
CS-GY 9223 D: Lecture 5
Gradient Descent and Projected Gradient
Descent

NYU Tandon School of Engineering, Prof. Christopher Musco
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project

• Choose your partner and email me by next Wednesday,
10/14.

• Topic and 1 page proposal due 11/04.
• See project guidelines on course webpage for details.
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randomized algorithms recap

What techniques did we learn?
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new unit: continuous optimization

Have some function f : Rd → R. Want to find x∗ such that:

f(x∗) = min
x
f(x).

Or at least x̂ which is close to a minimum. E.g.
f(x̂) ≤ minx f(x) + ϵ

Often we have some additional constraints:

• x > 0.
• ∥x∥2 ≤ R, ∥x∥1 ≤ R.
• aTx > c.
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continuous optimization

Dimension d = 1:

Dimension d = 2:
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optimization in machine learning

Continuouos optimization is the foundation of modern
machine learning.

Supervised learning: Want to learn a model that maps inputs

• numerical data vectors
• images, video
• text documents

to predictions

• numerical value (probability stock price increases)
• label (is the image a cat? does the image contain a car?)
• decision (turn car left, rotate robotic arm)
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machine learning model

Let Mx be a model with parameters x = {x1, . . . , xk}, which
takes as input a data vector a and outputs a prediction.

Example:

Mx(a) = sign(aTx)
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machine learning model

Example:

x ∈ R(# of connections) is the parameter vector containing all the
network weights.
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supervised learning

Classic approach in supervised learning: Find a model that
works well on data that you already have the answer for
(labels, values, classes, etc.).

• Model Mx parameterized by a vector of numbers x.
• Dataset a(1), . . . , a(n) with outputs y(1), . . . , y(n).

Want to find x̂ so that Mx̂(a(i)) ≈ y(i) for i ∈ 1, . . . ,n.

How do we turn this into a function minimization problem?
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loss function

Loss function L (Mx(a), y): Some measure of distance between
prediction Mx(a) and target output y. Increases if they are
further apart.

• Squared (ℓ2) loss: |Mx(a)− y|2

• Absolute deviation (ℓ1) loss: |Mx(a)− y|
• Hinge loss: 1 - y ·Mx(a)
• Cross-entropy loss (log loss).
• Etc.
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empirical risk minimization

Empirical risk minimization:

f(x) =
n∑
i=1

L
(
Mx(a(i)), y(i)

)
Solve the optimization problem minx f(x).
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example: linear regression

• Mx(a) = xTa. x contains the regression coefficients.
• L(z, y) = |z− y|2.
• f(x) =

∑n
i=1 |xTa(i) − y(i)|2

f(x) = ∥Ax− y∥22

where A is a matrix with a(i) as its ith row and y is a vector with
y(i) as its ith entry.
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algorithms for continuous optimization

The choice of algorithm to minimize f(x) will depend on:

• The form of f(x) (is it linear, is it quadratic, does it have
finite sum structure, etc.)

• If there are any additional constraints imposed on x. E.g.
∥x∥2 ≤ c.

What are some example algorithms for continuous
optimization?
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gradient descent

Gradient descent: A greedy algorithm for minimizing functions
of multiple variables that often works amazingly well.
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calculus review

For i = 1, . . . ,d, let xi be the ith entry of x. Let e(i) be the ith
standard basis vector.

Partial derivative:

∂f
∂xi

(x) = lim
t→0

f(x+ te(i))− f(x)
t

Directional derivative:

Dvf(x) = lim
t→0

f(x+ tv)− f(x)
t
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calculus review

Gradient:

∇f(x) =


∂f
∂x1 (x)
∂f
∂x2 (x)...
∂f
∂xd (x)


Directional derivative:

Dvf(x) = lim
t→0

f(x+ tv)− f(x)
t = ∇f(x)Tv.

16



first order optimization

Given a function f to minimize, assume we have:

• Function oracle: Evaluate f(x) for any x.
• Gradient oracle: Evaluate ∇f(x) for any x.

We view the implementation of these oracles as black-boxes,
but they can often require a fair bit of computation.
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example gradient evaluation

Linear least-squares regression:

• Given a(1), . . . a(n) ∈ Rd, y(1), . . . y(n) ∈ R.
• Want to minimize:

f(x) =
n∑
i=1

(
xTa(i) − y(i)

)2
= ∥Ax− y∥22.

∂f
∂xj

=
n∑
i=1

2
(
xTa(i) − y(i)

)
· a(i)j = (2Ax− y)Tα(j)

where α(j) is the ith column of A.

∇f(x) = 2AT (Ax− y)

What is the time complexity of a gradient oracle for ∇f(x)?
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decent methods

Greedy approach: Given a starting point x, make a small
adjustment that decreases f(x). In particular, x← x+ ηv and
f(x)← f(x+ ηv).

What property do I want in v?

Leading question: When η is small, what’s an approximation
for f(x+ ηv)− f(x)?

f(x+ ηv)− f(x) ≈

19



directional derivatives

Dvf(x) = lim
t→0

f(x+ tv)− f(x)
t = ∇f(x)Tv.

So:

f(x+ ηv)− f(x) ≈

How should we choose v so that f(x+ ηv) < f(x)?
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gradient descent

Prototype algorithm:

• For i = 0, . . . , T:
• x(i+1) = x(i) − η∇f(x(i))

• Return x(T).

η is a step-size parameter, which is often adapted on the go.
For now, assume it is fixed ahead of time.
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gradient descent intuition

1 dimensional example:
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gradient descent intuition

2 dimensional example:
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key results

For a convex function f(x): For sufficiently small η and a
sufficiently large number of iterations T, gradient descent will
converge to a near global minimum:

f(x(T)) ≤ f(x∗) + ϵ.

Examples: least squares regression, logistic regression, kernel
regression, SVMs.

For a non-convex function f(x): For sufficiently small η and a
sufficiently large number of iterations T, gradient descent will
converge to a near stationary point:

∥∇f(x(T))∥2 ≤ ϵ.

Examples: neural networks, matrix completion problems,
mixture models.
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convex vs. non-convex

One issue with non-convex functions is that they can have
local minima. Even when they don’t, convergence analysis
requires different assumptions than convex functions.
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approach for this unit

We care about how fast gradient descent and related methods
converge, not just that they do converge.

• Bounding iteration complexity requires placing some
assumptions on f(x).

• Stronger assumptions lead to better bounds on the
convergence.

Understanding these assumptions can help us design faster
variants of gradient descent (there are many!).

Today, we will start with convex functions only.
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convexity

Definition (Convex)
A function f is convex iff for any x, y, λ ∈ [0, 1]:

(1− λ) · f(x) + λ · f(y) ≥ f ((1− λ) · x+ λ · y)
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gradient descent

Definition (Convex)
A function f is convex if and only if for any x, y:

f(x+ z) ≥ f(x) +∇f(x)Tz

Equivalently:
f(x)− f(y) ≤ ∇f(x)T(x− y)
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gradient descent analysis

Assume:

• f is convex.
• Lipschitz function: for all x, ∥∇f(x)∥2 ≤ G.
• Starting radius: ∥x∗ − x(0)∥2 ≤ R.

Gradient descent:

• Choose number of steps T.
• η = R

G
√
T

• For i = 0, . . . , T:
• x(i+1) = x(i) − η∇f(x(i))

• Return x̂ = argmini f(x(i)).
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gradient descent analysis

Claim (GD Convergence Bound)
If T ≥ R2G2

ϵ2
, then f(x̂) ≤ f(x∗) + ϵ.

Proof is made tricky by the fact that f(x(i)) does not improve
monotonically. We can “overshoot” the minimum.
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gradient descent analysis

Claim (GD Convergence Bound)
If T ≥ R2G2

ϵ2
and η = R

G
√
T , then f(x̂) ≤ f(x

∗) + ϵ.

Claim 1: For all i = 0, . . . , T,

f(x(i))− f(x∗) ≤ ∥x
(i) − x∗∥22 − ∥x(i+1) − x∗∥22

2η +
ηG2
2
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gradient descent analysis

Claim (GD Convergence Bound)
If T ≥ R2G2

ϵ2 and η = R
G
√
T = ϵ

G2 , then f(x̂) ≤ f(x∗) + ϵ.

Claim 1: For all i = 0, . . . , T,

f(x(i))− f(x∗) ≤ ∥x
(i) − x∗∥22 − ∥x(i+1) − x∗∥22

2η +
ηG2
2

Telescoping sum:
T−1∑
i=0

[
f(x(i))− f(x∗)

]
≤ ∥x

(0) − x∗∥22 − ∥x(T) − x∗∥22
2η +

TηG2
2

1
T

T−1∑
i=0

[
f(x(i))− f(x∗)

]
≤ R2
2Tη +

ηG2
2
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gradient descent analysis

Claim (GD Convergence Bound)
If T ≥ R2G2

ϵ2
and η = R

G
√
T = ϵ

G2 , then f(x̂) ≤ f(x
∗) + ϵ.

Final step:

1
T

T−1∑
i=0

[
f(x(i))− f(x∗)

]
≤ ϵ

[
1
T

T−1∑
i=0

f(x(i))
]
− f(x∗) ≤ ϵ

We always have that mini f(x(i)) ≤ 1
T
∑T−1

i=0 f(x(i)), so this is what
we return:

f(x̂) = min
i∈1,...,T

f(x(i)) ≤ f(x∗) + ϵ.
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constrained convex optimization

Typical goal: Solve a convex minimization problem with
additional convex constraints.

min
x∈S

f(x)

where S is a convex set.

Which of these is convex?
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constrained convex optimization

Definition (Convex set)
A set S is convex if for any x, y ∈ S, λ ∈ [0, 1]:

(1− λ)x+ λy ∈ S.
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problem with gradient descent

Gradient descent:

• For i = 0, . . . , T:
• x(i+1) = x(i) − η∇f(x(i))

• Return x̂ = argmini f(x(i)).

Even if we start with x(0) ∈ S , there is no guarantee that
x(0) − η∇f(x(0)) will remain in our set.

Extremely simple modification: Force x(i) to be in S by
projecting onto the set.
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constrained first order optimization

Given a function f to minimize and a convex constraint set S ,
assume we have:

• Function oracle: Evaluate f(x) for any x.
• Gradient oracle: Evaluate ∇f(x) for any x.
• Projection oracle: Evaluate PS(x) for any x.

PS(x) = argmin
y∈S

∥x− y∥2
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projection oracles

• How would you implement PS for S = {y : ∥y∥2 ≤ 1}.
• How would you implement PS for S = {y : y = Qz}.
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projected gradient descent

Given function f(x) and set S , such that ∥∇f(x)∥2 ≤ G for all
x ∈ S and starting point x(0) with ∥x(0) − x∗∥2 ≤ R.

Projected gradient descent:

• Select starting point x(0), η = R
G
√
T .

• For i = 0, . . . , T:
• z = x(i) − η∇f(x(i))
• x(i+1) = PS(z)

• Return x̂ = argmini f(x(i)).

Claim (PGD Convergence Bound)
If f,S are convex and T ≥ R2G2

ϵ2
, then f(x̂) ≤ f(x∗) + ϵ.
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projected gradient descent analysis

Analysis is almost identical to standard gradient descent! We
just need one additional claim:

Claim (Contraction Property of Convex Projection)
If S is convex, then for any y ∈ S ,

∥y− PS(x)∥2 ≤ ∥y− x∥2.
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gradient descent analysis

Claim (PGD Convergence Bound)
If f,S are convex and T ≥ R2G2

ϵ2 , then f(x̂) ≤ f(x∗) + ϵ.

Claim 1: For all i = 0, . . . , T,

f(x(i))− f(x∗) ≤ ∥x
(i) − x∗∥22 − ∥z− x∗∥22

2η +
ηG2
2

≤ ∥x
(i) − x∗∥22 − ∥x(i+1) − x∗∥22

2η +
ηG2
2

Same telescoping sum argument:[
1
T

T−1∑
i=0

f(x(i))
]
− f(x∗) ≤ R2

2Tη +
ηG2
2 .
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