CS-GY 9223 D: Lecture 5
Gradient Descent and Projected Gradient
Descent

NYU Tandon School of Engineering, Prof. Christopher Musco



PROJECT

- Choose your partner and email me by next Wednesday,
10/14.

- Topic and 1 page proposal due 11/04.

- See project guidelines on course webpage for details.



RANDOMIZED ALGORITHMS RECAP

What techniques did we learn?
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NEW UNIT: CONTINUOUS OPTIMIZATION

Have some function f; RY — R. Want to find x* such that:
%

) = minf(x).

s

Or at least)p/vhich is close to @ minimum. E.g.
Jﬁ) <mingf(X) +e = £(x ’) s
Often we have some additional constraints:

- x> 0.

Clxlle <R [Ix[ < R

-alx>c



CONTINUOUS OPTIMIZATION

Dimension d = 1:
f(x) f(x) f(x)

Dimension d = 2:




OPTIMIZATION IN MACHINE LEARNING

Continuouos optimization is the foundation of modern
machine learning.

Supervised learning: Want to learn a model that maps inputs

- numerical data vectors
- images, video
- text documents

to predictions

- numerical value (probability stock price increases)
- label (is the image a cat? does the image contain a car?)
- decision (turn car left, rotate robotic arm)



MACHINE LEARNING MODEL

7

Let /\=/L’Xbe a model with parameters X = {Xy, ..., X}, which
takes as input a data vector a and outputs a prediction.
ild VEclor a

Example:

My(a) = sign(aTQ



MACHINE LEARNING MODEL

Example:
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x € R of connections) i tha parameter vector containing all the
network weights.



SUPERVISED LEARNING

Classic approach in supervised learning: Find a model that
works well on data that you already have the answer for
(labels, values, classes, etc.).

: Model@parameterized by a vector of numbers x.

- Dataset all, ..., a(™ with outputs y(, ... y(".

’_/

Want to find % so that Mg(a®)) ~ y() forie1,...,n.

How do we turn this into a function minimization problem?



LOSS FUNCTION

Loss function L(@ Some measure of distance between
prediction My(a) and target output y. Increases if they are
further apart.

+ Squared (£;) loss: [Mx(a) — y|°

- Absolute deviation (¢;) loss: |[Mx(a) — |
- Hinge loss: 1 -y - My(a)

- Cross-entropy loss (log loss).

- Etc



EMPIRICAL RISK MINIMIZATION

) )
0, .. o

Empirical risk minimization:

09 = Yot (Ma(a®), )

— B
=1 ———— S

Solve the optimization problem miny f(x).
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EXAMPLE: LINEAR REGRESSION

My(a) = xTa X contains the regression coefficients.
L(z,y) = \Z—ylz-
fix) = i, Xl — yOP2
—————

09 = 1Ax — yIB

—

where A is a matrix with a() as its i row and y is a vector with
y() as its it entry.
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ALGORITHMS FOR CONTINUOUS OPTIMIZATION

The choice of algorithm to minimize f(x) will depend on:

- The form of f(x) (is it linear, is it quadratic, does it have
finite sum structure, etc.)

- If there are any additional constraints imposed on x. E.g.
<ZcC.
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What are some example algorithms for continuous
optimization? T\L\ok w h(;&\xol
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GRADIENT DESCENT

Gradient descent: A greedy algorithm for minimizing functions
of multiple variables that often works amazingly well.
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CALCULUS REVIEW

Fori=1,...,d, letx; be the i entry of x. Let e{) be the it"

standard basis vector. G

fobtJo 1 OOO_} - €

Partial derivative:

o 6 im0~ 19
aX,' _tll—% t
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p——

Directional derivative:

le(x) - tu_% f(x—i—tvt)—f(x)
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CALCULUS REVIEW

Gradient:
vitx) = | ™

Directional derivative:

V() -\
L0, V>
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FIRST ORDER OPTIMIZATION

Given a function fto minimize, assume we have:

- Function oracle: Evaluate f(x) for any x.
- Gradient oracle: Evaluate Vf(x) for any x.

We view the implementation of these oracles as black-boxes,
but they can often require a fair bit of computation.
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EXAMPLE GRADIENT EVALUATION

. . uxd
Linear least'squares regression: /?’é— P) =

- GivenaM,...aM e R y() . (M e R,
- Want to minimize: o= cowgeta m
d - v )
) N\ 2 ol
flx) = > (XTa(:) _ y(/)> — IV e

al) o)
ax, Z ( ) a) = 2Ax —y)
i=1 Cw;d)@;u) - wx
where al) is the it column of A.
Vi)
What is the time compleX|ty of a gradlent oracle for Vf(x)?
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DECENT METHODS

Greedy approach: Given a starting point x, make a small

adjustment that decreases f(x). Trrecrtremm=gc X + v and
w2 f(x + ). ;(CK+MV’>< 'f(x)

What property do | want in v?

Leading question: When 7 is small, what's an approximation

for f(x @ — f(x)?
x4 mv) — 100 = 1 Dy §(x)

—_— =

=N e [\ferf-éKB)

19



DIRECTIONAL DERIVATIVES

Dyf(X) = lim fix + tv) — f(x)

£50 t = Vjieg)

So:

fx+nv) = f(x) = M /\r‘ ’VHKD

How should we choose v so that f(x + nv) < f(x)?
p—
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S R Z21€9) e
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GRADIENT DESCENT

PrototyPe algorithm:
X

-Fori;O,...,T/:/ |
< xUH1) — x() — angx(’))
) T
Return x(7),

n is a step-size parameter, which is often adapted on the go.
For now, assume it is fixed ahead of time.
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GRADIENT DESCENT INTUITION

1 dimensional example: V?L(X (p)
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GRADIENT DESCENT INTUITION

2 dimensional example:
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KEY RESULTS

For a convex function f(x): For sufficiently small  and a
sufficiently large number of iterations T, gradient descent will
converge to a near global minimum:

fOXT) <f(x*) + €
Examples: least squares regression, logistic regression, kernel
regression, SVMs.

For a non-convex function f(x): For sufficiently small » and a
sufficiently large number of |terat|ons T, gradient descent will
converge to a near stationar ;

Examples: neural networks,
mixture models.

atrix completion problems,
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CONVEX VS. NON-CONVEX

f(x) f(x) f(x)

N
A7
Y
\

convex non-convex non-convex

One issue with non-convex functions is that they can have
local minima. Even when they don't, convergence analysis
requires different assumptions than convex functions.
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APPROACH FOR THIS UNIT

We care about how fast gradient descent and related methods
converge, not just that they do converge.

- Bounding iteration complexity requires placing some
assumptions on f(x).

- Stronger assumptions lead to better bounds on the
convergence.

Understanding these assumptions can help us design faster
variants of gradient descent (there are many!).

Today, we will start with convex functions only.
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CONVEXITY

Definition (Convex)
A function fis convex iff for any x,y, A € [0,1]:

(1=A)- )+ A-fly) 2 fF((1=A) - X+ A-y)
= h=(1-2)x + y
i )
: f(x) o3 (w)

—_—
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GRADIENT DESCENT

Definition (Convex)
A function fis convex if and only if for any x,y:

Fo( QV\Z X/ 7 f(X+Z) Zf(X)—FVf(X)TZ

Equivalently: fx) — fly) < VX)) (x —y)
Y ST S AL
\ Y > f60) -0 (x5

P) X° T Xz
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GRADIENT DESCENT ANALYSIS

Assume:

- fis convex.
- Lipschitz function: for all x, ||Vf(X)||2 @

- Starting radius: [|x* — x|,

Gradient descent:

+ Choose number of steps T.
R

AV,
- Fori=0,...,T
< xH1) = x() — UVf(X(/))

+ Return X = argmin; f(x().

%2 ) 59




GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)

T2 EE then fR) < fix') +e  an » 2—
= 7((a) G(r
)
\ ‘ n - E,
o o
l‘.
. A 7
<
;u)

Proof is made tricky by the fact that f(x()) does not improve
monotonically. We can “overshoot” the minimum.
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GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)

IfTZ@andn_Gﬁ then f(X) < f(x*) + e

wm 2 ()(o\)

Claim 1: Foralli=0,...,T, 22 1Y
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GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
If T nd n= Giﬁ & then f(X) < f(x*) + ¢

Claim 1: Foralli=0,...,T,

X = x5 — XD — x5 06

\277//‘_2
11

fx0) —f(x") <

Telescoping sum: < t L —]
T-—1 ) e 0 T GZ
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GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)

Iszgandn—G—ﬁ S then f(X) < f(x*) + ¢

Final step:

We always have that

= 33

we return:
fx) = min fx0) <f(x) +e
L ™ = S
7 &Y ek Bepied) - £ 240 - 1)



CONSTRAINED CONVEX OPTIMIZATION

Typical goal: Solve a convex minimization problem with
additional convex constraints.

min f(x)

XeS

where Sis a

Which of these is convex?

34



CONSTRAINED CONVEX OPTIMIZATION

Definition (Convex set)
A set S is convex if forany x,y € S, A € [0,1]:

(- x+ D
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PROBLEM WITH GRADIENT DESCENT

Gradient descent:
- Fori=0,...,T
- x4 = x(0) — pvf(x()
- Return X = argmin, f(x()).

Even if we start with x(©) € S, there is no guarantee that

x(0) — nVf(x(©)) will remain in our set.
I ————

Extremely simple modification: Force x() to be in S by
projecting onto the set.
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CONSTRAINED FIRST ORDER OPTIMIZATION

Given a function fto minimize and a convex constraint set S,
assume we have:

- Function oracle: Evaluate f(x) for any x.
- Gradient oracle: Evaluate \Zf{>) for any x.
- Projection oracle: Evaluate Ps(x) for any x.
&5 _
Ps(x) = argmin ||x — y|2
_—

yeS
—
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PROJECTION ORACLES

- How would you implement Ps for S = {y : |ly[l» < 1}.
= @ ———

- How would you implement Pg for § = {y : y = Qz}.

x.
(x) - X
fsx) -
plore)™ &" ‘ I
o A N A

W /
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PROJECTED GRADIENT DESCENT

Given function f(x) and set S, such that || Vf(x)|[p < G for all
x € S and starting point x( with [|x(®) — x*|, <R.

Projected gradient descent:

. i int x(©) p=_R_
Select starting pomtf%,n_ F
- Fori=0, '
.;:
- x(H) =Pg(z) &

>" .
+ Return % = argmin; f(x).

Claim (PGD Convergence Bound)

If f,S are convex and T > g, then f(X) < f(x*) + e
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PROJECTED GRADIENT DESCENT ANALYSIS

Analysis is almost identical to standard gradient descent! We
just need one additional claim:

Claim (Contraction Property of Convex Projection)
If S Is convex, then for anyy € S,

Iy = Ps(®)ll2 < [ly = Xll2-

® “¥p(x

40



GRADIENT DESCENT ANALYSIS

Claim (PGD Convergence Bound)

Iff,S are convex and T > ES then f(X) < f(x*) + «.
xu"') Hown \,(/'&’b-(é

Claim 1: Foralli=0,...,T,

- 2n 2

o IO — %3 — X — x)3 L e’
2n 2

| &&)_x+1,> < l2-x* ";

Same telescoping sum argument:

3 1 = : R2 7762
s § cO)AE Tz;f(X"))] ) S g+ < £
h) (=
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