
CS-GY 9223 D: Lecture 4
Near neighbor search + locality sensitive
hashing

NYU Tandon School of Engineering, Prof. Christopher Musco

1

euclidean dimensionality reduction

Lemma (Johnson-Lindenstrauss, 1984)
For any set of n data points q1, . . . ,qn ∈ Rd there exists a
linear map Π : Rd → Rk where k = O

(
log n
ϵ2

)
such that for all

i, j,

(1− ϵ)∥qi − qj∥2 ≤ ∥Πqi −Πqj∥2 ≤ (1+ ϵ)∥qi − qj∥2.

2

randomized jl constructions

Π ∈ Rk×d be chosen so that each entry equals 1√
k
N (0, 1).

... or each entry equals 1√
k
± 1 with equal probability.

Often called “random projections”.

3

similarity sketching

4

similarity sketching

Definition (Jaccard Similarity)

J(q, y) = |q ∩ y|
|q ∪ y| =

of non-zero entries in common
total # of non-zero entries

0 ≤ J(q, y) ≤ 1.

Similar result to JL: Given a MinHash sketch with k = O
(
log n
ϵ2

)
dimensions, we can estimate the Jaccard similarity between all
pairs x1, . . . , xn with high probability.

5

near neighbor search

Common goal: Find all vectors in database q1, . . . ,qn ∈ Rd that
are close to some input query vector y ∈ Rd. I.e. find all of y’s
“nearest neighbors” in the database.

• Audio + video search.
• Finding duplicate or near duplicate documents.
• Detecting seismic events.

How does similarity sketching help in these applications?

• Improves runtime of “linear scan” from O(nd) to O(nk).
• Improves space complexity from O(nd) to O(nk). This can
be super important – e.g. if it means the linear scan only
accesses vectors in fast memory.

6

beyond a linear scan

New goal: Sublinear o(n) time to find near neighbors.

7

locality sensitive hash functions

Let h : Rd → {1, . . . ,m} be a random hash function.

We call h locality sensitive for similarity function s(q, y) if
Pr [h(q) == h(y)] is:

• Higher when q and y are more similar, i.e. s(q, y) is higher.
• Lower when q and y are more dissimilar, i.e. s(q, y) is
lower.

8

locality sensitive hash functions

LSH for s(q, y) equal to Jaccard similarity:

• Let c : {0, 1}d → [0, 1] be a single instantiation of MinHash.
• Let g : [0, 1] → {1, . . . ,m} be a fully random hash function.
• Let h(q) = g(c(q)).

9

locality sensitive hash functions

LSH for Jaccard similarity:

• Let c : {0, 1}d → [0, 1] be a single instantiation of MinHash.
• Let g : [0, 1] → {1, . . . ,m} be a fully random hash function.
• Let h(x) = g(c(x)).

If J(q, y) = v,

Pr [h(q) == h(y)] =

10

near neighbor search

Basic approach for near neighbor search in a database.

Pre-processing:

• Select random LSH function h : {0, 1}d → 1, . . . ,m.
• Create table T with m = O(n) slots.
• For i = 1, . . . ,n, insert qi into T(h(qi)).

Query:

• Want to find near neighbors of input y ∈ {0, 1}d.
• Linear scan through all vectors q ∈ T(h(y)) and return any
that are close to y. Time required is O(d · |T(h(y)|).

11

near neighbor search

12

near neighbor search

Two main considerations:

• False Negative Rate: What’s the probability we do not find
a vector that is close to y?

• False Positive Rate: What’s the probability that a vector in
T(h(y)) is not close to y?

A higher false negative rate means we miss near neighbors.

A higher false positive rate means increased runtime – we
need to compute J(q, y) for every q ∈ T(h(y)) to check if it’s
actually close to y.

13

reducing false negative rate

Suppose the nearest database point q has J(y,q) = .4.

What’s the probability we do not find q?

14

reducing false negative rate

Pre-processing:

• Select t independent LSH’s h1, . . . ,ht : {0, 1}d → 1, . . . ,m.
• Create tables T1, . . . , Tt, each with m slots.
• For i = 1, . . . ,n, j = 1, . . . , t, insert qi into Tj(hj(qi)).

15

reducing false negative rate

Query:

• Want to find near neighbors of input y ∈ {0, 1}d.
• Linear scan through all vectors in
T1(h1(y)) ∪ T2(h2(y)) ∪ . . . , Tt(ht(y)).

Suppose the nearest database point q has J(y,q) = .4.

What’s the probability we find q?

16

reducing false negative rate

Query:

• Want to find near neighbors of input y ∈ {0, 1}d.
• Linear scan through all vectors in
T1(h1(y)) ∪ T2(h2(y)) ∪ . . . , Tt(ht(y)).

Suppose the nearest database point q has J(y,q) = .4.

What’s the probability we find q?

16

what happens to false positives?

Suppose there is some other database point z with J(y, z) = .2.
What is the probability we will need to compute J(z, y) in our
hashing scheme with one table?

In the new scheme with t = 10 tables?

17

reducing false positives

Change our locality sensitive hash function.

Tunable LSH for Jaccard similarity:

• Choose parameter r ∈ Z+.

• Let c1, . . . , cs : {0, 1}d → [0, 1] be random MinHash.

• Let g : [0, 1]s → {1, . . . ,m} be a fully random hash function.

• Let h(x) = g(c1(x), . . . , cr(x)).

18

reducing false positives

Tunable LSH for Jaccard similarity:

• Choose parameter r ∈ Z+.

• Let c1, . . . , cs : {0, 1}d → [0, 1] be random MinHash.

• Let g : [0, 1]s → {1, . . . ,m} be a fully random hash function.

• Let h(x) = g(c1(x), . . . , cr(x)).

If J(q, y) = v, then Pr [h(q) == h(y)] =

19

tunable lsh

20

tunable lsh

Full LSH cheme has two parameters to tune:

21

tunable lsh

Effect of increasing number of tables t on:

False Negatives False Positives

Effect of increasing number of bands r on:

False Negatives False Positives

22

some examples

Choose tables t large enough so false negative rate to 1%.

Parameter: r = 1.

Chance we find q with J(y,q) = .8:

Chance we need to check z with J(y, z) = .4:

23

some examples

Choose tables t large enough so false negative rate to 1%.

Parameter: r = 2.

Chance we find q with J(y,q) = .8:

Chance we need to check z with J(y, z) = .4:

24

some examples

Choose tables t large enough so false negative rate to 1%.

Parameter: r = 5.

Chance we find q with J(y,q) = .8:

Chance we need to check z with J(y, z) = .4:

25

s-curve tuning

Probability we check q when querying y if J(q, y) = v:

≈ 1− (1− vr)t

r = 5, t = 5
26

s-curve tuning

Probability we check q when querying y if J(q, y) = v:

≈ 1− (1− vr)t

r = 5, t = 40
27

s-curve tuning

Probability we check q when querying y if J(q, y) = v:

≈ 1− (1− vr)t

r = 40, t = 5
28

s-curve tuning

Probability we check q when querying y if J(q, y) = v:

1− (1− vr)t

Increasing both r and t gives a steeper curve.

Better for search, but worse space complexity. 29

fixed threshold

Use Case 1: Fixed threshold.

• Shazam wants to find match to audio clip y in a database of 10
million clips.

• There are 10 true matches with J(y,q) > .9.

• There are 10,000 near matches with J(y,q) ∈ [.7, .9].

• All other items have J(y,q) < .7.

With s = 25 and t = 40,

• Hit probability for J(y,q) > .9 is ≳ 1− (1− .925)40 = .95

• Hit probability for J(y,q) ∈ [.7, .9] is ≲ 1− (1− .925)40 = .95

• Hit probability for J(y,q) < .7 is ≲ 1− (1− .725)40 = .005

Expected total number of items checked:

.95 · 10+ .95 · 10, 000+ .005 · 9, 989, 990 ≈ 60, 000≪ 10, 000, 000. 30

fixed threshold

Space complexity: 40 hash tables ≈ 40 · O(n).

Directly trade space for fast search.

31

fixed threshold r

Concrete worst case result:
Theorem (Indyk, Motwani, 1998)
If there exists some q with ∥q− y∥0 ≤ R, return a vector q̃
with ∥q̃− y∥0 ≤ C · R in:

• Time: O
(
n1/C

)
.

• Space: O
(
n1+1/C

)
.

∥q− y∥0 = ”hamming distance” = number of elements that
differ between q and y.

32

approximate nearest neighbor search

Theorem (Indyk, Motwani, 1998)
Let q be the closest database vector to y. Return a vector q̃
with ∥q̃− y∥0 ≤ C · ∥q− y∥0 in:

• Time: Õ
(
n1/C

)
.

• Space: Õ
(
n1+1/C

)
.

Any ideas for how this is done?

33

other lsh functions

Good locality sensitive hash functions exists for many other
similarity measures.

Cosine similarity cos (θ(x, y)) = ⟨x,y⟩
∥x∥2∥y∥2 :

−1 ≤ cos (θ(x, y)) ≤ 1.

34

cosine similarity

Cosine similarity is natural “ inverse” for Euclidean distance.

Euclidean distance ∥x− y∥22:

• Suppose for simplicity that ∥x∥22 = ∥y∥22 = 1.

35

simhash

Locality sensitive hash for cosine similarity:

• Let g ∈ Rd be randomly chosen with each entry N (0, 1).
• Let f : {−1, 1} → {1, . . . ,m} be a uniformly random hash
function.

• h : Rd → {1, . . . ,m} is definied h(x) = f (sign(⟨g, x⟩)).

If cos(θ(x, y)) = v, what is Pr[h(x) == h(y)]?

36

simhash analysis

Theorem: If cos(θ(x, y)) = v, then

Pr[h(x) == h(y)] = 1− θ

π
= 1− cos−1(v)

π

37

simhash

SimHash can be tuned, just like our MinHash based LSH
function for Jaccard similarity:

• Let g1, . . . , gr ∈ Rd be randomly chosen with each entry
N (0, 1).

• Let f : {−1, 1}r → {1, . . . ,m} be a uniformly random hash
function.

• h : Rd → {1, . . . ,m} is defined
h(x) = f ([sign(⟨g1, x⟩), . . . , sign(⟨gr, x⟩)]).

Pr[h(x) == h(y)] =
(
1− θ

Π

)r

38

simhash analysis

h(x) = f (sign(⟨g, x⟩))

Pr[h(x) == h(y)] = v+ 1− v
m ≈ v.

where v = Pr[sign(⟨g, x⟩) == sign(⟨g, y⟩)] 39

simhash analysis

Pr[h(x) == h(y)] ≈ probability x and y are on the same side of
hyperplane orthogonal to g.

40

