CS-GY 9223 D: Lecture 4 Near neighbor search + locality sensitive hashing

NYU Tandon School of Engineering, Prof. Christopher Musco

EUCLIDEAN DIMENSIONALITY REDUCTION

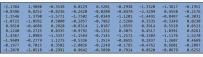
Lemma (Johnson-Lindenstrauss, 1984)

For any set of n data points $\mathbf{q}_1, \dots, \mathbf{q}_n \in \mathbb{R}^d$ there exists a <u>linear map</u> $\Pi : \mathbb{R}^d \to \mathbb{R}^k$ where $k = O\left(\frac{\log n}{\epsilon^2}\right)$ such that <u>for all</u> $\underline{i}, \underline{j}$,

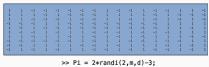
$$\mathbf{s}; \qquad \mathbf{s}; \qquad \mathbf{s}$$

RANDOMIZED JL CONSTRUCTIONS

 $\Pi \in \mathbb{R}^{k \times d}$ be chosen so that each entry equals $\frac{1}{\sqrt{k}} \mathcal{N}(0,1)$... or each entry equals $\frac{1}{\sqrt{k}} \pm 1$ with equal probability.



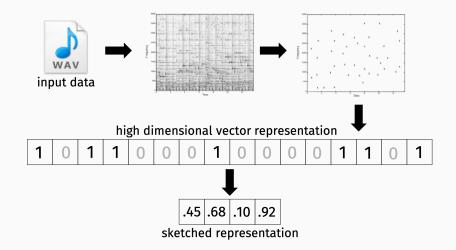
>> Pi = randn(m,d); >> s = (1/sqrt(m))*Pi*q;



>> Pi = 2*randi(2,m,d)-3 >> s = (1/sqrt(m))*Pi*q;

Often called "random projections".

SIMILARITY SKETCHING



SIMILARITY SKETCHING

Definition (Jaccard Similarity)

$$J(q,y) = \frac{|q \cap y|}{|q \cup y|} = \frac{\text{\# of non-zero entries in common}}{\text{total \# of non-zero entries}}$$

$$0 \le J(q,y) \le 1.$$

Similar result to JL: Given a MinHash sketch with $k = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions, we can estimate the Jaccard similarity between all pairs $\mathbf{x}_1, \dots, \mathbf{x}_n$ with high probability.

Common goal: Find all vectors in database $\mathbf{q}_1, \dots, \mathbf{q}_n \in \mathbb{R}^d$ that are close to some input query vector $\mathbf{y} \in \mathbb{R}^d$. I.e. find all of \mathbf{y} 's "nearest neighbors" in the database.

- · Audio + video search.
- Finding duplicate or near duplicate documents. 2 (Ovilles
- · Detecting seismic events.

How does similarity sketching help in these applications?

- · Improves runtime of "linear scan" from O(0d) to O(0k).
- Improves space complexity from O(nd) to O(nk). This can be super important – e.g. if it means the linear scan only accesses vectors in fast memory.

BEYOND A LINEAR SCAN

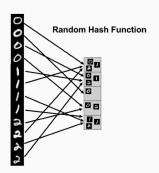
New goal: Sublinear o(n) time to find near neighbors.

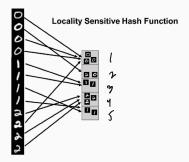
LOCALITY SENSITIVE HASH FUNCTIONS

Let $\underline{h}: \mathbb{R}^d \to \{1, \dots, \underline{m}\}$ be a random hash function.

We call h <u>locality sensitive</u> for similarity function $\underline{s(q, y)}$ if Pr[h(q) == h(y)] is:

- Higher when q and y are more similar, i.e. s(q, y) is higher.
- Lower when q and y are more dissimilar, i.e. s(q, y) is lower.

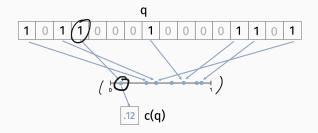




LOCALITY SENSITIVE HASH FUNCTIONS

LSH for s(q, y) equal to Jaccard similarity:

- Let $c: \{\underline{0,1}\}^d \to [\underline{0,1}]$ be a single instantiation of MinHash.
- Let $g:[0,1] \to \{1,\ldots,m\}$ be a fully random hash function.
- Let h(q) = g(c(q)).



LOCALITY SENSITIVE HASH FUNCTIONS

LSH for Jaccard similarity:

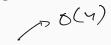
- Let $c: \{0,1\}^d \to [0,1]$ be a single instantiation of MinHash.
- Let $g:[0,1] \to \{1,\ldots,m\}$ be a fully random hash function.
- Let $h(\mathbf{x}) = g(c(\mathbf{x}))$.

If
$$J(q, y) = v$$
,

$$\Pr[h(q) == h(y)] = \bigvee \cdot 1 + (\underbrace{1 - v}_{m}) \chi V$$

Basic approach for near neighbor search in a database.

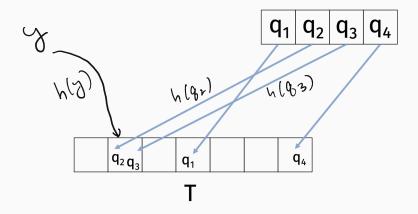
Pre-processing:



- Select random LSH function $h: \{0,1\}^d \to 1, \dots, m$.
- Create table \underline{T} with $\underline{m} = O(\underline{n})$ slots.
- For i = 1, ..., n, insert \mathbf{q}_i into $T(\underline{h(\mathbf{q}_i)})$.

Query:

- Want to find near neighbors of input $\mathbf{y} \in \{0,1\}^d$.
- Linear scan through all vectors $\mathbf{q} \in T(\underline{h(\mathbf{y})})$ and return any that are close to \mathbf{y} . Time required is $O(\underline{d} \cdot |T(h(\mathbf{y})|)$.



Two main considerations:

- False Negative Rate: What's the probability we do not find a vector that is close to y?
- False Positive Rate: What's the probability that a vector in T(h(y)) is not close to y?

A higher false negative rate means we miss near neighbors.

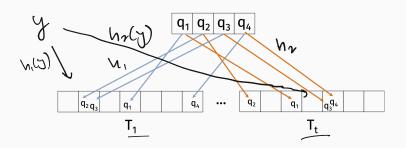
A higher false positive rate means increased runtime – we need to compute $J(\mathbf{q}, \mathbf{y})$ for every $\mathbf{q} \in T(h(\mathbf{y}))$ to check if it's actually close to \mathbf{y} .

REDUCING FALSE NEGATIVE RATE

Suppose the nearest database point q has J(y,q) = .4.

What's the probability we do not find q?

REDUCING FALSE NEGATIVE RATE



Pre-processing:

- Select t independent LSH's $h_1, \ldots, h_t : \{0,1\}^d \to 1, \ldots, m$.
- Create tables T_1, \ldots, T_t , each with m slots.
- For i = 1, ..., n, j = 1, ..., t, insert \mathbf{q}_i into $T_j(h_j(\mathbf{q}_i))$.

Query:

- Want to find near neighbors of input $\mathbf{y} \in \{0,1\}^d$.
- Linear scan through all vectors in $T_1(h_1(\mathbf{y})) \cup T_2(h_2(\mathbf{y})) \cup \dots, T_t(h_t(\mathbf{y})).$

$$o(d \cdot | T(h(b)) |)$$
 $o(d \cdot \frac{1}{2} | T_{j}(h(b)) |)$

REDUCING FALSE NEGATIVE RATE

t= 10 19%

Query:

- Want to find near neighbors of input $\mathbf{y} \in \{0,1\}^d$.
- Linear scan through all vectors in $T_1(h_1(\mathbf{y})) \cup T_2(h_2(\mathbf{y})) \cup \dots, T_t(h_t(\mathbf{y})).$

Suppose the nearest database point q has J(y,q) = .4.

What's the probability we find q?

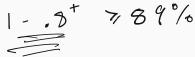
WHAT HAPPENS TO FALSE POSITIVES?

8904

Suppose there is some other database point z with J(y,z) = .2. What is the probability we will need to compute J(z,y) in our hashing scheme with one table?

In the new scheme with $t = \underline{10}$ tables?

Proz. folic positive:



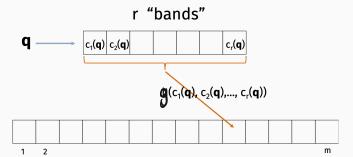
REDUCING FALSE POSITIVES

Change our locality sensitive hash function.

Tunable LSH for Jaccard similarity:

r=1

- Choose parameter $\underline{r} \in \mathbb{Z}^+$.
- Let $c_1, \ldots, c_{\mathbf{f}} : \{0,1\}^d \to [0,1]$ be random MinHash.
- Let $g:[0,1]^{\mathbf{f}} \to \{1,\ldots,m\}$ be a fully random hash function.
- · Let $h(\mathbf{x}) = g(\underline{c_1(\mathbf{x})}, \dots, \underline{c_r(\mathbf{x})})$.



REDUCING FALSE POSITIVES

Tunable LSH for Jaccard similarity:

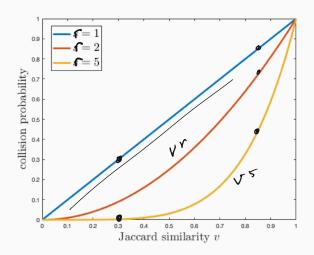
- Choose parameter $r \in \mathbb{Z}^+$.
- Let $c_1, \ldots, c_{\mathbf{f}} : \{0,1\}^d \to [0,1]$ be random MinHash.
- Let $g:[0,1]^{f} \rightarrow \{1,\ldots,m\}$ be a fully random hash function.

· Let
$$h(\mathbf{x}) = g(c_1(\mathbf{x}), \dots, c_r(\mathbf{x})).$$

If
$$J(q, y) = v$$
, then $Pr[h(q) == h(y)] = V \cdot 1 + \frac{1-v}{m} v V$

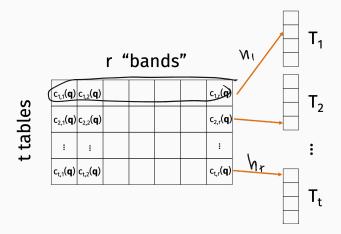


TUNABLE LSH



TUNABLE LSH

Full LSH cheme has two parameters to tune:



TUNABLE LSH

Effect of **increasing number of tables** *t* on:

False Negatives

False Positives

Decrease

Increse

Effect of **increasing number of bands** *r* on:

False Negatives

False Positives

1400 U

)t creak

SOME EXAMPLES

1.3

Choose tables t large enough so false negative rate to 1%.

Parameter: r = 1.

Chance we find **q** with J(y,q) = .8:

$$1 - .2^{\dagger}$$
 $1 - .2^{\dagger} > 990%$

Chance we need to check **z** with J(y,z) = .4:

SOME EXAMPLES

Choose tables *t* large enough so false negative rate to 1%.

Parameter: r = 2.

Chance we find q with
$$J(y,q) = .8$$
:
$$\begin{vmatrix} -(1-.8)^2 \\ -.32^4 \end{vmatrix}$$

Chance we need to check z with J(y,z) = .4: $\int -(1 - .4^{2})^{+} = 56\%$ $\int - .84^{+} = 56\%$

f=5 58%

SOME EXAMPLES

12°6

Choose tables t large enough so false negative rate to 1%.

Parameter:
$$r = 5$$
.

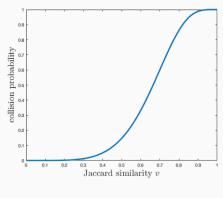
Chance we find **q** with J(y, q) = .8:

Chance we need to check z with J(y,z) = .4:

$$|-(|-.4^5)^+ \le 12^{\circ}/0$$

Probability we check **q** when querying **y** if $J(\mathbf{q}, \mathbf{y}) = v$:

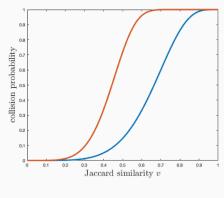
$$\approx 1 - (1 - \underline{\underline{v}^r})^t$$



$$r = 5, t = 5$$

Probability we check **q** when querying **y** if $J(\mathbf{q}, \mathbf{y}) = v$:

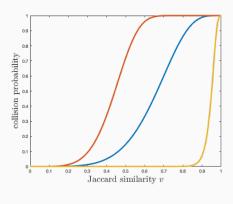
$$\approx 1 - (1 - v^r)^t$$



$$r = 5, t = 40$$

Probability we check **q** when querying **y** if $J(\mathbf{q}, \mathbf{y}) = v$:

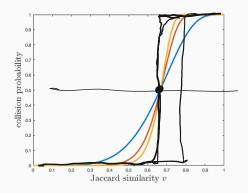
$$\approx 1 - (1 - v^r)^t$$



$$r = 40, t = 5$$

Probability we check **q** when querying **y** if $J(\mathbf{q}, \mathbf{y}) = v$:

$$1 - (1 - v^r)^t$$



Increasing both *r* and *t* gives a steeper curve.

Better for search, but worse space complexity.

FIXED THRESHOLD

Use Case 1: Fixed threshold.

- Shazam wants to find match to audio clip y in a database of 10 million clips.
- There are 10 true matches with J(y, q) > .9.
- There are 10,000 <u>near matches</u> with $J(y,q) \in [.7, .9]$.
- All other items have J(y, q) < .7.

With
$$r = 25$$
 and $t = 40$,

- Hit probability for J(y,q) > .9 is $\gtrsim 1 (1 .925)^{40} = 95$
- Hit probability for $J(y,q) \in [.7,.9]$ is $\lesssim 1 (1 .9^{25})^{40} = (95)^{40}$
- Hit probability for $J(\mathbf{y}, \mathbf{q}) \le .7$ is $\lesssim 1 (1 .7^{25})^{40} = 0.05$

Expected total number of items checked:

$$95 \cdot 10 + 95 \cdot 10,000 + .005 \cdot 9,989,990 \approx 60,000 \ll 10,000,000.$$

FIXED THRESHOLD

Space complexity: 40 hash tables $\approx 40 \cdot O(n)$.

Directly trade space for fast search.

FIXED THRESHOLD R

Nearest Neighbors

Concrete worst case result:

Theorem (Indyk, Motwani, 1998)

If there exists some q with $\|\mathbf{q} - \mathbf{y}\|_0 \le R$, return a vector $\tilde{\mathbf{q}}$ with $\|\tilde{\mathbf{q}} - \mathbf{y}\|_0 \le C \cdot R$ in:

- Time: $O(n^{1/C})$.
- Space: $O(n^{1+1/C})$.

 $\|\mathbf{q} - \mathbf{y}\|_0$ = "hamming distance" = number of elements that differ between \mathbf{q} and \mathbf{y} .

APPROXIMATE NEAREST NEIGHBOR SEARCH

Theorem (Indyk, Motwani, 1998)

Let q be the closest database vector to y. Return a vector $\tilde{\mathbf{q}}$ with $\|\tilde{\mathbf{q}} - \mathbf{y}\|_0 \le C \cdot \|\mathbf{q} - \mathbf{y}\|_0$ in:

- Time: $\tilde{O}(n^{1/C})$.
- Space: $\tilde{O}(n^{1+1/C})$.

Apy ideas for how this is done?

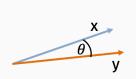
OTHER LSH FUNCTIONS

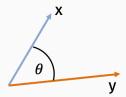
Good locality sensitive hash functions exists for many other similarity measures.

TAILSI

Cosine similarity $\cos(\theta(x,y))$ =

1AUB1





$$-1 \le \cos(\theta(\mathbf{x}, \mathbf{y})) \le 1.$$

COSINE SIMILARITY

Cosine similarity is natural "inverse" for Euclidean distance.

Euclidean distance
$$\|x-y\|_2^2$$
: = $(x-y)^{\tau}(x-y)^{-2\tau}$ $-2\tau^{\tau}y$. Suppose for simplicity that $\|x\|_2^2 = \|y\|_2^2 = 1$. $\|x\|_2^2 = 1$

= ||x||2 + ||7||2 -2 x 7

SIMHASH

Locality sensitive hash for cosine similarity: $= 51 \text{ gy} ((< \times, 9))$

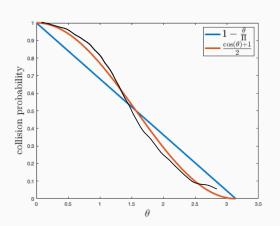
- Let $g \in \mathbb{R}^d$ be randomly chosen with each entry $\mathcal{N}(0,1)$.
- Let $f: \{-1,1\} \to \{1,\ldots,m\}$ be a uniformly random hash function.
- $h: \mathbb{R}^d \to \{1, \dots, m\}$ is definited $h(\mathbf{x}) = f(\operatorname{sign}(\langle \mathbf{g}, \mathbf{x} \rangle))$.

If
$$cos(\theta(x, y)) = v$$
, what is $Pr[h(x) == h(y)]$?

SIMHASH ANALYSIS

Theorem: If $cos(\theta(x,y)) = v$, then

$$Pr[h(x) == h(y)] = 1 - \frac{\theta}{\pi} = 1 - \frac{\cos^{-1}(v)}{\pi}$$



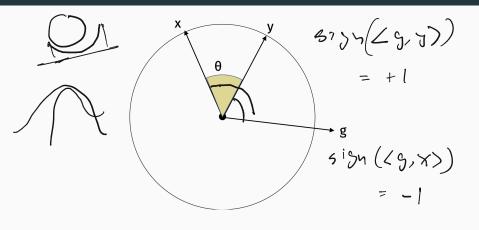
SIMHASH

SimHash can be tuned, just like our MinHash based LSH function for Jaccard similarity:

- Let $\mathbf{g}_1,\dots,\mathbf{g}_r\in\mathbb{R}^d$ be randomly chosen with each entry $\mathcal{N}(0,1)$.
- Let $f: \{-1,1\}^r \to \{1,\ldots,m\}$ be a uniformly random hash function:
- $h: \mathbb{R}^d \to \{1, \dots, m\}$ is defined $h(\mathbf{x}) = f([\operatorname{sign}(\langle \mathbf{g}_1, \mathbf{x} \rangle), \dots, \operatorname{sign}(\langle \mathbf{g}_r, \mathbf{x} \rangle)]).$

$$\Pr[h(\mathbf{x}) == h(\mathbf{y})] = \left(1 - \frac{\theta}{\Pi}\right)^r$$

SIMHASH ANALYSIS

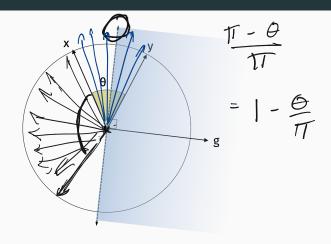


$$h(x) = f(sign(\langle g, x \rangle))$$

$$Pr[h(x) == h(y)] = v + \frac{1}{2} \approx v.$$

where $v = \Pr[\text{sign}(\langle g, x \rangle) == \text{sign}(\langle g, y \rangle)]$

SIMHASH ANALYSIS



 $\Pr[h(\mathbf{x}) == h(\mathbf{y})] \approx \text{probability } \mathbf{x} \text{ and } \mathbf{y} \text{ are on the same side of hyperplane orthogonal to } \mathbf{g}.$