CS-GY 9223 D: Lecture 4

Near neighbor search + locality sensitive
hashing

NYU Tandon School of Engineering, Prof. Christopher Musco



EUCLIDEAN DIMENSIONALITY REDUCTION

Lemma (Johnson-Lindenstrauss, 1984)

For any set of n data points qu, ..., qn € RY there exists a
linear map N : RY — R where k = 0 (log”> such that for all
[y

s %

(1—=9llai —qjll2 < |INg; — Ngjll2 < (T + €)lla; — q;ll2-




RANDOMIZED JL CONSTRUCTIONS

N € R**9 be chosen so that each entry equals \/LE./\/'(O,T).

.. or each entry equals \/LE + 1 with equal probability.

>> Pi = randn(m,d); >> Pi = 2xrandi(2,m,d)-3;
>> s = (1/sqrt(m))*Pixq; >> s = (1/sqrt(m))*Pixq;

Often called “random projections”.



SIMILARITY SKETCHING
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SIMILARITY SKETCHING

Definition (Jaccard Similarity)

lgNy| #of non-zero entries in common
Sa,y) = = .
lquy| total # of non-zero entries

0</(a,y) <1

Similar result to JL: Given a MinHash sketch with k=0 (IO%)
dimensions, we can estimate the Jaccard similarity between all
pairs Xq,...,Xp with high probability.



NEAR NEIGHBOR SEARCH

Common goal: Find all vectors in database qy, ..., q, € RY that
are close to some input query vectory € RY. le. find all of y's
“nearest neighbors” in the database.

- Audio + video search.
- Finding duplicate or near duplicate documents.
- Detecting seismic events.
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How does similarity sketching help in these gpplications?

- Improves runtime of “linear scan” from O(ad) to O@g)z

- Improves space complexity from O(nd) to O(nR). This can
be super important - e.g. if it means the linear scan only
accesses vectors in fast memory.



BEYOND A LINEAR SCAN

New goal: Sublinear o(n) time to find near neighbors.



LOCALITY SENSITIVE HASH FUNCTIONS

Let h : RY — {1,...,m} be a random hash function.
— s _ —

We call h locality sensitive for similarity function s(q,y) if
Prih(q) == h(y)] is: T

- Higher when q and y are more similar, i.e. s(q,y) is higher.
- Lower when g and y are more dissimilar, i.e. s(q,y) is
lower.

Locality Sensitive Hash Function
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LOCALITY SENSITIVE HASH FUNCTIONS

LSH for s(q,y) equal to Jaccard similarity:

- Letc: {_(_J’,j}d — [0,1] be a single instantiation of MinHash.
- Letg :[0,1] — {1,...,m} be a fully random hash function.




LOCALITY SENSITIVE HASH FUNCTIONS

LSH for Jaccard similarity:

- Let ¢: {0,139 — [0,1] be a single instantiation of MinHash.
- Letg:[0,1] — {1,...,m} be a fully random hash function.
- Let h(x) = g(c(x)).
f)(q,y) = v,
L (1)
Prih(q) == h(y)] = i — XV
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NEAR NEIGHBOR SEARCH

Basic approach for near neighbor search in a database.
NG,
Pre-processing: 7~
- Select random LSH function h: {0,1}¢ = 1,...,m.
- Create tableivvith m = O(n) slots.
- Fori=1,...,n, insert g; into T(h(q;)).

p——

Query:

- Want to find near neighbors of input'y € {0,1}9.

- Linear scan through all vectors q € T(h(y)) and return any
that are close toy. Time required is O(d - |T(h(y)])-
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NEAR NEIGHBOR SEARCH
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NEAR NEIGHBOR SEARCH

Two main considerations:
- False Negative Rate: What's the probability we do not find
a vector that is close to y?
- False Positive Rate: What's the probability that a vector in
T(h(y)) is not close to y?

A higher false negative rate means we miss near neighbors.

A higher false positive rate means increased runtime — we
need to compute J(q,y) for every q € T(h(y)) to check if it's
actually close toy.
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REDUCING FALSE NEGATIVE RATE

Suppose the nearest database point q has J(y,q) = .4.

What's the probability we do not find g?

| -1 = 665
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REDUCING FALSE NEGATIVE RATE

Pre-processing:

- Select t independent LSH's hy,..., h;: {0,139 = 1,...,m.
- Create tables Tq,..., T¢, each with m slots.
- Fori=1,...,n,j=1,...,t insert q; into T;(h;(q;)).
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REDUCING FALSE NEGATIVE RATE

Query:

- Want to find near neighbors of input'y € {0,1}¢.

- Linear scan through all vectors in
Ti(h(y)) U Ta(ha(y)) U, Te(he(y))

p(d- 1T w) 1)
ol L. 51T (w)])
!
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REDUCING FALSE NEGATIVE RATE

- 1o
\106( ° 4%
=
Query:

- Want to find near neighbors of input'y € {0,1}¢.

- Linear scan through all vectors in
Ti(h(y)) U Ta(ha(y)) U, Te(he(y))

Suppose the nearest database point q has J(y,q) = .4.
What's the probability we find g?
l - é(ﬁ\, 5\91\1\2 (JD,,’,P 'E"')c(.« CO)
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WHAT HAPPENS TO FALSE POSITIVES?

te
1%
Suppose there is some other database point z with J(y, z) = .2.
What is the probability we will need to compute J(z,y) in our
hashing scheme with one table?

v
\ -. b
In the new scheme with t = 10 tables?
—
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REDUCING FALSE POSITIVES

Change our locality sensitive hash function.

Tunable LSH for Jaccard similarity: = A-

* Choose parameter € Z*.
- Letcy,...,ce: {0,139 = [0,1] be random MinHash.
- Letg:[0,1)* — {1,...,m} be a fully random hash function.

- Let h(x) = g(ai(x). ..., &(x)).

r “bands”

c(q)

cw | | |
Y

3N c(q))

HEEEEEEEENEEEE
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REDUCING FALSE POSITIVES

Tunable LSH for Jaccard similarity:

- Choose parameterr € Z™.
- Letcy,...,ce: {0,139 = [0,1] be random MinHash.
- Letg:[0,1— {1,...,m} be a fully random hash function.

- Let h(x) = g(c1(X), ..., c(X)).

lfj(qu):V,thel’] Pr[h(q) _ h(y)]: Vr ’l . | =7 4{/ VY‘
w

1. ¢ (g): C‘-(D) $or c_fﬁ Vi V-6

1. D/W W' AL
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TUNABLE LSH

collision probability

0 01 02 03 04 05 08 07 08 09 1
Jaccard similarity v
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TUNABLE LSH

Full LSH cheme has two parameters to tune:

t tables

W

r “bands”
( ca(a)|cr(a) &Jb
C2,1(q) Cz,z(q) Cz,r(q)
Ct,1(q) ct,z(q) Cm(Q)
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TUNABLE LSH

Effect of increasing number of tables t on:

False Negatives False Positives
———

’D(_UL&& I%y

Effect of increasing number of bands r on:
False Negatives False Positives

I\’!Uc,c e Dt Crecae

/ .—/\
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SOME EXAMPLES

t. 2

79°(~

Choose tables t large enough so false negative rate to 1%.

Parameter: r = 1.

Chance we find q with j(y,__/q’/__)iﬁ_

PSRV S PIPAE  E 17

Chance we need to check z with J(y,z) = .4:
—_—

) -.6t 2 TB°N
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ks t.<
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Choose tables t large enough so false negative rate to 1%.

Parameter: r = 2.

Chance we find q with J(y,q) = .8: A[/g»
/=
(0D S
| - 227
Chance we need to check z with J(y,z) = .4:
+ Kk =G
J-(1-u) )
ST/ 2%
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SOME EXAMPLES

-2

2%

Choose tables t large enough so false negative rate to 1%.
Parameter: r = 5.

Chance we find q with J(y,q) = .8:
IR I L Y

|~ (1 -45) "5 g0
e

Chance we need to check z with J(y,z) = .4:

|- (- )Y = 2%
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S-CURVE TUNING

Probability we check g when queryingy if J(q,y) = v

collision probability

11— (1-v)

01 02 03 o4 05 08 o7 08 03 1
Jaccard similarity v

r=51t=>5
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S-CURVE TUNING

Probability we check g when queryingy if J(q,y) = v
11— (1-v)t

collision probability

o o1 o0z 03 04 05 o8 07 08 03 1
Jaccard similarity v

r=5t=40
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S-CURVE TUNING

Probability we check g when queryingy if J(q,y) = v
11— (1-v)t

collision probability

04
03
02
01
3 " - n - n n
0 01 02 03 04 05 08 07 08 09 1

Jaccard similarity v

r=40,t=5
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S-CURVE TUNING

Probability we check g when queryingy if J(q,y) = v
1—(1 =Vt

09 b
08

collision probability

o J

0 o
0 01 02 03 04 05 08 07 08 09 1

Jaccard similarity v

Increasing both r and t gives a steeper curve.

Better for search, but worse space complexity.
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FIXED THRESHOLD

Use Case 1: Fixed threshold. OC > B F 6 Cl> r (o
a .~ . <
1 O Y

- Shazam wants to find match to audio clip y in a database of 10
million clips.

- There are 10 true matches with J(y,q) > .9
- There are 10,000 near matches with J(y,q) € [.7, .9].
All other items have J(y,q) < .7.

With §= 25 andt:4/b

+ Hit probability for J(y,q) > .9is 21 (1 — .92/%!‘%:
- Hit probability for J(y.g).€ [7, 9L is S 1 gg .9%%)* @

- Hit probability for J(y,q) < .7is <1— (1 —.72)% @
- 7

Expected total number of items checked:

95-’]0,000—1—.00 -9,989,99 60,000 <« 10,000, 000. 30



FIXED THRESHOLD

Space complexity: 40 hash tables ~ 40 - O(n).

Directly trade space for fast search.
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FIXED THRESHOLD R

NM

Concrete worst case result

Theorem (Indyk, Motwani, 1998)
If there exists some q with ||q —y|lo < R.return a vector g
with |§ —yllo < C- R in: —

+ Time: O (nV/©).
- Space: O (n™+/%).

lq—=ylla = "hamming distance” = number of elements that
differ between g and y.

32



APPROXIMATE NEAREST NEIGHBOR SEARCH

rheorem (Indyk, Motwani, 1998)
Let g be the closest database vector to'y. Return a vector g
with [|§ —yllo < C-[lg —yllo in:
- Time: O (n"/©).

- Space: O (n™+/%).

33



OTHER LSH FUNCTIONS

Good locality sensitive hash functions exists for many other

similarity measures. m) | > )

Cosine similarity cos (6(x,y)) \ A v B \

X

—1<cos(f(x,y)) <.
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COSINE SIMILARITY

Cosine similarity is natural “inverse” for Euclidean distance.

Euclidean distance ||x —y|j3: = CX/O)TCX—D) - x"x {—bfa ;L,%

- Suppose for simplicity that ||x||2 = [ly||3 = 1.

Ix 21 lla\l"; =1

= Ixh gl -2y
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SIMHASH

X“—;af/ CW(x/<07 =T gy Wy 7>7
=Sem( L5y, 9>)
=5 gu (<X o))
- Let g € RY be randomly chosen with each entry A/(0,1).
- Letf: {-1,1} = {1,...,m} be a uniformly random hash
function™
- h:RY = {1,...,m} is definied h(x) = f(sign((g,x))).
= \\,__ —=
If cos(6(x,y)) = v, what is Pr[h(x) == h(y)]?

s (x,y) =1 1§ x=p  Prlyle) - W) =

Locality sensitive hash for cosine similarity:

gh" S~ (4§/X>.> =S 5‘7”(43’ J >) 36



SIMHASH ANALYSIS

Theorem: If cos(8(x,y))

collision probability

05

= v, then
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SIMHASH

SimHash can be tuned, just like our MinHash based LSH
function for Jaccard similarity:

- Letgy,...,8 € RY be randomly chosen with each entry

N(0,1).
- Letf: {-1,1} = {1,...,m} be a uniformly random hash
function:

- h:RY— {1,...,m} is defined
h(x) = f([sign((g1,X)), - - ., sign((&r, x))])-

=

Prin0 == h) = (1- &)

) 38



SIMHASH ANALYSIS

@\ . ! 6?9\1(4 49 9)
= A,/

= + (

¥
g
s5iom (£9,%>)
= -]

Pr[h——in , %% .

where v = Pr[sign((g,x)) == sign((g, y))] 39



SIMHASH ANALYSIS

Pr[h(x) == h(y)] = probability x and y are on the same side of
hyperplane orthogonal to g.

40



