CS-GY 9223 D: Lecture 6
Online and Stochastic Gradient Decent

NYU Tandon School of Engineering, Prof. Christopher Musco



PROJECT

- If you don't have a project partner by the end of today,
please email me.
- Take home midterm week of October 26th.
- 2 hours, self-proctored. Design for 1.25 hours.
- Can take anytime during that week.
- Administered either via email or another option.
- Solutions can be hand-written and scanned.
- | will post some review questions.

- Need volunteers to present at 10/26 reading group (in 2
weeks). Sign-up sheet on course webpage.



GRADIENT DESCENT RECAP

First Order Optimization: Given a function f and a constraint
set S, assume we have:

- Function oracle: Evaluate f(x) for any x.
- Gradient oracle: Evaluate Vf(x) for any x.

- Projection oracle: Evaluate Pg(x) for any x.

Goal: Find X € S such that f(X) < minges f(X) + €.



GRADIENT DESCENT RECAP

Projected gradient descent:

- Select starting point x(9, learning rate 7.
- Fori=0,....T

-z =x0) — pvAx()

- xUH) = pg(z)

- Return % = argmin; f(x(").



GRADIENT DESCENT RECAP

Conditions for convergence:

- Convexity: fis a convex function, S is a convex set.
- Bounded initial distant:

Ix© — x|, < R
- Bounded gradients (Lipschitz function):
IVi(x)| < Gforallx e S.

Theorem: Projected Gradient Descent returns X with
f(X) < minges f(x) + € after

=

iterations.



ONLINE AND STOCHASTIC GRADIENT DESCENT

Today:

- Basics of Online Learning + Optimization.

- Introduction to Regret Analysis.

- Application to analyzing Stochastic Gradient Descent.




ONLINE LEARNING

Many machine learning problems are solved in an online
setting with constantly changing data.

- Spam filters are incrementally updated and adapt as they
see more examples of spam over time.

- Image classification systems learn from mistakes over
time (often based on user feedback).

- Content recommendation systems adapt to user behavior
and clicks (which may not be a good thing...)



EXAMPLE

Plant identification via iNaturalist app.

(California Academy of Science + National Geographic)

- When the app fails, image
is classified via
crowdsourcing (backed by
huge network of amateurs
and experts).

v - Single model that is
updated constantly, not
o——o——o retrained in batches.



EXAMPLE

ML based email spam/scam filtering.

A
qeron &= 2
e gttt —

nyu.edu Content-

594568053° -

Markers for spam change overtime, so model might change.



EXAMPLE

ML based email spam/scam filtering.

Re:SAFTY CORONA VIRUS AWARENESS WHO

{7 World Health
"' ¥ Organization

Dear Sir,

Go through the attached document on safety measures regarding the
spreading of cor

Ciick on the button below to download

Markers for spam change overtime, so model might change.
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ONLINE LEARNING FRAMEWORK

Choose some model My parameterized by parameters x and
some loss function £. At time steps 1,...,T, receive data
vectors a(, ..., a(D,

- At each time step, we pick (“play”) a parameter vector x().
- Make prediction §) = M, (a;).

- Then told true value or label y(.

- Goal is to minimize cumulative loss:

n
L= e(x, a0,y
=1

For example, for a regression problem we might use the /¢, loss:

: : : : g N |2
o(xD, a0, 0y = ‘<X<r), a®y —

For classification, we could use logistic/cross-entropy loss.
M



ONLINE OPTIMIZATION

Abstraction as optimization problem: Instead of a single
objective function f, we have a single (initially unknown)
function fi, ..., fr : R — R for each time step.

- Fortime stepie1,...,T, select vector x().
- Observe f; and pay cost f;(x(0)
- Goal is to minimize 321, fi(x(").

We make no assumptions that fy, ..., fr are related to each
other at all!
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ONLINE GRADIENT DESCENT

Online Gradient descent:

- Choose x( and n = £~

GVT
- Fori=1,...,T:
- Play x(.
- Observe f; and incur cost f;(x().
- X0 Z X0 — s (x)

If f1,...,fr = fare all the same, this looks a lot like regular
gradient descent. We update parameters using the gradient Vf
at each step.

If f1,...,fr are very different it might seem like nonsense right
NOw...
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REGRET BOUND

In offline optimization, we wanted to find X satisfying
f(X) < miny f(x). Ask for a similar thing here.

Objective: Choose x(, ..., x(D so that:

T
S oAO) <
=1

Here ¢ is called the regret of our solution sequence
x o x(™,

+ €.

.
min > fix)
=1

This guarantee might seem a bit unfair. Why?
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REGRET BOUND

Regret compares to the best fixed solution in hindsight.

T T
> i) < [mxin > fix)
=1 =1

It's very possible that ST, fi(x() < [mmx S filx )} Could
we hope for something strong?

Exercise: Argue that the following is impossible to achieve:

T T
> i) < [Z min fi(x)
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HARD EXAMPLE FOR ONLINE OPTIMIZATION



REGRET BOUNDS

T T
Z]‘,(x(/)) < [mxin Z]‘,(X) +e€.
i=1 =1
Beautiful balance:
- Either fy,...,fr are similar, so an method like Online

Gradient Descent will effectively minimize S, f;(x().

- Orfy,...,frare very different, in which case miny Z,T:m(x)
is large, so regret bound is easy to achieve.

- Or we live somewhere in the middle.



ONLINE GRADIENT DESCENT (OGD)

x* = ming S, fi(x*) (the offline optimum)
Assume:

* f1,...,fr are all convex.
- Each is G-Lipschitz: for all x, i, || Vfi(x)||> < G.
- Starting radius: ||x* — x|, <R.

Online Gradient descent:

. 1 _ _R_
Choose x(" and n = -
s Fori=1,...,T:
- Play x(.

- Observe f; and incur cost f;(x").
< xH+) = x(0) — anI(X(’))



ONLINE GRADIENT DESCENT ANALYSIS

Let x* = mink >, fi(x*) (the offline optimum).
Theorem (OGD Regret Bound)
After T steps, € = [Z[Lf,-(x("))} — [Z,;f,-(x*)} < RGVT.

Average regret overtime is bounded by £ < fﬁ

Goes — 0as T — oo.

All this with no assumptions on how f, ..., fr relate to each
other! They could have even been chosen adversarially - e.g.
with f; depending on our choice of x; and all previous choices.
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ONLINE GRADIENT DESCENT ANALYSIS

Theorem (OGD Regret Bound)
After T steps, ¢ = [Z,—L f,-(x("))} - [z,; f,-(x*)} < RGVT

Claim 1: Foralli=1,...,T,

(D _ y* 12 — |1y (i+1) _ yx2 2
< 1 X*[|5 — [|x X*||3 v nG"

Fx0) — fi(x") > -

(Same proof as last class. Only uses convexity of f;.)
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ONLINE GRADIENT DESCENT ANALYSIS

Theorem (OGD Regret Bound)
After T steps, ¢ = [ZL f,(x("))} . [z,.; f,»(x*)} < RGVT

Claim 1: Foralli=1,....T,

(D _ yw* 112 _ |15 (i+1) _ yx2 2
< 1 X*[J5 — [|x X*||3 v nG-

FO) = £x7) 277 .

Telescoping Sum:
T

> ) - i)

=1

. w2 TnG?
X —x*[12 — Ix(D — x*||3 + —

IN

R?  TnG?
<—+
2n 2
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STOCHASTIC GRADIENT DESCENT (SGD)

Efficient offline optimization method for functions f with finite
sum structure:

70 = 32 ().

Goal is to find X such that f(X) < f(x*) + .

- The most widely use optimization algorithm in modern
machine learning.

- Easily analyzed as a special case of online gradient
descent!
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STOCHASTIC GRADIENT DESCENT

Recall the machine learning setup. In empirical risk
minimization, we can typically write:

fx) =) fi(x)
=1

where f; is the loss function for a particular data example
(@, ).

Example: least squares linear regression.

n

fx) = > (7a - A0y

i=1
Note that by linearity, Vf(x) = >, Vfi(X).
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STOCHASTIC GRADIENT DESCENT

Main idea: Use random approximate gradient in place of
actual gradient.

Pick random j € 1,...,n and update x using Vfj(x).

E [V (x)] = %v ().

nVfi(x) is an unbiased estimate for the true gradient Vf(x),
but can often be computed in a 1/n fraction of the time!

Trade slower convergence for cheaper iterations.

2%



STOCHASTIC GRADIENT DESCENT

Stochastic first-order oracle for f(x) = >, fi(x).

- Function Query: For any chosen j, x, return f;(x)
- Gradient Query: For any chosen j, x, return Vfj(x)
Computing f(x) would take n separate function queries.

Stochastic Gradient descent:

- Choose starting vector x(, learning rate n
s Fori=1,...,T
- Pick random j; € 1,...,n
x(+1) — x() — nVJ‘)(X(’))

A T i
- Return % = +3°1, x()
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VISUALIZING SGD

GD's smooth convergence SGD's stochastic convergence

200 610
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5 606

% e0s

= 602
100

600
0

0 0 20 3 4 50 0 0 20 3 4w s
# GD iterations # 5D iterations
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STOCHASTIC GRADIENT DESCENT

Assume:
- Finite sum structure: f(x) = >_7_, fi(x), with fi, ..., f, all convex.

- Lipschitz functions: for all x, j, | Vfi(x)|l» < <.

- What does this imply about Lipschitz constant of f?
- Starting radius: ||x* —xM||; < R.

Stochastic Gradient descent:

- Choose x(), steps T, learning rate n =
- Fori=1,...,T:

- Pick random j; € 1,...,n.

- XD = X0 — v (x(0)

,\ T ;
 Returnk =137 x0

D
VT

Approach: View as online gradient descent run on function

sequence fj,....f;. 27



STOCHASTIC GRADIENT DESCENT ANALYSIS

Claim (SGD Convergence)

After T = RS2 jterations:

€2

E[f(X) - f(x)] < e

o 15T i
where & = 131, x().

Claim 1:

—l =

f8) = 10) < 3. 3 [fx) = fx)
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STOCHASTIC GRADIENT DESCENT ANALYSIS

Claim (SGD Convergence)

After T = G~ jterations:

e E[f(R) - f(x")] < e

& — A ol
where & = 15~ x().
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STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

Number of iterations for error e:
- Gradient Descent: T = @.

- Stochastic Gradient Descent: T = @.

Always have G < G”:

/

G
IVFO)la < IVAC2 + - + Va2 < n - — = G
So GD converges strictly faster than SGD.
But for a fair comparison:

- SGD cost = (# of iterations) - O(1)
- GD cost = (# of iterations) - O(n)
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STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

We always have || Vf(x)||2 < G". When it is much smaller then
GD will perform better. When it is closer to this upper bound,
SGD will perform better.

What is an extreme case where || Vf(x)|l, = G'?
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STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

What if each gradient Vfi(x) looks like random vectors in RY?
E.g. with (0, 1) entries?

E [IVfi(x)I3] =

E [[IVf(x)I3] =

HZW, ]—
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