CS-GY 9223 D: Lecture 6 Online and Stochastic Gradient Decent

NYU Tandon School of Engineering, Prof. Christopher Musco

PROJECT

- If you don't have a project partner by the end of today, please email me.
- Take home midterm week of October 26th.
 - 2 hours, self-proctored. Design for 1.25 hours.
 - · Can take anytime during that week.
 - · Administered either via email or another option.
 - · Solutions can be hand-written and scanned.
 - I will post some review questions.
- Need volunteers to present at 10/26 reading group (in 2 weeks). Sign-up sheet on course webpage.

GRADIENT DESCENT RECAP

First Order Optimization: Given a function f and a constraint set S, assume we have:

- Function oracle: Evaluate $\underline{f(x)}$ for any x.
- Gradient oracle: Evaluate $\nabla f(\mathbf{x})$ for any \mathbf{x} .
- Projection oracle: Evaluate $P_{\mathcal{S}}(\mathbf{x})$ for any \mathbf{x} .

Goal: Find
$$\hat{\mathbf{x}} \in \mathcal{S}$$
 such that $f(\hat{\mathbf{x}}) \leq \min_{\mathbf{x} \in \mathcal{S}} f(\mathbf{x}) + \epsilon$.

GRADIENT DESCENT RECAP

Projected gradient descent:

- Select starting point $\mathbf{x}^{(0)}$, learning rate η .
- For $i = 0, \ldots, T$:
 - $z = \underline{x^{(i)} \eta \nabla f(x^{(i)})}$
 - $\mathbf{x}^{(i+1)} = P_{\mathcal{S}}(\mathbf{z})$
- Return $\hat{\mathbf{x}} = \arg\min_{i} f(\mathbf{x}^{(i)})$.

GRADIENT DESCENT RECAP

Conditions for convergence:

- Convexity: f is a convex function, S is a convex set.
- · Bounded initial distant:

$$\|\mathbf{x}^{(0)} - \mathbf{x}^*\|_2$$

Bounded gradients (Lipschitz function);

$$\|\nabla f(\mathbf{x})\|_2 \leq G$$
 for all $\mathbf{x} \in \mathcal{S}$.

Theorem: Projected Gradient Descent returns $\hat{\mathbf{x}}$ with $f(\hat{\mathbf{x}}) \leq \min_{\mathbf{x} \in \mathcal{S}} f(\mathbf{x}) + \epsilon$ after

$$T = \frac{P_1 G^2}{G^2}$$

iterations.

ONLINE AND STOCHASTIC GRADIENT DESCENT

Today:

- · Basics of Online Learning + Optimization.
- · Introduction to Regret Analysis.
- · Application to analyzing Stochastic Gradient Descent.

ONLINE LEARNING

Many machine learning problems are solved in an <u>online</u> setting with constantly changing data.

- Spam filters are incrementally updated and adapt as they see more examples of spam over time.
- Image classification systems learn from mistakes over time (often based on user feedback).
- Content recommendation systems adapt to user behavior and clicks (which may not be a good thing...)

Plant identification via iNaturalist app.

(California Academy of Science + National Geographic)

- When the app fails, image is classified via crowdsourcing (backed by huge network of amateurs and experts).
- Single model that is updated constantly, not retrained in batches.

ML based email spam/scam filtering.

Markers for spam change overtime, so model might change.

ML based email spam/scam filtering.

Markers for spam change overtime, so model might change.

ONLINE LEARNING FRAMEWORK

Choose some model $\underline{M}_{\mathbf{x}}$ parameterized by parameters \mathbf{x} and some loss function ℓ . At time steps $1, \ldots, T$, receive data vectors $\mathbf{a}^{(1)}, \ldots, \mathbf{a}^{(T)}$.

- At each time step, we pick ("play") a parameter vector $\mathbf{x}^{(i)}$.
- Make prediction $\tilde{y}^{(i)} = \underline{M}_{\mathbf{x}^{(i)}}(\mathbf{a}_i)$. $\boldsymbol{\xi}$
 Then told true value or label $\underline{y}^{(i)}$. $\boldsymbol{\xi}$ $\boldsymbol{\xi}$
- Goal is to minimize cumulative loss:

$$L = \sum_{i=1}^{n} \ell(x^{(i)}, a^{(i)}, y^{(i)})$$

For example, for a regression problem we might use the ℓ_2 loss:

$$\ell(\mathbf{x}^{(i)}, \mathbf{a}^{(i)}, \mathbf{y}^{(i)}) = \left| \langle \mathbf{x}^{(i)}, \mathbf{a}^{(i)} \rangle - \mathbf{y}^{(i)} \right|^2.$$

For classification, we could use logistic/cross-entropy loss.

ONLINE OPTIMIZATION

Abstraction as optimization problem: Instead of a single objective function f, we have a single (initially unknown) function $f_{\mathbf{L}}$. $f_{\mathcal{T}}: \mathbb{R}^d \to \mathbb{R}$ for each time step.

- $\begin{cases} \cdot \text{ For time step } i \in 1, \dots, T \text{, select vector } \mathbf{x}^{(i)}. \\ \cdot \text{ Observe } \underline{f_i} \text{ and pay cost } \underline{f_i}(\mathbf{x}^{(i)}) \\ \cdot \text{ Goal is to minimize } \sum_{i=1}^{T} \overline{f_i}(\mathbf{x}^{(i)}). \end{cases}$

 - $f_1(x) = \left[\frac{q^{(n)}}{x} \frac{1}{2}\right]^2$

We make no assumptions that
$$f_1, \ldots, f_T$$
 are related to each other at all!
$$\underbrace{\int_{\mathbf{L}} (\mathbf{X})_{\tau} \left| \mathbf{Q}^{(\nu)^T} \mathbf{X} - \mathbf{Q}^{(\nu)} \right|^2}_{\mathbf{L}}$$

ONLINE GRADIENT DESCENT

Online Gradient descent:

- Choose $x^{(1)}$ and $\eta = M$
 - For i = 1, ..., T:
 - Play $\mathbf{x}^{(i)}$.
 - Observe f_i and incur cost $f_i(\mathbf{x}^{(i)})$.

$$f_{i+1}$$
 ($\times^{(i+1)}$)

If $f_1, \ldots, f_T = f$ re all the same, this looks a lot like regular gradient descent. We update parameters using the gradient ∇f at each step.

If f_1, \ldots, f_T are very different it might seem like nonsense right now...

REGRET BOUND

In offline optimization, we wanted to find \hat{x} satisfying $f(\hat{\mathbf{x}}) < \min_{\mathbf{x}} f(\mathbf{x})$. Ask for a similar thing here.

Objective: Choose $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(T)}$ so that:

oose
$$\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(T)}$$
 so that:
$$\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)}) \leq \left(\min_{\mathbf{x}} \sum_{i=1}^{T} f_i(\mathbf{x})\right) + \epsilon.$$
d the **regret** of our solution sequence

Here ϵ is called the **regret** of our solution sequence $x^{(1)}, \ldots, x^{(T)}.$

Regret compares to the best fixed solution in hindsight.

$$\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)}) \leq \left[\min_{\mathbf{x}} \sum_{i=1}^{T} f_i(\mathbf{x}) \right] + \epsilon.$$

It's very possible that $\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)}) < \left[\min_{\mathbf{x}} \sum_{i=1}^{T} f_i(\mathbf{x})\right]$. Could we hope for something strong?

Exercise: Argue that the following is impossible to achieve:

$$\lim_{x \to \infty} \int_{i=1}^{T} f_i(\mathbf{x}^{(i)}) \leq \left[\sum_{i=1}^{T} \min_{\mathbf{x} \in \Sigma} f_i(\mathbf{x}) \right] + \epsilon.$$

HARD EXAMPLE FOR ONLINE OPTIMIZATION

 $f_{+}(x)$... $f_{+}(x)$

REGRET BOUNDS

Beautiful balance:

- Either f_1, \ldots, f_T are similar, so an method like Online Gradient Descent will effectively minimize $\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)})$.
- Or f_1, \ldots, f_T are very different, in which case $\min_{\mathbf{x}} \sum_{i=1}^{T} f_i(\mathbf{x})$ is large, so regret bound is easy to achieve.
- · Or we live somewhere in the middle.

ONLINE GRADIENT DESCENT (OGD)

$$\mathbf{x}^* = \mathbf{y}_{\min_{\mathbf{x}}} \sum_{i=1}^{T} f_i(\mathbf{x}^{\mathbf{y}})$$
 (the offline optimum)

Assume:

- f_1, \ldots, f_{T_n} are all convex.
- Each is G-Lipschitz: for all $\underline{x}, \underline{i}, \|\nabla f_i(x)\|_2 \leq G$.
- Starting radius: $\|\mathbf{x}^* \underline{\mathbf{x}^{(1)}}\|_2 \leq R$.

Online Gradient descent:

• Choose
$$\mathbf{x}^{(1)}$$
 and $\eta = \frac{R}{G\sqrt{T}}$.
• For $i = 1, ..., T$:

- Play $\mathbf{x}^{(i)}$.
- Observe f_i and incur $\cos \underline{t} f_i(\mathbf{x}^{(i)})$.

$$\underbrace{\mathbf{x}^{(i+1)}}_{\text{Zaymin}} = \mathbf{x}^{(i)} - \eta \nabla f_i(\mathbf{x}^{(i)})$$

ONLINE GRADIENT DESCENT ANALYSIS

Let $\mathbf{x}^* = \mathbf{x} \min_{\mathbf{x}} \sum_{i=1}^{T} f_i(\mathbf{x}^*)$ (the offline optimum).

All this with no assumptions on how f_1, \ldots, f_T relate to each other! They could have even been chosen adversarially – e.g. with f_i depending on our choice of \mathbf{x}_i and all previous choices.

ONLINE GRADIENT DESCENT ANALYSIS

Theorem (OGD Regret Bound)

After T steps,
$$\epsilon = \left[\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)})\right] - \left[\sum_{i=1}^{T} f_i(\mathbf{x}^*)\right] \leq RG\sqrt{T}$$
.

Claim 1: For all i = 1, ..., T,

$$f_i(\mathbf{x}^{(i)}) - f_i(\mathbf{x}^*) \le \frac{\|\mathbf{x}^{(i)} - \mathbf{x}^*\|_2^2 - \|\mathbf{x}^{(i+1)} - \mathbf{x}^*\|_2^2}{2\eta} + \frac{\eta G^2}{2}$$

(Same proof as last class. Only uses convexity of f_i .)

ONLINE GRADIENT DESCENT ANALYSIS

Theorem (OGD Regret Bound)

After T steps,
$$\epsilon = \left[\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)})\right] - \left[\sum_{i=1}^{T} f_i(\mathbf{x}^*)\right] \leq RG\sqrt{T}$$
.

Claim 1: For all
$$i = 1, ..., T$$
,

$$f_{i}(\mathbf{x}^{(i)}) - f_{i}(\mathbf{x}^{*}) \leq \frac{\|\mathbf{x}^{(i)} - \mathbf{x}^{*}\|_{2}^{2} - \|\mathbf{x}^{(i+1)} - \mathbf{x}^{*}\|_{2}^{2}}{2\eta} \left(\frac{\eta G^{2}}{2}\right)$$
Telescoping Sum:
$$\mathbf{C} = \sum_{i=1}^{T} \left[f_{i}(\mathbf{x}^{(i)}) - f_{i}(\mathbf{x}^{*}) \right] \leq \|\mathbf{x}^{(1)} - \mathbf{x}^{*}\|_{2}^{2} - \|\mathbf{x}^{(T)} - \mathbf{x}^{*}\|_{2}^{2} + \frac{T\eta G^{2}}{2}$$

$$(n): \sum_{j=1}^{R^{2}} + T\eta G^{2} \leq \frac{R^{2}}{2\eta} + \frac{T\eta G^{2}}{2} \qquad = \sum_{j=1}^{R^{2}} C_{j} - \sqrt{T}$$

STOCHASTIC GRADIENT DESCENT (SGD)

Efficient offline optimization method for functions f with f inite sum structure: $f(x) = \int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{\infty} f(x) dx$

Goal is to find $\hat{\mathbf{x}}$ such that $f(\hat{\mathbf{x}}) \leq f(\mathbf{x}^*) + \epsilon$.

- The most widely use optimization algorithm in modern machine learning.
- Easily analyzed as a special case of online gradient descent!

Recall the machine learning setup. In empirical risk minimization, we can typically write:

$$\underline{f(\mathbf{x})} = \sum_{i=1}^{n} f_i(\mathbf{x})$$

where f_i is the loss function for a particular data example $(\mathbf{a}^{(i)}, \mathbf{y}^{(i)})$.

Example: least squares linear regression.

$$f(\mathbf{x}) = \sum_{i=1}^{n} (\mathbf{x}^{T} \mathbf{a}^{(i)} - \mathbf{y}^{(i)})^{2}$$

Note that by linearity $\nabla f(\mathbf{x}) = \sum_{i=1}^{n} \nabla f_i(\mathbf{x})$. $\nabla \left(\sum_{i=1}^{n} f_i(\mathbf{x}) \right) = \left(\sum_{i=1}^{n} \nabla f_i(\mathbf{x}) \right)$

Main idea: Use random approximate gradient in place of actual gradient.

Pick $\underline{\text{random}} j \in 1, ..., n$ and update \mathbf{x} using $\nabla f_j(\mathbf{x})$.

$$\mathbb{E}\left[\nabla f_{j}(\mathbf{x})\right] = \frac{1}{n}\nabla f(\mathbf{x}).$$

$$\mathbb{E}\left[f_{j}(\mathbf{x})\right] = \frac{1}{n}\left[f(\mathbf{x})\right]$$

 $n\nabla f_j(\mathbf{x})$ s an unbiased estimate for the true gradient $\nabla f(\mathbf{x})$, but can often be computed in (1/n fraction of the time!

Trade slower convergence for cheaper iterations.

$$f(x) = \int_{-1}^{2\pi} f_{j}(x) \qquad \underset{|x|_{j}=1}{\mathbb{E}} \left(f_{j}(x)\right) = \int_{-1}^{2\pi} \frac{1}{n} f_{j}(x)$$

$$= \frac{1}{n} f(x)$$

Stochastic first-order oracle for
$$f(\mathbf{x}) = \sum_{i=1}^{n} f_i(\mathbf{x})$$
.

- Function Query: For any chosen j, \mathbf{x} , return $\underline{f_j(\mathbf{x})}$
- Gradient Query: For any chosen j, \mathbf{x} , return $\nabla f_j(\mathbf{x})$

Computing $f(\mathbf{x})$ would take n separate function queries.

Stochastic Gradient descent:

- Choose starting vector $\mathbf{x}^{(1)}$, learning rate η
- For i = 1, ..., T:
 - Pick random $\underline{j_i} \in [1, \dots, n]$
 - $\cdot \mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} \eta \nabla f_{j_i}(\mathbf{x}^{(i)})$
- Return $\hat{\mathbf{x}} = \frac{1}{T} \sum_{i=1}^{T} \mathbf{x}^{(i)}$

VISUALIZING SGD

Assume:

- Finite sum structure: $f(\mathbf{x}) = \sum_{i=1}^{n} f_i(\mathbf{x})$, with $\underline{f_1}, \dots, \underline{f_n}$ all convex.
- Lipschitz functions: for all \mathbf{x} , j, $\|\nabla f_j(\mathbf{x})\|_2 \le \frac{G'}{n}$.
 - What does this imply about Lipschitz constant of f?
- Starting radius: $\|\mathbf{x}^* \mathbf{x}^{(1)}\|_2 \leq \frac{R}{R}$.

Stochastic Gradient descent:

- Choose $\mathbf{x}^{(1)}$, steps T, learning rate $\underline{\eta} = \frac{\mathbf{D}}{\underline{G'}\sqrt{T}}$.
- For i = 1, ..., T:
 - Pick random $j_i \in 1, ..., n$.
 - $\cdot \mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} \eta \nabla f_{j_i}(\mathbf{x}^{(i)})$
- Return $\hat{\mathbf{x}} = \frac{1}{T} \sum_{i=1}^{T} \mathbf{x}^{(i)}$

Approach: View as online gradient descent run on function sequence f_{j_1}, \ldots, f_{j_T} .

STOCHASTIC GRADIENT DESCENT ANALYSIS

Claim (SGD Convergence) We Markows:

$$\text{With prob 4/10}$$

$$\text{After } T = \frac{R^2G'^2}{\epsilon^2} \text{ iterations:}$$

$$\mathbb{E}\left[f(\hat{\mathbf{x}}) - f(\mathbf{x}^*)\right] \leq \epsilon.$$

$$\text{where } \hat{\mathbf{x}} = \frac{1}{T} \sum_{i=1}^{T} \mathbf{x}^{(i)}.$$

Claim 1:

$$f(\hat{\mathbf{x}}) - f(\mathbf{x}^*) \leq \frac{1}{T} \sum_{i=1}^{T} \left[f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*) \right]$$

$$f\left(\frac{1}{T} \sum_{i=1}^{T} \mathbf{x}^{(i)}\right) - f\left(\mathbf{x}^*\right) \leq \left(\frac{1}{T} \sum_{i=1}^{T} f(\mathbf{x}^{(i)})\right) - f\left(\mathbf{x}^*\right)$$

STOCHASTIC GRADIENT DESCENT ANALYSIS

Claim (SGD Convergence)

After
$$T \neq \frac{R^2 G'^2}{\epsilon^2}$$
 terations:

$$\mathbb{E} [f(\hat{\mathbf{x}}) - f(\mathbf{x}^*)] \leq \epsilon.$$
where $\hat{\mathbf{x}} = \frac{1}{T} \sum_{i=1}^{T} \mathbf{x}^{(i)}$.

$$\mathbb{E}[f(\hat{\mathbf{x}}) - f(\mathbf{x}^*)] \leq \frac{1}{T} \sum_{i=1}^{T} \mathbb{E}\left[f(\mathbf{x}^{(i)}) - f(\mathbf{x}^*)\right]$$

$$= \frac{1}{T} \sum_{i=1}^{T} n \mathbb{E}\left[f_{j_i}(\mathbf{x}^{(i)}) - f_{j_i}(\mathbf{x}^*)\right] \qquad \mathbf{f}_{\mathbf{J}_1, \dots, \mathbf{J}_{\mathbf{J}_n}}$$

$$= \frac{n}{T} \cdot \mathbb{E}\left[\sum_{i=1}^{T} f_{j_i}(\mathbf{x}^{(i)}) - f_{j_i}(\mathbf{x}^*)\right]$$

$$\leq \frac{n}{T} \cdot \left(R \cdot \frac{G'}{n} \cdot \sqrt{T}\right) \qquad \text{(by OGD guarantee.)}$$

$$= \mathbb{E}[f(\hat{\mathbf{x}}) - f(\mathbf{x}^*)] \leq \frac{1}{T} \sum_{i=1}^{T} \mathbb{E}\left[\int_{\mathbf{J}_n} \mathbf{x}^{(i)} \cdot \mathbf{x}^{(i)} \cdot \mathbf{x}^{(i)}\right]$$

Number of iterations for error ϵ :

- Gradient Descent: $T = \frac{R^2G^2}{r^2}$.
- Stochastic Gradient Descent: $T = \frac{R^2 G^2}{r^2}$.

Always have G < G':

$$\nabla f(\mathbf{x})\|_{2} \leq \|\nabla f_{1}(\mathbf{x})\|_{2} + \ldots + \|\nabla f_{n}(\mathbf{x})\|_{2} \leq n \cdot \frac{G'}{n} = G'.$$
So GD converges strictly faster than SGD.

But for a fair comparison:

SGD cost = (# of iterations)
$$\cdot$$
 O(1)
GD cost = (# of iterations) \cdot O(n)

GD cost =
$$(\# \text{ of iterations}) \cdot O(n)$$

We always have $\#2 \le G'$. When it is <u>much smaller</u> then GD will perform better. When it is closer to this upper bound, what is an extreme case where G = G'? SGD will perform better.

$$\nabla f_{1}(x) = \nabla f_{2}(x) = 0$$

$$||\nabla f_{1}(x)||_{2} = u - \frac{1}{2} = 0$$

What if each gradient $\nabla f_i(\mathbf{x})$ looks like random vectors in \mathbb{R}^d ? E.g. with $\mathcal{N}(0,1)$ entries?

$$\mathbb{E}\left[\|\nabla f_i(\mathbf{x})\|_2^2\right] = \sum_{j=1}^d Z_j^2 \quad \text{where} \quad Z \sim \mathbb{N}(0, i)$$

$$\mathbb{E}\left[\|\nabla f(\mathbf{x})\|_2^2\right] = \mathbb{E}\left[\|\sum_{i=1}^n \nabla f_i(\mathbf{x})\|_2^2\right] = \sum_{j=1}^d S_j^2 \quad \text{where} \quad S_j \sim \mathbb{N}(0, n)$$

$$\mathbb{E}_{\alpha ch} \text{ entry of } \sum_{i=1}^n \mathbb{V}_j^2(\mathbf{x}) \text{ is the sun of } n \text{ guassions, so}$$

$$\text{distributed as} \quad \mathbb{N}(0, n).$$

$$\text{So, } G' \sim n \cdot \text{fol} \text{ and } G \propto \text{fol} n.$$

$$\text{Sup. tokes} \quad O\left(\frac{R^2 n^2 d}{4\pi}\right) \text{ iterations, } G \text{ tokes} \quad O\left(\frac{R^2 n^2 d}{4\pi}\right).$$

$$32$$

Takeaway: SGD performs better when there is more structure or repetition in the data set.

BEYOND THE BASIC BOUNDS

Can our convergence bounds be tightened for certain functions? Can they guide us towards faster algorithms?

Goals:

- Improve ϵ dependence below $1/\epsilon^2$.
 - Ideally $1/\epsilon$ or $\log(1/\epsilon)$.
- · Reduce or eliminate dependence on G and R.
- Further take advantage of structure in the data (e.g. repetition in features in addition to data points).

SMOOTHNESS

Definition (β -smoothness)

A function f is β smooth if, for all x, y

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_2 \le \frac{\beta}{\beta} \|\mathbf{x} - \mathbf{y}\|_2$$

After some calculus (see Lemma 3.4 in **Bubeck's book**), this implies:

$$\nabla f(\mathbf{x})^{\mathsf{T}}(\mathbf{x} - \mathbf{y}) - [f(\mathbf{x}) - f(\mathbf{y})] \le \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2}$$

SMOOTHNESS

Recall from definition of convexity that:

$$f(\mathbf{x}) - f(\mathbf{y}) \le \nabla f(\mathbf{x})^{\mathsf{T}} (\mathbf{x} - \mathbf{y})$$

So now we have an upper and lower bound.

$$0 \le \nabla f(\mathbf{x})^{\mathsf{T}}(\mathbf{x} - \mathbf{y}) - [f(\mathbf{x}) - f(\mathbf{y})] \le \frac{\beta}{2} ||\mathbf{x} - \mathbf{y}||_{2}^{2}$$

GUARANTEED PROGRESS

Previously learning rate/step size η depended on G. Now choose it based on β :

$$\mathbf{x}^{(t+1)} \leftarrow \mathbf{x}^{(t)} - \frac{1}{\beta} \nabla f(\mathbf{x}^{(t)})$$

Progress per step of gradient descent:

$$\nabla f(\mathbf{x}^{(t)})^{\mathsf{T}}(\mathbf{x}^{(t)} - \mathbf{x}^{(t+1)}) - \left[f(\mathbf{x}^{(t)}) - f(\mathbf{x}^{(t+1)}) \right] \le \frac{\beta}{2} \|\mathbf{x}^{(t)} - \mathbf{x}^{(t+1)}\|_{2}^{2}$$
$$\frac{1}{\beta} \|\nabla f(\mathbf{x}^{(t)})\|_{2}^{2} - \left[f(\mathbf{x}^{(t)}) - f(\mathbf{x}^{(t+1)}) \right] \le \frac{\beta}{2} \|\frac{1}{\beta} \nabla f(\mathbf{x}^{(t)})\|_{2}^{2}$$

$$f(\mathbf{x}^{(t)}) - f(\mathbf{x}^{(t+1)}) \ge \frac{1}{2\beta} \|\nabla f(\mathbf{x}^{(t)})\|_2^2$$

Theorem (GD convergence for β -smooth functions.)

Let f be a β smooth convex function and assume we have $\|\mathbf{x}^* - \mathbf{x}^{(1)}\|_2 \le R$. If we run GD for T steps with $\eta = \frac{1}{\beta}$ we have:

$$f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \frac{2\beta R^2}{T - 1}$$

Corollary: If $T = O\left(\frac{\beta R^2}{\epsilon}\right)$ we have $f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \epsilon$.

STRONG CONVEXITY

Definition (α -strongly convex)

A convex function f is α -strongly convex if, for all x, y

$$\nabla f(\mathbf{x})^{\mathsf{T}}(\mathbf{x} - \mathbf{y}) - [f(\mathbf{x}) - f(\mathbf{y})] \ge \frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2}$$

lpha is a parameter that will depend on our function.

STRONG CONVEXITY

Completing the picture: If f is α strongly convex and β smooth,

$$\frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2} \leq \nabla f(\mathbf{x})^{\mathsf{T}} (\mathbf{x} - \mathbf{y}) - [f(\mathbf{x}) - f(\mathbf{y})] \leq \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2}.$$

GD FOR STRONGLY CONVEX FUNCTION

Gradient descent for strongly convex functions:

- · Choose number of steps T.
- For i = 1, ..., T:

•
$$\eta = \frac{2}{\alpha \cdot (i+1)}$$

$$\cdot \mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - \eta \nabla f(\mathbf{x}^{(i)})$$

• Return $\hat{\mathbf{x}} = \arg\min_{\mathbf{x}^{(i)}} f(\mathbf{x}^{(i)})$.

Theorem (GD convergence for α -strongly convex functions.)

Let f be an α -strongly convex function and assume we have that, for all \mathbf{x} , $\|\nabla f(\mathbf{x})\|_2 \leq \mathbf{G}$. If we run GD for T steps (with adaptive step sizes) we have:

$$f(\hat{\mathbf{x}}) - f(\mathbf{x}^*) \le \frac{2G^2}{\alpha(T-1)}$$

Corollary: If $T = O\left(\frac{G^2}{\alpha \epsilon}\right)$ we have $f(\hat{\mathbf{x}}) - f(\mathbf{x}^*) \le \epsilon$

SMOOTH AND STRONGLY CONVEX

What if f is both β -smooth and α -strongly convex?

$$\frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2} \leq \nabla f(\mathbf{x})^{\mathsf{T}} (\mathbf{x} - \mathbf{y}) - [f(\mathbf{x}) - f(\mathbf{y})] \leq \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2}.$$

Theorem (GD for β -smooth, α -strongly convex.)

Let f be a β -smooth and α -strongly convex function. If we run GD for T steps (with step size $\eta = \frac{1}{\beta}$) we have:

$$\|\mathbf{x}^{(T)} - \mathbf{x}^*\|_2^2 \le e^{-(T-1)\frac{\alpha}{\beta}} \|\mathbf{x}^{(1)} - \mathbf{x}^*\|_2^2$$

 $\kappa = \frac{\beta}{\alpha}$ is called the "condition number" of f.

Is it better if κ is large or small?

SMOOTH AND STRONGLY CONVEX

Converting to more familiar form: Using that fact the $\nabla f(\mathbf{x}^*) = \mathbf{0}$ along with

$$\frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2} \le \nabla f(\mathbf{x})^{\mathsf{T}} (\mathbf{x} - \mathbf{y}) - [f(\mathbf{x}) - f(\mathbf{y})] \le \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2},$$

we have:

$$\|\mathbf{x}^{(1)} - \mathbf{x}^*\|_2^2 \le \frac{2}{\alpha} \left[f(\mathbf{x}^{(1)}) - f(\mathbf{x}^*) \right]$$
$$\|\mathbf{x}^{(T)} - \mathbf{x}^*\|_2^2 \ge \frac{2}{\beta} \left[f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \right]$$

Corollary (GD for β -smooth, α -strongly convex.)

Let f be a β -smooth and α -strongly convex function. If we run GD for T steps (with step size $\eta = \frac{1}{\beta}$) we have:

$$f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \frac{\beta}{\alpha} e^{-(T-1)\frac{\alpha}{\beta}} \cdot \left[f(\mathbf{x}^{(1)}) - f(\mathbf{x}^*) \right]$$

Corollary: If $T = O\left(\frac{\beta}{\alpha}\log(\beta/\alpha\epsilon)\right)$ we have:

$$f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \epsilon \left[f(\mathbf{x}^{(1)}) - f(\mathbf{x}^*) \right]$$

Let $f(\mathbf{x}) = \|\mathbf{D}\mathbf{x} - \mathbf{b}\|_2^2$ where **D** is a diagaonl matrix. For now imagine we're in two dimensions: $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, $\mathbf{D} = \begin{bmatrix} d_1 & 0 \\ 0 & d_2 \end{bmatrix}$.

What are α, β for this problem?

$$\frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2} \le \nabla f(\mathbf{x})^{\mathsf{T}} (\mathbf{x} - \mathbf{y}) - [f(\mathbf{x}) - f(\mathbf{y})] \le \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_{2}^{2}$$

Exercise: Show that:

$$\nabla f(\mathbf{x})^{\mathsf{T}}(\mathbf{x} - \mathbf{y}) - [f(\mathbf{x}) - f(\mathbf{y})] = (\mathbf{x} - \mathbf{y})^{\mathsf{T}} D^{2}(\mathbf{x} - \mathbf{y})$$

= $\|D(\mathbf{x} - \mathbf{y})\|_{2}^{2}$

Level sets of $\|\mathbf{D}\mathbf{x} - \mathbf{b}\|_2^2$ when $d_1 = 1, d_2 = 1$.

Level sets of
$$\|\mathbf{D}\mathbf{x} - \mathbf{b}\|_{2}^{2}$$
 when $d_{1} = \frac{1}{3}, d_{2} = 2$.

Steps to convergence
$$\approx O\left(\kappa \log(1/\epsilon)\right) = O\left(\frac{\max(D^2)}{\min(D^2)}\log(1/\epsilon)\right)$$
.

For general regression problems $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$,

$$\beta = \lambda_{max}(\mathbf{A}^{\mathsf{T}}\mathbf{A})$$

$$\alpha = \lambda_{min}(\mathbf{A}^{\mathsf{T}}\mathbf{A})$$