CS-GY 9223 D: Lecture 6
Online and Stochastic Gradient Decent

NYU Tandon School of Engineering, Prof. Christopher Musco



PROJECT

- If you don't have a project partner by the end of today,
please email me.
- Take home midterm week of October 26th.
- 2 hours, self-proctored. Design for 1.25 hours.
- Can take anytime during that week.
- Administered either via email or another option.
- Solutions can be hand-written and scanned.
- | will post some review questions.

- Need volunteers to present at 10/26 reading group (in 2
weeks). Sign-up sheet on course webpage.



GRADIENT DESCENT RECAP

%A />[?5

First Order Optimization: Given a function fand a constraint
set 8, assume we have:

- Function oracle: Evaluate f(x) for any x.
- Gradient oracle: Evaluate Vf(x) for any x.

—_—

- Projection oracle: Evaluate Ps(x) for any x.

Goal: Find % € S such that f() < minxegf(x)®

l—a




GRADIENT DESCENT RECAP

Projected gradient descent:

- Select starting point
- Fori=0,....T:
- z=x) — pVf(x()
- x(*) = pg(2)

+ Return X = argmin, f(x()).

(0) i
X learning rate 7.



GRADIENT DESCENT RECAP

Conditions for convergence:

- Convexity: fis a convex function, S is a convex set.
- Bounded initial distant:

X9 —x, €2

- Bounded gradients (Lipschitz function).

IVA(X)]2 < Gforallx € S.

Theorem: Projected Gradient Descent returns X with
f(X) < minges f(x) + € after

MG
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iterations.



ONLINE AND STOCHASTIC GRADIENT DESCENT

Today:

- Basics of Online Learning + Optimization.

- Introduction to Regret Analysis.

- Application to analyzing Stochastic Gradient Descent.




ONLINE LEARNING

Many machine learning problems are solved in an online
setting with constantly changing data.

- Spam filters are incrementally updated and adapt as they
see more examples of spam over time.

- Image classification systems learn from mistakes over
time (often based on user feedback).

- Content recommendation systems adapt to user behavior
and clicks (which may not be a good thing...)



EXAMPLE

Plant identification via iNaturalist app.

(California Academy of Science + National Geographic)

- When the app fails, image

is classified via
crowdsourcing (backed by
huge network of amateurs
and experts).

- Single model that is

updated constantly, not
retrained in batches.



EXAMPLE

ML based email spam/scam filtering.

MIME-Version: 1.0 Date: on, 7 Oct 2019

Johnson-Lindenstrauas Transforn
<http: //dzops. dagatunl .de/opus/vol Ltexte/2018

Markers for spam change overtime, so model might change.



EXAMPLE

ML based email spam/scam filtering.

Re:SAFTY CORONA VIRUS AWARENESS WHO

us-advisory

Markers for spam change overtime, so model might change.



ONLINE LEARNING FRAMEWORK

Choose some model My parameterized by parameters x and

some loss function ETftlme steps 1,...,T, receive data
vectors al, ... a0, ¢ht el T

) 9 st chelswtz—
- At each time step, we pick (“play”) a parameter vector x(),

+ Make prediction #) = My ;). ¢ ¥ ( -
- Then told true value or labelL(’), X" f U

- Goal is to minimize cumulative loss:

LA
L= o(x, a0, 0y
=1

For example, for a regression problem we might use the ¢, loss:

(x, 20, y0) = |, 20) — y ’

For classification, we could use logistic/cross-entropy loss.
1



ONLINE OPTIMIZATION

Abstraction as optimization problem: Instead of a single
objective functio e have a single (initially unknown)
functior@. .fr: RY — R for each time step.

- Fortime step i € 1,...,T, select vector x().
- Observe f, and pay costf( )
. Goal is to minimize S 1]‘,( N flx ) | g " ‘")
e = = _/
We make no assumptions that fi, ..., fr are related to each
other at all! s | g )
‘YVC’()"Q X-a I
c— -
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ONLINE GRADIENT DESCENT

Online Gradient desa?;t?:utﬂ“ﬁa ol

+ Choose x() and %

- Fori=1,...,T

- Play x(. 9(m (xom>

* Observe f; and incur cost fi(x1).

Iffi,....fr :@re all the same, this looks a lot like regular
gradient descent. We update parameters using the gradient Vf
at each step.

If f1,...,fr are very different it might seem like nonsense right
NOw...

13



REGRET BOUND

He)-50)sq £06<) TEx-H)
In offline optimiz&tion, we wanted to find X satisfying

(%) < miny f(x)¥Ask for a similar thing here.

Objective: Choose x(, ... x(D so that:

Here ¢ is called the regret of our solution sequence
x(, .. x(D,

AL




REGRET BOUND

Regret compares to the best fixed solution in hindsight.

Qb&&M

X
VJ

T

>-160) < | 00 +

=1

It's very possible that 31, fi(x®) < [minX Z,—Tﬂf,-(x)] Could
we hope for something strong?

Exercise: Argue that the following is impossible to achieve:

( T . 4‘,, :F—,— = J:
o \@o Zf, (x [Z min f;(x)

7
+ €.
=1 —/—=
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HARD EXAMPLE FOR ONLINE OPTIMIZATION

7f, ) .- £

v/ ,Jf\\- \0
U/ ?fQ\ \/1'

F.0) - 1x - hl e v- 92

5 hx) ¢ Z o Fie) re
l;_l—/\p
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REGRET BOUNDS

T

> A0 €.

i=1
Beautiful balance:

- Either fy,...,fr are similar, so an method like Online
Gradient Descent will effectively minimize X1, fi(x().

- Orfy,...,fr are very different, in which case miny E,-Lf;(x)
is large, so regret bound is easy to achieve.

- Or we live somewhere in the middle.

17



ONLINE GRADIENT DESCENT (OGD)

X" dgminy L fi(x® (the offline optimum)
-

Assume:
* f1,...,frare all convex.
- Each is G-Lipschitz: for all x, I, [|Vfi(X)|[» < G.
- Starting radius: ||x* — x|, <R.
= -
Online Gradient descent: XL ) x*
(1) R = —_
- Choose x\" and n = =%=.
GVT s ) - verh
cFori=1,..,T _79i'(*x ) —-S—rj:*ly::
- Play x(). ‘ o ,?hn-nubw

- Observe f; and incur cost f;(x()).
< x0T = x() = nVﬁ(x(’))

3“‘0"*7‘(—‘ f,0<) 18



ONLINE GRADIENT DESCENT ANALYSIS

Let x* =wpnine S°1_, fi(x*) (the offline optimum).
Theorem (OGD Regret Bound)

After T steps@: @ — - < RfoT
Average regret overtime is bounded by £

Goes - 0as T — ox.

All this with no assumptions on how f, ..., fr relate to each
other! They could have even been chosen adversarially - e.g.
with f; depending on our choice of x; and all previous choices.

19



ONLINE GRADIENT DESCENT ANALYSIS

Theorem (OGD Regret Bound)
After T steps, ¢ = [Zf:1ﬁ(x("))} - [Z,-Lf,(x*)} < RGVT.

Claim 1: Foralli=1,...,T,

: () — yex 12 — [ (41 yx||12 2
fl(x(l)) 7]Ci(x>k) < HX X HZ HX X H2 + ﬁ

=~ = 2n 2

(Same proof as last class. Only uses convexity of I'.)

20



ONLINE GRADIENT DESCENT ANALYSIS

+w { f (x
Theorem (OGD Regret Bound) § w2 )

(S0 = [SLfi6)] 3 R6V

— X0+ —x* |2
277

After T steps, €

<—+T77—G2 = AT

(T 21



STOCHASTIC GRADIENT DESCENT (SGD)

Efficient offline optimization method for functions fvvithCﬁnﬁ
sum structure: | Hx) - | Ax-vhZ

n - \Ai (4&-./)0 -M»;yL
@):Zf[(x). =

Goal is to find X such that f(X) < f(x*) +e.

- The most widely use optimization algorithm in modern
machine learning.

- Easily analyzed as a special case of online gradient
descent!

22



STOCHASTIC GRADIENT DESCENT

Recall the machine learning setup. In empirical risk
minimization, we can typically write:

n
fx) = fix)
where f; is the loss function for a particular data example
(a®,y ).

Example: least squares linear regression.

n

fx) = (a0 — 0y

=1
Note that by linearity v =1L Vfi(x).
v (Z ()| - m 23
(—-l



STOCHASTIC GRADIENT DESCENT

Main idea: Use random approximate gradient in place of
actual gradient.

Pick random}e 1,...,n and update x using Vfj(x).

L
w2 B[R] = .
{Q“V L e S Y
£ (5 6)] = 4 $(x)

e
an unbiased estimate fliml true gradient Vf(x),

but can often be computed in § n of the time!

Trade slower convergence for cheaper iterations.

$0x)- % £ 00 1£| Ozx)} 25 %
J "‘. = l\/\ 'g-CK) 24



STOCHASTIC GRADIENT DESCENT

(" stochastic first-order oracle for f(x) = >_iL, fi(x). /g{%)

- Function Query: For any chosen j, x, return fi(x)
_
- Gradient Query: For any chosen j, x, return Vfj(x)

—_—

L Computing f(x) would take n separate function queries.
Stochastic Gradient descent: oCCKU )>
—

- Choose starting vector x(, learning rate 7
= —
- Fori=1,...,T
- Pick randomj; € 1,...,n0-
. x(+1) — ﬁ(,') — an,‘,.(X(’))
- Return & = 1327, x()

AV j« €)W

25



VISUALIZING SGD

GD's smooth convergence SGD's stochastic convergence
600
8

500
£ 400 £
d < 606
S 300 E
g % 604

200 g

100

0
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STOCHASTIC GRADIENT DESCENT

V50N, G -0 okx
Assume:

- Finite sum structure: f(x) = S°70, fi(x), with fi, ... ,fn all convex.

- Lipschitz functions: for all x, j, [[Vi(x)]l> <
- What does this imply about Lipschitz constant of f?

- Starting radius: ||x* —xM||, < R.
= =

Stochastic Gradient descent:

. 1 i _ D
Choose x(), steps T, learning rate 1) = z27.
- Fori=1,...,T:
T '
- Pick random ji €1,...,n. S £ (x ¢ )>
X+ = xO — g, (X ’) =,
- Return x = 1 377 x() i )L()g)

Approach: View as online gradient descent run on function

seque|'1ce£”...f)_ .



STOCHASTIC GRADIENT DESCENT ANALYSIS

Vin MecUes s
Lortu g\r'-b /o

F(R)-£0e*) £ (o

Claim (SGD Convergence)
After T = K¢

RO
where X = 1321 x(). f“"AJ:W e
Claim 1:
:
A%) — £0¢) < 2 37 [fx) — fx)]
_ i=1
"/__/_—_J

[T Z x0 ) }(x*) 4(}—2\ Hx‘”)} ~ S e

e ——
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STOCHASTIC GRADIENT DESCENT ANALYSIS

Claim (SGD Convergence)

2 ~12 o
After T f E&= )erations:

E[f(X) - f(x)] < e

& _ 15y i
where & = 15~ x().

BIf(R) — f(x')] <

29



STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

Number of iterations for error e: %
) ¥
- Gradient Descent: T = %. ’&,S// K
- Stochastic Gradient Descent; T = RQgZ.
Always have G < G': SO

wax IVAX) 2+ -+ [[Va(X)]2 < n- % _
% VHx) = Q’su) o vE.0)

So GD converges strictly faster than SGD. \
¢ <G

- SGD cost = (# of iterations) - O(1)
\GD cost = (# of iterations) - O(n)

[l +p o= lx( r/(;j/)



STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

We always have,\-%a%;g G'. When it is much smaller then

GD will perform better. When it is closer to this upper bound,
SGD will perform better. G << G L

What is an extreme case WhereWﬁ =G

14¢) 14,6 -« 0k, (<)

\('V‘HK)U,, d V\—l—u %vguc) - 6

31



STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

What if each gradient Vf;(x) looks like random vectors in R9?
E.g. with (0, 1) entries?

d
" ~ N (o,
E [IVfi(x)II5]) = JZ z;" Ve 2 0

d
— Z S." \A\‘\-b/b S:) NN (0/'4)

E || 3 VAl ;
ZV &

Cadr wh} of ZV};('C) i5 e sww of m D\«O-sf’"““sl S

E (|| VA(x)

A,(SH\»H“& a5 N(O/"l). V‘Q“b\“> St A

co e by
$°) GI /,\“,V\G, em(L G% du . / 7 b-

Bhud

SUD-dwes o P2P) Weshoas, (D ek OC —>' 32



STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

Takeaway: SGD performs better when there is more structure
or repetition in the data set.

T, BT
CHATENeESS
Sml NS § e
FELHEEEE P
L R FR el
A i o VI
LEENEDSARE
B 5 P B T
ST
R RE=SaEn
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BEYOND THE BASIC BOUNDS

Can our convergence bounds be tightened for certain
functions? Can they guide us towards faster algorithms?

Goals:
- Improve e dependence below 1/¢€.
- Ideally 1/€ or log(1/e).
- Reduce or eliminate dependence on G and R.

- Further take advantage of structure in the data (e.g.
repetition in features in addition to data points).

34



SMOOTHNESS

Definition (3-smoothness)
A function fis 7 smooth if, for all x, y

IVAX) = Vi) ll2 < Blix = yll2

After some calculus (see Lemma 3.4 in Bubeck’s book), this
implies:

VFO0T(x—y) ~ 09— )] < 2lx - vIB 5


https://arxiv.org/pdf/1405.4980.pdf

SMOOTHNESS

Recall from definition of convexity that:
fx) = fly) < VAX) (x —y)

So now we have an upper and lower bound.

0 < VAT(x ~¥) ~ 09 — F¥)] < Slix — v

36



GUARANTEED PROGRESS

Previously learning rate/step size n depended on G. Now
choose it based on g:

XD x® vi( )

Progress per step of gradient descent:

VAKOY (O — x4) — [fx) - fxE)] < 2 - XD

Vx5

37



CONVERGENCE GUARANTEE

Theorem (GD convergence for 3-smooth functions.)
Let f be a 7 smooth convex function and assume we have
Ix* = x|, < R. If we run GD for T steps with n = § we have:

2
- 28R

Fx™) - fx) < 27

Corollary: If we have f(x(N) — f(x*) < e.

38



STRONG CONVEXITY

Definition (a-strongly convex)
A convex function fis a-strongly convex if, for all x, y

V) (x =) = [1(x) = )] > S Ix = yl3

a is a parameter that will depend on our function.

39



STRONG CONVEXITY

Completing the picture: If fis a strongly convex and 3 smooth,

% k= Y < VA (x ) = [F0) ~ )] < - Ix = VIB.

40



GD FOR STRONGLY CONVEX FUNCTION

Gradient descent for strongly convex functions:

- Choose number of steps T.

- Fori=1,...,T
= a-(i2+1)4 '
< x(+) = x() — an(x(’))

+ Return X = arg min,q f(x().

41



CONVERGENCE GUARANTEE

Theorem (GD convergence for a-strongly convex functions.)
Let f be an a-strongly convex function and assume we have

that, for all x, || Vf(x)|| < G. If we run GD for T steps (with
adaptive step sizes) we have:

Corollary: If we have f(X) — f(x*) < e

42



SMOOTH AND STRONGLY CONVEX

What if f is both g-smooth and a-strongly convex?

%= Y < FA(x ) — [F0) ~ ] < - Ix = VIB-

43



CONVERGENCE GUARANTEE

Theorem (GD for 3-smooth, a-strongly convex.)
Let f be a 3-smooth and a-strongly convex function. If we run
GD for T steps (with step size n = %) we have:

X — x*[13 < e D5 |x() — x*|)3

is called the “condition number” of f.

Is it better if « is large or small?

44



SMOOTH AND STRONGLY CONVEX

Converting to more familiar form: Using that fact the
Vf(x*) = 0 along with

%~ yI < V)T (x ) ~ 09 — )] < 5 Ik~ vIE,

we have:

45



CONVERGENCE GUARANTEE

Corollary (GD for 3-smooth, a-strongly convex.)
Let f be a 3-smooth and a-strongly convex function. If we run
GD for T steps (with step size n = %) we have:

FxD) - 1) < Ze T3 [5x) — fx)

«

Corollary: If we have:

FXD) = f(x7) < e [FxD) — Fx)|

46



UNDERSTANDING CONDITIONING

Let f(x) = ||Dx — b||3 where D is a diagaonl matrix. For now

. . , . . . X1 d1 0
Imagine we re in two dimensions: x = , D= .
X2 0 dz

What are «, 3 for this problem?

N |

S lx =yl < VAT (x = y) = [f0x) = f)] < Slix =y

Exercise: Show that:

V) (x —y) = [f(x) = f(y)] = (x = y) D*(x ~y)
= ID(x — y)II3
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UNDERSTANDING CONDITIONING

@

Level sets of ||Dx — b3 when dy =1,d, = 1.



UNDERSTANDING CONDITIONING

Level sets of ||Dx — b||3 when dy = 1,d, = 2.
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UNDERSTANDING CONDITIONING

Steps to convergence ~ O (x log(1/€)) = O (?1??(02) log(T/e))

For general regression problems [|Ax — b|}3,

5 = /\max(ATA)
a = Apin (ATA)
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