1,d22 = 1.
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geometric view

Level sets of ∥Dx− b∥22 when d21 = 1
3 ,d

2
2 = 2.
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eigendecomposition view

Any symmetric matrix H has an orthogonal, real valued
eigendecomposition.

Here V is square and orthogonal, so VTV = VVT = I. And for
each vi, we have:

Hvi = λivi.

That’s what makes v1, . . . , vd eigenvectors.
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eigendecomposition view

Recall VVT = VTV = I.

Claim: H⇔ λ1, ..., λd ≥ 0.
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eigendecomposition view

Recall VVT = VTV = I.

Claim: αI ⪯ H ⪯ βI⇔ α ≤ λ1, ..., λd ≤ β.
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eigendecomposition view

Recall VVT = VTV = I.

In other words, if we let λmax(H) and λmin(H) be the smallest
and largest eigenvalues of H, then for all z we have:

zTHz ≤ λmax(H) · ∥z∥2

zTHz ≥ λmin(H) · ∥z∥2
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eigendecomposition view

If f(x) is β-smooth and α-strongly convex, then for any x we
have the the maximum eigenvalue of H = ∇2f(x) = β and the
minimum eigenvalue of H = ∇2f(x) = α.

λmax(H) = β

λmin(H) = α
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polynomial view point

Theorem (GD for β-smooth, α-strongly convex.)
Let f be a β-smooth and α-strongly convex function. If we run
GD for T steps (with step size η = 1

2β ) we have:

∥x(T) − x∗∥2 ≤ e−T/κ∥x(1) − x∗∥2

Goal: Prove for f(x) = ∥Ax− b∥22.
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alternative view of gradient descent

Richardson Iteration view:

(x(T+1) − x∗) =
(
I− 1

λmax
ATA

)
(x(t) − x∗)

What is the maximum eigenvalue of the symmetric matrix(
I− 1

λmax
ATA

)
in terms of the eigenvalues

λmax = λ1 ≥ . . . ≥ λd = λmin of ATA?
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unrolled gradient descent

(x(T+1) − x∗) =
(
I− 1

λmax
ATA

)T
(x(1) − x∗)

What is the maximum eigenvalue of the symmetric matrix(
I− 1

λmax
ATA

)T
?

So we have ∥x(T) − x∗∥2 ≤
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improving gradient descent

We now have a really good understanding of gradient descent.

Number of iterations for ϵ error:

G-Lipschitz β-smooth
R bounded start O

(
G2R2
ϵ2

)
O
(
βR2
ϵ

)
α-strong convex O

(
G2
αϵ

)
O
(
β
α log(1/ϵ)

)

How do we use this understanding to design faster algorithms?
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