CS-GY 9223 D: Lecture 4 Near neighbor search + locality sensitive hashing

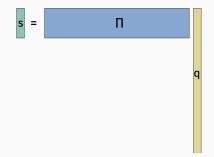
NYU Tandon School of Engineering, Prof. Christopher Musco

EUCLIDEAN DIMENSIONALITY REDUCTION

Lemma (Johnson-Lindenstrauss, 1984)

For any set of n data points $\mathbf{q}_1, \ldots, \mathbf{q}_n \in \mathbb{R}^d$ there exists a <u>linear map</u> $\Pi : \mathbb{R}^d \to \mathbb{R}^k$ where $k = O\left(\frac{\log n}{\epsilon^2}\right)$ such that <u>for all</u> *i*, *j*,

$$(1-\epsilon)\|\mathbf{q}_i-\mathbf{q}_j\|_2 \leq \|\mathbf{\Pi}\mathbf{q}_i-\mathbf{\Pi}\mathbf{q}_j\|_2 \leq (1+\epsilon)\|\mathbf{q}_i-\mathbf{q}_j\|_2.$$



 $\mathbf{\Pi} \in \mathbb{R}^{k \times d}$ be chosen so that each entry equals $\frac{1}{\sqrt{k}}\mathcal{N}(0,1)$ or each entry equals $\frac{1}{\sqrt{k}} \pm 1$ with equal probability.

-2.1384	2.9888	-0.3538	8.8229	0.5201	-0.2938	-1.3320	-1.3617	-0.1952
-0.8396	0.8252	-0.8236	-0.2620	-0.0208	-0.8479	-2.3299	0.4550	-0.2176
1.3546	1.3798	-1.5771	-1.7502	-0.0348	-1.1201	-1.4491	-0.8487	-0.3031
-1.0722	-1.0582	0.5080	-0.2857	-0.7982	2.5260	0.3335	-0.3349	0.0230
0.9610	-0.4686	0.2820	-0.8314	1.0187	1.6555	0.3914	0.5528	0.0513
0.1240	-0.2725	0.0335	-8.9792	-0.1332	0.3075	8.4517	1.0391	0.8261
1.4367	1.0984	-1.3337	-1.1564	-0.7145	-1.2571	-0.1303	-1.1176	1.5270
-1.9689	-0.2779	1.1275	-0.5336	1.3514	-0.8655	0.1837	1.2607	0.4669
-0.1977	0.7015	0.3502	-2.8026	-0.2248	-0.1765	-8.4762	0.6601	-0.2097
-1.2078	-2.0518	-0.2991	0.9642	-0.5898	0.7914	0.8620	-0.0679	0.6252

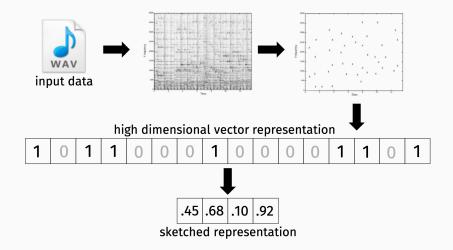
>> Pi = randn(m,d);
>> s = (1/sqrt(m))*Pi*q;

1	1	-1	-1	-1	-1	-1	-1	1	-1	-1	1	-1	-1	1	1	-1
1	1	1	-1	1	-1	-1	-1	1	1	1	1	-1	1	-1	-1	-1
1	1	-1	-1	-1	1	-1	-1	1	1	-1	1	-1	1	-1	1	-1
-1	-1	-1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1
1	-1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	-1	1
1	-1	-1	1	-1	1	1	-1	-1	-1	1	-1	-1	-1	1	1	1
1	1	-1	1	1	-1	1	-1	1	-1	1	-1	1	1	1	-1	-1
-1	-1	-1	-1	-1	-1	1	-1	1	1	-1	-1	1	-1	-1	1	1
-1	-1	1	1	1	1	-1	-1	1	-1	1	1	1	-1	1	-1	1
-1	1	-1	1	-1	1	1	-1	-1	1	-1	1	-1	-1	1	-1	1

>> Pi = 2*randi(2,m,d)-3;
>> s = (1/sqrt(m))*Pi*q;

Often called "random projections".

SIMILARITY SKETCHING



Definition (Jaccard Similarity)

$$J(\mathbf{q}, \mathbf{y}) = \frac{|\mathbf{q} \cap \mathbf{y}|}{|\mathbf{q} \cup \mathbf{y}|} = \frac{\text{\# of non-zero entries in common}}{\text{total \# of non-zero entries}}$$
$$0 \le J(\mathbf{q}, \mathbf{y}) \le 1.$$

Similar result to JL: Given a MinHash sketch with $k = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions, we can estimate the Jaccard similarity between all pairs $\mathbf{x}_1, \ldots, \mathbf{x}_n$ with high probability.

Common goal: Find all vectors in database $\mathbf{q}_1, \ldots, \mathbf{q}_n \in \mathbb{R}^d$ that are close to some input query vector $\mathbf{y} \in \mathbb{R}^d$. I.e. find all of \mathbf{y} 's "nearest neighbors" in the database.

- Audio + video search.
- Finding duplicate or near duplicate documents.
- Detecting seismic events.

How does similarity sketching help in these applications?

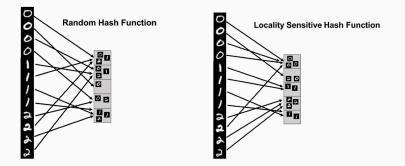
- Improves runtime of "linear scan" from O(nd) to O(nk).
- Improves space complexity from O(nd) to O(nk). This can be super important – e.g. if it means the linear scan only accesses vectors in fast memory.

New goal: Sublinear o(n) time to find near neighbors.

Let $h : \mathbb{R}^d \to \{1, \dots, m\}$ be a random hash function.

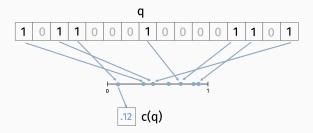
We call h <u>locality sensitive</u> for similarity function s(q, y) if Pr [h(q) == h(y)] is:

- Higher when \mathbf{q} and \mathbf{y} are more similar, i.e. $s(\mathbf{q}, \mathbf{y})$ is higher.
- Lower when **q** and **y** are more dissimilar, i.e. $s(\mathbf{q}, \mathbf{y})$ is lower.



LSH for s(q, y) equal to Jaccard similarity:

- Let $c: \{0,1\}^d \rightarrow [0,1]$ be a single instantiation of MinHash.
- Let $g: [0,1] \to \{1,\ldots,m\}$ be a fully random hash function.
- Let $h(\mathbf{q}) = g(c(\mathbf{q}))$.



LSH for Jaccard similarity:

- Let $c: \{0,1\}^d \rightarrow [0,1]$ be a single instantiation of MinHash.
- Let $g:[0,1] \to \{1,\ldots,m\}$ be a fully random hash function.
- Let $h(\mathbf{x}) = g(c(\mathbf{x}))$.

 $\mathsf{lfJ}(q,y) = v_{,}$

$$\Pr[h(q) == h(y)] =$$

Basic approach for near neighbor search in a database.

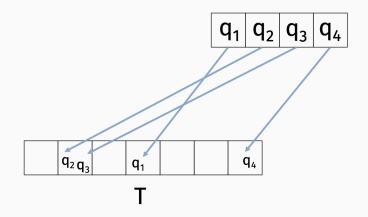
Pre-processing:

- Select random LSH function $h: \{0,1\}^d \rightarrow 1, \dots, m$.
- Create table T with m = O(n) slots.
- For $i = 1, \ldots, n$, insert \mathbf{q}_i into $T(h(\mathbf{q}_i))$.

Query:

- Want to find near neighbors of input $\mathbf{y} \in \{0, 1\}^d$.
- Linear scan through all vectors $\mathbf{q} \in T(h(\mathbf{y}))$ and return any that are close to \mathbf{y} . Time required is $O(d \cdot |T(h(\mathbf{y})|)$.

NEAR NEIGHBOR SEARCH



Two main considerations:

- False Negative Rate: What's the probability we do not find a vector that <u>is close</u> to **y**?
- False Positive Rate: What's the probability that a vector in T(h(y)) is not close to y?

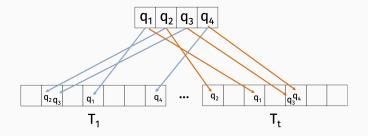
A higher false negative rate means we miss near neighbors.

A higher false positive rate means increased runtime – we need to compute $J(\mathbf{q}, \mathbf{y})$ for every $\mathbf{q} \in T(h(\mathbf{y}))$ to check if it's actually close to \mathbf{y} .

Suppose the nearest database point q has J(y, q) = .4.

What's the probability we do not find q?

REDUCING FALSE NEGATIVE RATE



Pre-processing:

- Select t independent LSH's $h_1, \ldots, h_t : \{0, 1\}^d \rightarrow 1, \ldots, m$.
- Create tables T_1, \ldots, T_t , each with *m* slots.
- For $i = 1, \ldots, n, j = 1, \ldots, t$, insert \mathbf{q}_i into $T_j(h_j(\mathbf{q}_i))$.

Query:

- Want to find near neighbors of input $\mathbf{y} \in \{0, 1\}^d$.
- Linear scan through all vectors in $T_1(h_1(\mathbf{y})) \cup T_2(h_2(\mathbf{y})) \cup \dots, T_t(h_t(\mathbf{y})).$

Query:

- Want to find near neighbors of input $\mathbf{y} \in \{0, 1\}^d$.
- Linear scan through all vectors in $T_1(h_1(\mathbf{y})) \cup T_2(h_2(\mathbf{y})) \cup \dots, T_t(h_t(\mathbf{y})).$

Suppose the nearest database point q has J(y, q) = .4.

What's the probability we find q?

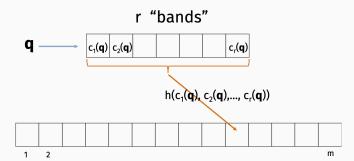
Suppose there is some other database point **z** with $J(\mathbf{y}, \mathbf{z}) = .2$. What is the probability we will need to compute $J(\mathbf{z}, \mathbf{y})$ in our hashing scheme with one table?

In the new scheme with t = 10 tables?

Change our locality sensitive hash function.

Tunable LSH for Jaccard similarity:

- Choose parameter $r \in \mathbb{Z}^+$.
- Let $c_1, \ldots, c_s : \{0, 1\}^d \rightarrow [0, 1]$ be random MinHash.
- Let $g: [0,1]^{s} \rightarrow \{1,\ldots,m\}$ be a fully random hash function.
- Let $h(\mathbf{x}) = g(c_1(\mathbf{x}), \dots, c_r(\mathbf{x})).$



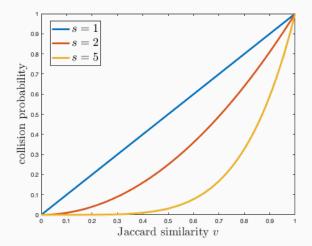
18

Tunable LSH for Jaccard similarity:

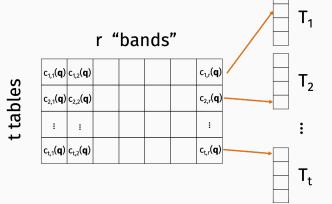
- Choose parameter $r \in \mathbb{Z}^+$.
- Let $c_1, \ldots, c_s : \{0, 1\}^d \rightarrow [0, 1]$ be random MinHash.
- Let $g: [0,1]^s \to \{1,\ldots,m\}$ be a fully random hash function.
- Let $h(\mathbf{x}) = g(c_1(\mathbf{x}), \dots, c_r(\mathbf{x})).$

If J(q, y) = v, then $\Pr[h(q) == h(y)] =$

TUNABLE LSH



Full LSH cheme has two parameters to tune:



21

Effect of **increasing number of tables** t on:

False Negatives

False Positives

Effect of **increasing number of bands** *r* on:

False Negatives

False Positives

Choose tables *t* large enough so false negative rate to 1%.

Parameter: r = 1.

Chance we find q with J(y,q) = .8:

Chance we need to check z with J(y, z) = .4:

Choose tables *t* large enough so false negative rate to 1%.

Parameter: r = 2.

Chance we find q with J(y,q) = .8:

Chance we need to check z with J(y, z) = .4:

Choose tables *t* large enough so false negative rate to 1%.

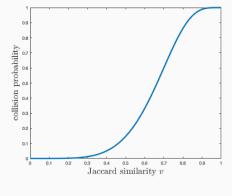
Parameter: r = 5.

Chance we find q with J(y,q) = .8:

Chance we need to check z with J(y, z) = .4:

Probability we check **q** when querying **y** if $J(\mathbf{q}, \mathbf{y}) = v$:

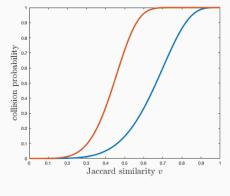
$$\approx 1 - (1 - v^r)^t$$



r = 5, t = 5

Probability we check **q** when querying **y** if $J(\mathbf{q}, \mathbf{y}) = v$:

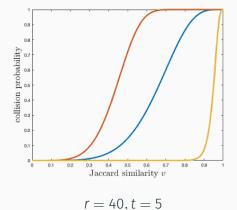
$$\approx 1 - (1 - v^r)^t$$



r = 5, t = 40

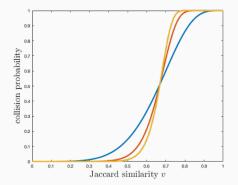
Probability we check **q** when querying **y** if $J(\mathbf{q}, \mathbf{y}) = v$:

$$\approx 1 - (1 - v^r)^t$$



Probability we check **q** when querying **y** if $J(\mathbf{q}, \mathbf{y}) = v$:

 $1 - (1 - v^r)^t$



Increasing both *r* and *t* gives a steeper curve.

Better for search, but worse space complexity.

Use Case 1: Fixed threshold.

- Shazam wants to find match to audio clip **y** in a database of 10 million clips.
- There are 10 true matches with J(y, q) > .9.
- There are 10,000 <u>near matches</u> with $J(y,q) \in [.7,.9]$.
- All other items have J(y, q) < .7.

With s = 25 and t = 40,

- + Hit probability for J(y,q) > .9 is $\gtrsim 1-(1-.9^{25})^{40}=.95$
- + Hit probability for J(y,q) \in [.7, .9] is $\lesssim 1-(1-.9^{25})^{40}=.95$
- + Hit probability for J(y,q) <.7 is $\lesssim 1-(1-.7^{25})^{40}=.005$

Expected total number of items checked:

 $.95 \cdot 10 + .95 \cdot 10,000 + .005 \cdot 9,989,990 \approx 60,000 \ll 10,000,000.$ 30

Space complexity: 40 hash tables $\approx 40 \cdot O(n)$. Directly trade space for fast search.

Concrete worst case result:

Theorem (Indyk, Motwani, 1998) If there exists some q with $\|\mathbf{q} - \mathbf{y}\|_0 \le R$, return a vector $\mathbf{\tilde{q}}$ with $\|\mathbf{\tilde{q}} - \mathbf{y}\|_0 \le C \cdot R$ in:

- Time: $O(n^{1/C})$.
- Space: O (n^{1+1/C}).

 $\|\boldsymbol{q}-\boldsymbol{y}\|_0=$ "hamming distance" = number of elements that differ between \boldsymbol{q} and $\boldsymbol{y}.$

Theorem (Indyk, Motwani, 1998)

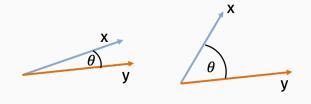
Let q be the closest database vector to y. Return a vector \tilde{q} with $\|\tilde{q} - y\|_0 \leq C \cdot \|q - y\|_0$ in:

- Time: Õ (n^{1/C}).
- Space: Õ (n^{1+1/C}).

Any ideas for how this is done?

Good locality sensitive hash functions exists for many other similarity measures.

Cosine similarity $\cos(\theta(\mathbf{x}, \mathbf{y})) = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\|_2 \|\mathbf{y}\|_2}$:



 $-1 \leq \cos(\theta(\mathbf{x}, \mathbf{y})) \leq 1.$

Cosine similarity is natural "inverse" for Euclidean distance.

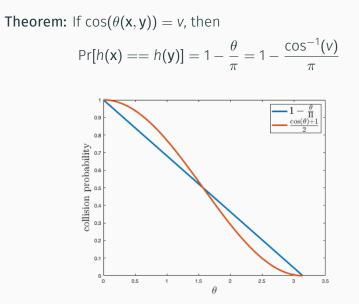
Euclidean distance $||\mathbf{x} - \mathbf{y}||_2^2$:

• Suppose for simplicity that $\|\mathbf{x}\|_2^2 = \|\mathbf{y}\|_2^2 = 1$.

Locality sensitive hash for **cosine similarity**:

- Let $\mathbf{g} \in \mathbb{R}^d$ be randomly chosen with each entry $\mathcal{N}(0, 1)$.
- Let $f: \{-1, 1\} \rightarrow \{1, \dots, m\}$ be a uniformly random hash function.
- $h : \mathbb{R}^d \to \{1, \dots, m\}$ is defined $h(\mathbf{x}) = f(\operatorname{sign}(\langle \mathbf{g}, \mathbf{x} \rangle)).$

If $cos(\theta(\mathbf{x}, \mathbf{y})) = v$, what is $Pr[h(\mathbf{x}) == h(\mathbf{y})]$?

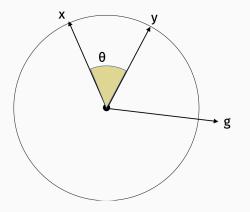


SimHash can be tuned, just like our MinHash based LSH function for Jaccard similarity:

- Let $\mathbf{g}_1, \ldots, \mathbf{g}_r \in \mathbb{R}^d$ be randomly chosen with each entry $\mathcal{N}(0, 1).$
- Let $f: \{-1, 1\}^r \to \{1, \dots, m\}$ be a uniformly random hash function.
- $h : \mathbb{R}^d \to \{1, \dots, m\}$ is defined $h(\mathbf{x}) = f([sign(\langle \mathbf{g}_1, \mathbf{x} \rangle), \dots, sign(\langle \mathbf{g}_r, \mathbf{x} \rangle)]).$

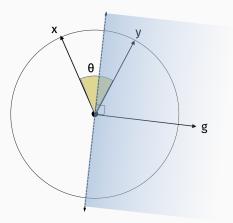
$$\Pr[h(\mathbf{x}) == h(\mathbf{y})] = \left(1 - \frac{\theta}{\Pi}\right)^r$$

SIMHASH ANALYSIS



$$h(\mathbf{x}) = f(\operatorname{sign}(\langle \mathbf{g}, \mathbf{x} \rangle))$$
$$\Pr[h(\mathbf{x}) == h(\mathbf{y})] = v + \frac{1 - v}{m} \approx v.$$
where $v = \Pr[\operatorname{sign}(\langle \mathbf{g}, \mathbf{x} \rangle) == \operatorname{sign}(\langle \mathbf{g}, \mathbf{y} \rangle)]$

SIMHASH ANALYSIS



 $Pr[h(\mathbf{x}) == h(\mathbf{y})] \approx$ probability \mathbf{x} and \mathbf{y} are on the same side of hyperplane orthogonal to \mathbf{g} .