
CS-GY 9223 D: Lecture 6
Online and Stochastic Gradient Decent

NYU Tandon School of Engineering, Prof. Christopher Musco

1

project

• If you don’t have a project partner by the end of today,
please email me.

• Take home midterm week of October 26th.
• 2 hours, self-proctored. Design for 1.25 hours.
• Can take anytime during that week.
• Administered either via email or another option.
• Solutions can be hand-written and scanned.
• I will post some review questions.

• Need volunteers to present at 10/26 reading group (in 2
weeks). Sign-up sheet on course webpage.

2

gradient descent recap

First Order Optimization: Given a function f and a constraint
set S , assume we have:

• Function oracle: Evaluate f(x) for any x.
• Gradient oracle: Evaluate ∇f(x) for any x.
• Projection oracle: Evaluate PS(x) for any x.

Goal: Find x̂ ∈ S such that f(x̂) ≤ minx∈S f(x) + ϵ.

3

gradient descent recap

Projected gradient descent:

• Select starting point x(0), learning rate η.
• For i = 0, . . . , T:

• z = x(i) − η∇f(x(i))
• x(i+1) = PS(z)

• Return x̂ = argmini f(x(i)).

4

gradient descent recap

Conditions for convergence:

• Convexity: f is a convex function, S is a convex set.
• Bounded initial distant:

∥x(0) − x∗∥2 ≤ R

• Bounded gradients (Lipschitz function):

∥∇f(x)∥2 ≤ G for all x ∈ S.

Theorem: Projected Gradient Descent returns x̂ with
f(x̂) ≤ minx∈S f(x) + ϵ after

T =

iterations.
5

online and stochastic gradient descent

Today:

• Basics of Online Learning + Optimization.
• Introduction to Regret Analysis.
• Application to analyzing Stochastic Gradient Descent.

6

online learning

Many machine learning problems are solved in an online
setting with constantly changing data.

• Spam filters are incrementally updated and adapt as they
see more examples of spam over time.

• Image classification systems learn from mistakes over
time (often based on user feedback).

• Content recommendation systems adapt to user behavior
and clicks (which may not be a good thing...)

7

example

Plant identification via iNaturalist app.

(California Academy of Science + National Geographic)

• When the app fails, image
is classified via
crowdsourcing (backed by
huge network of amateurs
and experts).

• Single model that is
updated constantly, not
retrained in batches.

8

example

ML based email spam/scam filtering.

Markers for spam change overtime, so model might change.

9

example

ML based email spam/scam filtering.

Markers for spam change overtime, so model might change.

10

online learning framework

Choose some model Mx parameterized by parameters x and
some loss function ℓ. At time steps 1, . . . , T, receive data
vectors a(1), . . . , a(T).

• At each time step, we pick (“play”) a parameter vector x(i).
• Make prediction ỹ(i) = Mx(i)(ai).
• Then told true value or label y(i).
• Goal is to minimize cumulative loss:

L =
n∑
i=1

ℓ(x(i), a(i), y(i))

For example, for a regression problem we might use the ℓ2 loss:

ℓ(x(i), a(i), y(i)) =
∣∣∣⟨x(i), a(i)⟩ − y(i)∣∣∣2 .

For classification, we could use logistic/cross-entropy loss.
11

online optimization

Abstraction as optimization problem: Instead of a single
objective function f, we have a single (initially unknown)
function fi, . . . , fT : Rd → R for each time step.

• For time step i ∈ 1, . . . , T, select vector x(i).
• Observe fi and pay cost fi(x(i))
• Goal is to minimize

∑T
i=1 fi(x(i)).

We make no assumptions that f1, . . . , fT are related to each
other at all!

12

online gradient descent

Online Gradient descent:

• Choose x(1) and η = R
G
√
T .

• For i = 1, . . . , T:
• Play x(i).
• Observe fi and incur cost fi(x(i)).
• x(i+1) = x(i) − η∇fi(x(i))

If f1, . . . , fT = f are all the same, this looks a lot like regular
gradient descent. We update parameters using the gradient ∇f
at each step.

If f1, . . . , fT are very different it might seem like nonsense right
now...

13

regret bound

In offline optimization, we wanted to find x̂ satisfying
f(x̂) ≤ minx f(x). Ask for a similar thing here.

Objective: Choose x(1), . . . , x(T) so that:

T∑
i=1

fi(x(i)) ≤
[
min
x

T∑
i=1

fi(x)
]
+ ϵ.

Here ϵ is called the regret of our solution sequence
x(1), . . . , x(T).

This guarantee might seem a bit unfair. Why?

14

regret bound

Regret compares to the best fixed solution in hindsight.

T∑
i=1

fi(x(i)) ≤
[
min
x

T∑
i=1

fi(x)
]
+ ϵ.

It’s very possible that
∑T

i=1 fi(x(i)) <
[
minx

∑T
i=1 fi(x)

]
. Could

we hope for something strong?

Exercise: Argue that the following is impossible to achieve:
T∑
i=1

fi(x(i)) ≤
[T∑
i=1

min
x
fi(x)

]
+ ϵ.

15

hard example for online optimization

16

regret bounds

T∑
i=1

fi(x(i)) ≤
[
min
x

T∑
i=1

fi(x)
]
+ ϵ.

Beautiful balance:

• Either f1, . . . , fT are similar, so an method like Online
Gradient Descent will effectively minimize

∑T
i=1 fi(x(i)).

• Or f1, . . . , fT are very different, in which case minx
∑T

i=1 fi(x)
is large, so regret bound is easy to achieve.

• Or we live somewhere in the middle.

17

online gradient descent (ogd)

x∗ = minx
∑T

i=1 fi(x∗) (the offline optimum)

Assume:

• f1, . . . , fT are all convex.
• Each is G-Lipschitz: for all x, i, ∥∇fi(x)∥2 ≤ G.
• Starting radius: ∥x∗ − x(1)∥2 ≤ R.

Online Gradient descent:

• Choose x(1) and η = R
G
√
T .

• For i = 1, . . . , T:
• Play x(i).
• Observe fi and incur cost fi(x(i)).
• x(i+1) = x(i) − η∇fi(x(i))

18

online gradient descent analysis

Let x∗ = minx
∑T

i=1 fi(x∗) (the offline optimum).

Theorem (OGD Regret Bound)

After T steps, ϵ =
[∑T

i=1 fi(x(i))
]
−
[∑T

i=1 fi(x∗)
]
≤ RG

√
T.

Average regret overtime is bounded by ϵ
T ≤

RG√
T .

Goes→ 0 as T→∞.

All this with no assumptions on how f1, . . . , fT relate to each
other! They could have even been chosen adversarially – e.g.
with fi depending on our choice of xi and all previous choices.

19

online gradient descent analysis

Theorem (OGD Regret Bound)

After T steps, ϵ =
[∑T

i=1 fi(x(i))
]
−
[∑T

i=1 fi(x∗)
]
≤ RG

√
T.

Claim 1: For all i = 1, . . . , T,

fi(x(i))− fi(x∗) ≤
∥x(i) − x∗∥22 − ∥x(i+1) − x∗∥22

2η +
ηG2
2

(Same proof as last class. Only uses convexity of fi.)

20

online gradient descent analysis

Theorem (OGD Regret Bound)

After T steps, ϵ =
[∑T

i=1 fi(x(i))
]
−
[∑T

i=1 fi(x∗)
]
≤ RG

√
T.

Claim 1: For all i = 1, . . . , T,

fi(x(i))− fi(x∗) ≤
∥x(i) − x∗∥22 − ∥x(i+1) − x∗∥22

2η +
ηG2
2

Telescoping Sum:
T∑
i=1

[
fi(x(i))− fi(x∗)

]
≤ ∥x(1) − x∗∥22 − ∥x(T) − x∗∥22 +

TηG2
2

≤ R2
2η +

TηG2
2

21

stochastic gradient descent (sgd)

Efficient offline optimization method for functions f with finite
sum structure:

f(x) =
n∑
i=1

fi(x).

Goal is to find x̂ such that f(x̂) ≤ f(x∗) + ϵ.

• The most widely use optimization algorithm in modern
machine learning.

• Easily analyzed as a special case of online gradient
descent!

22

stochastic gradient descent

Recall the machine learning setup. In empirical risk
minimization, we can typically write:

f(x) =
n∑
i=1

fi(x)

where fi is the loss function for a particular data example
(a(i), y(i)).

Example: least squares linear regression.

f(x) =
n∑
i=1

(xTa(i) − y(i))2

Note that by linearity, ∇f(x) =
∑n

i=1∇fi(x).

23

stochastic gradient descent

Main idea: Use random approximate gradient in place of
actual gradient.

Pick random j ∈ 1, . . . ,n and update x using ∇fj(x).

E
[
∇fj(x)

]
=
1
n∇f(x).

n∇fj(x) is an unbiased estimate for the true gradient ∇f(x),
but can often be computed in a 1/n fraction of the time!

Trade slower convergence for cheaper iterations.

24

stochastic gradient descent

Stochastic first-order oracle for f(x) =
∑n

i=1 fi(x).

• Function Query: For any chosen j, x, return fj(x)
• Gradient Query: For any chosen j, x, return ∇fj(x)

Computing f(x) would take n separate function queries.

Stochastic Gradient descent:

• Choose starting vector x(1), learning rate η

• For i = 1, . . . , T:
• Pick random ji ∈ 1, . . . ,n.
• x(i+1) = x(i) − η∇fji(x

(i))

• Return x̂ = 1
T
∑T

i=1 x(i)

25

visualizing SGD

26

stochastic gradient descent

Assume:
• Finite sum structure: f(x) =

∑n
i=1 fi(x), with f1, . . . , fn all convex.

• Lipschitz functions: for all x, j, ∥∇fj(x)∥2 ≤ G′

n .
• What does this imply about Lipschitz constant of f?

• Starting radius: ∥x∗ − x(1)∥2 ≤ R.

Stochastic Gradient descent:
• Choose x(1), steps T, learning rate η = D

G′
√
T .

• For i = 1, . . . , T:
• Pick random ji ∈ 1, . . . ,n.
• x(i+1) = x(i) − η∇fji(x(i))

• Return x̂ = 1
T
∑T

i=1 x(i)

Approach: View as online gradient descent run on function
sequence fj1 , . . . , fjT . 27

stochastic gradient descent analysis

Claim (SGD Convergence)
After T = R2G′2

ϵ2
iterations:

E [f(x̂)− f(x∗)] ≤ ϵ.

where x̂ = 1
T
∑T

i=1 x(i).

Claim 1:

f(x̂)− f(x∗) ≤ 1
T

T∑
i=1

[
f(x(i))− f(x∗)

]

28

stochastic gradient descent analysis

Claim (SGD Convergence)
After T = R2G′2

ϵ2 iterations:
E [f(x̂)− f(x∗)] ≤ ϵ.

where x̂ = 1
T
∑T

i=1 x(i).

E[f(x̂)− f(x∗)] ≤ 1
T

T∑
i=1

E
[
f(x(i))− f(x∗)

]

=
1
T

T∑
i=1

nE
[
fji(x

(i))− fji(x
∗)
]

=
n
T · E

[T∑
i=1

fji(x
(i))− fji(x

∗)

]

≤ n
T ·

(
R · G

′

n ·
√
T
)

(by OGD guarantee.)

29

stochastic vs. full batch gradient descent

Number of iterations for error ϵ:

• Gradient Descent: T = R2G2
ϵ2
.

• Stochastic Gradient Descent: T = R2G′2
ϵ2
.

Always have G ≤ G′:

∥∇f(x)∥2 ≤ ∥∇f1(x)∥2 + . . .+ ∥∇fn(x)∥2 ≤ n ·
G′
n = G′.

So GD converges strictly faster than SGD.

But for a fair comparison:

• SGD cost = (# of iterations) · O(1)
• GD cost = (# of iterations) · O(n)

30

stochastic vs. full batch gradient descent

We always have ∥∇f(x)∥2 ≤ G′. When it is much smaller then
GD will perform better. When it is closer to this upper bound,
SGD will perform better.

What is an extreme case where ∥∇f(x)∥2 = G′?

31

stochastic vs. full batch gradient descent

What if each gradient ∇fi(x) looks like random vectors in Rd?
E.g. with N (0, 1) entries?

E
[
∥∇fi(x)∥22

]
=

E
[
∥∇f(x)∥22

]
= E

[
∥

n∑
i=1
∇fi(x)∥22

]
=

32

