CS-GY 9223 I: Lecture 7 Preconditioning, acceleration, coordinate decent, etc.

NYU Tandon School of Engineering, Prof. Christopher Musco

Conditions:

- **Convexity:** *f* is a convex function, *S* is a convex set.
- · Bounded initial distant:

$$\|\mathbf{x}^{(0)} - \mathbf{x}^*\|_2 \le R$$

• Bounded gradients (Lipschitz function):

 $\|\nabla f(\mathbf{x})\|_2 \leq \mathbf{G} \text{ for all } \mathbf{x} \in \mathcal{S}.$

Theorem

GD Convergence Bound] (Projected) Gradient Descent returns $\hat{\mathbf{x}}$ with $f(\hat{\mathbf{x}}) \leq \min_{\mathbf{x} \in S} f(\mathbf{x}) + \epsilon$ after

$$T = \frac{R^2 G^2}{\epsilon^2}$$
 iterations.

 $\mathbf{x}^* = \min_{\mathbf{x}} \sum_{i=1}^{T} f_i(\mathbf{x}^*)$ (the offline optimum) Conditions:

- f_1, \ldots, f_T are all convex.
- Each is G-Lipschitz: for all \mathbf{x} , i, $\|\nabla f_i(\mathbf{x})\|_2 \leq \mathbf{G}$.
- Starting radius: $\|\mathbf{x}^* \mathbf{x}^{(1)}\|_2 \leq R$.

Theorem (OGD Regret Bound)

After T steps,
$$\left[\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)})\right] - \left[\sum_{i=1}^{T} f_i(\mathbf{x}^*)\right] \le RG\sqrt{T}$$
. I.e. the average regret $\frac{1}{T}\left[\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)})\right]$ is $\le \epsilon$ after:

$$T = \frac{R^2 G^2}{\epsilon^2}$$
 iterations.

STOCHASTIC GRADIENT DESCENT

Conditions:

- Finite sum structure: $f(\mathbf{x}) = \sum_{i=1}^{n} f_i(\mathbf{x})$, with f_1, \dots, f_n all convex.
- Lipschitz functions: for all **x**, *j*, $\|\nabla f_j(\mathbf{x})\|_2 \leq \frac{G'}{n}$.
- Starting radius: $\|\mathbf{x}^* \mathbf{x}^{(1)}\|_2 \leq R$.

Theorem (SGD Regret Bound)

Stochastic Gradient Descent returns $\hat{\mathbf{x}}$ with $\mathbb{E}[f(\hat{\mathbf{x}})] \leq \min_{\mathbf{x} \in S} f(\mathbf{x}) + \epsilon$ after

$$T = \frac{R^2 G'^2}{\epsilon^2}$$
 iterations.

We always have that G' > G, but iterations are typically cheaper by a factor of n.

Can our convergence bounds be tightened for certain functions? Can they guide us towards faster algorithms?

Goals:

- Improve ϵ dependence below $1/\epsilon^2$.
 - Ideally $1/\epsilon$ or $\log(1/\epsilon)$.
- Reduce or eliminate dependence on *G* and *R*.
- Further take advantage of structure in the data (e.g. repetition in features in addition to data points).

SMOOTHNESS

Definition (β -smoothness)

A function f is β smooth if, for all \mathbf{x}, \mathbf{y}

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_2 \le \beta \|\mathbf{x} - \mathbf{y}\|_2$$

After some calculus (see Lem. 3.4 in **Bubeck's book**), this implies: $[f(\mathbf{y}) - f(\mathbf{x})] - \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) \le \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_2^2$

For a scalar valued function f, equivalent to $f''(x) \leq \beta$.

Recall from definition of convexity that:

$$f(\mathbf{y}) - f(\mathbf{x}) \ge \nabla f(\mathbf{x})^{\mathsf{T}}(\mathbf{y} - \mathbf{x})$$

So now we have an upper and lower bound.

$$0 \leq [f(\mathbf{y}) - f(\mathbf{x})] - \nabla f(\mathbf{x})^{\mathsf{T}}(\mathbf{y} - \mathbf{x}) \leq \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_2^2$$

Previously learning rate/step size η depended on *G*. Now choose it based on β :

$$\mathbf{x}^{(t+1)} \leftarrow \mathbf{x}^{(t)} - \frac{1}{\beta} \nabla f(\mathbf{x}^{(t)})$$

Progress per step of gradient descent:

$$\left[f(\mathbf{x}^{(t+1)}) - f(\mathbf{x}^{(t)})\right] - \nabla f(\mathbf{x}^{(t)})^{\mathsf{T}}(\mathbf{x}^{(t+1)} - \mathbf{x}^{(t)}) \le \frac{\beta}{2} \|\mathbf{x}^{(t)} - \mathbf{x}^{(t+1)}\|_2^2$$

$$\left[f(\mathbf{x}^{(t+1)}) - f(\mathbf{x}^{(t)})\right] + \frac{1}{\beta} \|\nabla f(\mathbf{x}^{(t)})\|_{2}^{2} \le \frac{\beta}{2} \|\frac{1}{\beta} \nabla f(\mathbf{x}^{(t)})\|_{2}^{2}$$

$$f(\mathbf{x}^{(t)}) - f(\mathbf{x}^{(t+1)}) \ge \frac{1}{2\beta} \|\nabla f(\mathbf{x}^{(t)})\|_2^2$$

Theorem (GD convergence for β -smooth functions.) Let f be a β smooth convex function and assume we have $\|\mathbf{x}^* - \mathbf{x}^{(1)}\|_2 \leq R$. If we run GD for T steps with $\eta = \frac{1}{\beta}$ we have:

$$f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \frac{2\beta R^2}{T-1}$$

Corollary: If $T = O\left(\frac{\beta R^2}{\epsilon}\right)$ we have $f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \epsilon$.

STRONG CONVEXITY

Definition (α -strongly convex)

A convex function f is α -strongly convex if, for all \mathbf{x}, \mathbf{y}

$$[f(\mathbf{y}) - f(\mathbf{x})] - \nabla f(\mathbf{x})^{\mathsf{T}}(\mathbf{y} - \mathbf{x}) \geq \frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2}$$

α is a parameter that will depend on our function.

For a twice-differentiable scalar valued function f, equivalent to $f''(x) \ge \alpha$.

Gradient descent for strongly convex functions:

- Choose number of steps T.
- For i = 1, ..., T:

•
$$\eta = \frac{2}{\alpha \cdot (i+1)}$$

• $\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - \eta \nabla f(\mathbf{x}^{(i)})$

• Return
$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}^{(i)}} f(\mathbf{x}^{(i)})$$
.

Theorem (GD convergence for α **-strongly convex functions.)** Let f be an α -strongly convex function and assume we have that, for all \mathbf{x} , $\|\nabla f(\mathbf{x})\|_2 \leq \mathbf{G}$. If we run GD for T steps (with adaptive step sizes) we have:

$$f(\hat{\mathbf{x}}) - f(\mathbf{x}^*) \le \frac{2G^2}{\alpha(T-1)}$$

Corollary: If $T = O\left(\frac{G^2}{\alpha\epsilon}\right)$ we have $f(\hat{\mathbf{x}}) - f(\mathbf{x}^*) \le \epsilon$

What if *f* is both β -smooth and α -strongly convex?

$$\frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|_2^2 \leq \nabla f(\mathbf{x})^T (\mathbf{x} - \mathbf{y}) - [f(\mathbf{x}) - f(\mathbf{y})] \leq \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_2^2.$$

$$\frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|_2^2 \leq \nabla f(\mathbf{x})^T (\mathbf{x} - \mathbf{y}) - [f(\mathbf{x}) - f(\mathbf{y})] \leq \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_2^2.$$

Theorem (GD for β -smooth, α -strongly convex.)

Let f be a β -smooth and α -strongly convex function. If we run GD for T steps (with step size $\eta = \frac{1}{\beta}$) we have:

$$\|\mathbf{x}^{(T)} - \mathbf{x}^*\|_2^2 \le e^{-(T-1)\frac{\alpha}{\beta}} \|\mathbf{x}^{(1)} - \mathbf{x}^*\|_2^2$$

 $\kappa = \frac{\beta}{\alpha}$ is called the "condition number" of *f*. Is it better if κ is large or small? Converting to more familiar form: Using that fact the $\nabla f(\mathbf{x}^*) = \mathbf{0}$ along with

$$\frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|_2^2 \le \nabla f(\mathbf{x})^{\mathsf{T}} (\mathbf{x} - \mathbf{y}) - [f(\mathbf{x}) - f(\mathbf{y})] \le \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_2^2,$$

we have:

$$\|\mathbf{x}^{(1)} - \mathbf{x}^*\|_2^2 \le \frac{2}{\alpha} \left[f(\mathbf{x}^{(1)}) - f(\mathbf{x}^*) \right]$$
$$\|\mathbf{x}^{(T)} - \mathbf{x}^*\|_2^2 \ge \frac{2}{\beta} \left[f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \right]$$

CONVERGENCE GUARANTEE

Corollary (GD for β **-smooth,** α **-strongly convex.)** Let f be a β -smooth and α -strongly convex function. If we run GD for T steps (with step size $\eta = \frac{1}{\beta}$) we have:

$$f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \frac{\beta}{\alpha} e^{-(T-1)\frac{\alpha}{\beta}} \cdot \left[f(\mathbf{x}^{(1)}) - f(\mathbf{x}^*) \right]$$

Corollary: If $T = O\left(\frac{\beta}{\alpha}\log(\beta/\alpha\epsilon)\right) = O(\kappa\log(\kappa/\epsilon))$ we have: $f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \epsilon \left[f(\mathbf{x}^{(1)}) - f(\mathbf{x}^*)\right]$

Alternative Corollary: If $T = O\left(\frac{\beta}{\alpha}\log(R\beta/\epsilon)\right)$ we have:

 $f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \epsilon$

Let *f* be a twice differentiable function from $\mathbb{R}^d \to \mathbb{R}$. Let the Hessian $H = \nabla^2 f(\mathbf{x})$ contain all of its second derivatives at a point \mathbf{x} . So $H \in \mathbb{R}^{d \times d}$. We have:

$$\mathsf{H}_{i,j} = \left[\nabla^2 f(\mathsf{x})\right]_{i,j} = \frac{\partial^2 f}{\partial x_i x_j}.$$

For vector **x**, **y**:

$$\nabla f(\mathbf{x}) - \nabla f(\mathbf{y}) \approx \left[\nabla^2 f(\mathbf{x})\right] (\mathbf{x} - \mathbf{y}).$$

Let *f* be a twice differentiable function from $\mathbb{R}^d \to \mathbb{R}$. Let the Hessian $H = \nabla^2 f(\mathbf{x})$ contain all of its second derivatives at a point \mathbf{x} . So $H \in \mathbb{R}^{d \times d}$. We have:

$$\mathsf{H}_{i,j} = \left[\nabla^2 f(\mathsf{x})\right]_{i,j} = \frac{\partial^2 f}{\partial x_i x_j}.$$

Example: Let $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$. Recall that $\nabla f(\mathbf{x}) = 2\mathbf{A}^T(\mathbf{A}\mathbf{x} - \mathbf{b})$.

Claim: If *f* is twice differentiable, then it is convex if and only if the matrix $\mathbf{H} = \nabla^2 f(\mathbf{x})$ is positive semidefinite for all \mathbf{x} .

Definition (Positive Semidefinite (PSD))

A square, symmetric matrix $\mathbf{H} \in \mathbb{R}^{d \times d}$ is <u>positive semidefinite</u> (PSD) for any vector $\mathbf{y} \in \mathbb{R}^d$, $\mathbf{y}^T \mathbf{H} \mathbf{y} \ge 0$.

This is a natural notion of "positivity" for symmetric matrices. To denote that **H** is PSD we will typically use "Loewner order" notation (**succeq** in LaTex):

$\mathbf{H} \succeq \mathbf{0}.$

We write $B \succeq A$ or equivalently $A \succeq B$ to denote that (B - A) is positive semidefinite. This gives a <u>partial ordering</u> on matrices.

Claim: If *f* is twice differentiable, then it is convex if and only if the matrix $\mathbf{H} = \nabla^2 f(\mathbf{x})$ is positive semidefinite for all \mathbf{x} .

Definition (Positive Semidefinite (PSD))

A square, symmetric matrix $\mathbf{H} \in \mathbb{R}^{d \times d}$ is <u>positive semidefinite</u> (PSD) for any vector $\mathbf{y} \in \mathbb{R}^d$, $\mathbf{y}^T \mathbf{H} \mathbf{y} \ge 0$.

For the least squares regression loss function: $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$, $\mathbf{H} = \nabla^2 f(\mathbf{x}) = 2\mathbf{A}^T \mathbf{A}$ for all \mathbf{x} . Is \mathbf{H} PSD? If *f* is β -smooth and α -strongly convex then at any point **x**, $\mathbf{H} = \nabla^2 f(\mathbf{x})$ satisfies:

 $\alpha \mathbf{I}_{d \times d} \preceq \mathbf{H} \preceq \beta \mathbf{I}_{d \times d},$

where $I_{d \times d}$ is a $d \times d$ identity matrix.

This is the natural matrix generalization of the statement for scalar valued functions:

 $\alpha \leq f''(\mathbf{X}) \leq \beta.$

$$\alpha \mathbf{I}_{d \times d} \preceq \mathbf{H} \preceq \beta \mathbf{I}_{d \times d}.$$

Equivalently for any **z**,

$$\alpha \|\mathbf{z}\|_{2}^{2} \leq \mathbf{z}^{T} \mathbf{H} \mathbf{z} \leq \beta \|\mathbf{z}\|_{2}^{2}.$$

Exercise: Show that for $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2},$
$$[f(\mathbf{x}) - f(\mathbf{y})] - \nabla f(\mathbf{x})^{T}(\mathbf{y} - \mathbf{x}) = (\mathbf{x} - \mathbf{y})^{T} [2\mathbf{A}^{T}\mathbf{A}] (\mathbf{x} - \mathbf{y}).$$

This would imply:

$$\frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|_2^2 \le [f(\mathbf{x}) - f(\mathbf{y})] - \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) \le \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_2^2$$

Let $f(\mathbf{x}) = \|\mathbf{D}\mathbf{x} - \mathbf{b}\|_2^2$ where **D** is a diagaonl matrix. For now imagine we're in two dimensions: $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, $\mathbf{D} = \begin{bmatrix} d_1 & 0 \\ 0 & d_2 \end{bmatrix}$.

What are α, β for this problem?

 $\alpha \|\mathbf{z}\|_2^2 \le \mathbf{z}^T \mathbf{H} \mathbf{z} \le \beta \|\mathbf{z}\|_2^2$

GEOMETRIC VIEW

Level sets of $\|\mathbf{Dx} - \mathbf{b}\|_2^2$ when $d_1^2 = 1, d_2^2 = 1$.

Level sets of $\|\mathbf{D}\mathbf{x} - \mathbf{b}\|_{2}^{2}$ when $d_{1}^{2} = \frac{1}{3}, d_{2}^{2} = 2$.

Any symmetric matrix **H** has an <u>orthogonal</u>, real valued eigendecomposition.

Here V is square and orthogonal, so $V^T V = V V^T = I$. And for each v_i , we have:

$$\mathbf{H}\mathbf{v}_i = \lambda_i \mathbf{v}_i.$$

That's what makes $\mathbf{v}_1, \ldots, \mathbf{v}_d$ eigenvectors.

Recall $VV^{T} = V^{T}V = I$.

Claim: $\mathbf{H} \Leftrightarrow \lambda_1, ..., \lambda_d \ge 0$.

Recall $VV^{T} = V^{T}V = I$.

Claim: $\alpha I \preceq H \preceq \beta I \Leftrightarrow \alpha \leq \lambda_1, ..., \lambda_d \leq \beta$.

Recall $VV^{T} = V^{T}V = I$.

In other words, if we let $\lambda_{max}(H)$ and $\lambda_{min}(H)$ be the smallest and largest eigenvalues of H, then for all z we have:

$$\begin{aligned} \mathbf{z}^{\mathsf{T}}\mathbf{H}\mathbf{z} &\leq \lambda_{\max}(\mathbf{H}) \cdot \|\mathbf{z}\|^2 \\ \mathbf{z}^{\mathsf{T}}\mathbf{H}\mathbf{z} &\geq \lambda_{\min}(\mathbf{H}) \cdot \|\mathbf{z}\|^2 \end{aligned}$$

If $f(\mathbf{x})$ is β -smooth and α -strongly convex, then for any \mathbf{x} we have the the maximum eigenvalue of $\mathbf{H} = \nabla^2 f(\mathbf{x}) = \beta$ and the minimum eigenvalue of $\mathbf{H} = \nabla^2 f(\mathbf{x}) = \alpha$.

 $\lambda_{\max}(\mathbf{H}) = \beta$ $\lambda_{\min}(\mathbf{H}) = \alpha$

Theorem (GD for β -smooth, α -strongly convex.)

Let f be a β -smooth and α -strongly convex function. If we run GD for T steps (with step size $\eta = \frac{1}{2\beta}$) we have:

$$\|\mathbf{x}^{(T)} - \mathbf{x}^*\|_2 \le e^{-T/\kappa} \|\mathbf{x}^{(1)} - \mathbf{x}^*\|_2$$

Goal: Prove for $f(x) = ||Ax - b||_2^2$.

Richardson Iteration view:

$$(\mathbf{x}^{(T+1)} - \mathbf{x}^*) = \left(\mathbf{I} - \frac{1}{\lambda_{\max}}\mathbf{A}^T\mathbf{A}\right)(\mathbf{x}^{(t)} - \mathbf{x}^*)$$

What is the maximum eigenvalue of the symmetric matrix $\left(I - \frac{1}{\lambda_{max}} \mathbf{A}^T \mathbf{A}\right)$ in terms of the eigenvalues $\lambda_{max} = \lambda_1 \ge \ldots \ge \lambda_d = \lambda_{min}$ of $\mathbf{A}^T \mathbf{A}$?

UNROLLED GRADIENT DESCENT

$$(\mathbf{x}^{(T+1)} - \mathbf{x}^*) = \left(\mathbf{I} - \frac{1}{\lambda_{\max}} \mathbf{A}^T \mathbf{A}\right)^T (\mathbf{x}^{(1)} - \mathbf{x}^*)$$

What is the maximum eigenvalue of the symmetric matrix $\left(I - \frac{1}{\lambda_{max}} \mathbf{A}^T \mathbf{A}\right)^T$?

So we have
$$\|\mathbf{x}^{(T)} - \mathbf{x}^*\|_2 \leq 1$$

We now have a <u>really good</u> understanding of gradient descent. Number of iterations for ϵ error:

	G-Lipschitz	eta-smooth
R bounded start	$O\left(\frac{G^2R^2}{\epsilon^2}\right)$	$O\left(\frac{\beta R^2}{\epsilon}\right)$
lpha-strong convex	$O\left(\frac{G^2}{\alpha\epsilon}\right)$	$O\left(\frac{\beta}{\alpha}\log(1/\epsilon)\right)$

How do we use this understanding to design faster algorithms?