CS-GY 9223 D: Lecture 4

Near neighbor search + locality sensitive
hashing

NYU Tandon School of Engineering, Prof. Christopher Musco



EUCLIDEAN DIMENSIONALITY REDUCTION

Lemma (Johnson-Lindenstrauss, 1984)

For any set of n data points qu, ..., qn € RY there exists a
linear map N : RY — Rf where k = 0 (log”) such that for all

L

(1=e)llai — qjll2 < |Ng; — Ag;ll2 < (1 + €)la; — gj2-




RANDOMIZED JL CONSTRUCTIONS

s LN(0,1).

. or each entry equals =+ 1 with equal probability.

N e R4 be chosen so that each entry equals

>> Pi = randn(m,d); >> Pi = 2krandi(2,m,d)-3;
>> s = (1/sqrt(m))*Pixq; >> s = (1/sqrt(m))*Pixq;

Often called “random projections”.



SIMILARITY SKETCHING
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SIMILARITY SKETCHING

Definition (Jaccard Similarity)

lgny| #of non-zero entries in common
Sa,y) = = .
’ lquy| total # of non-zero entries

0<J(g,y) <1

Similar result to JL: Given a MinHash sketch with k = 0O (“1%”)
dimensions, we can estimate the Jaccard similarity between all
pairs Xq, ..., Xp with high probability.



NEAR NEIGHBOR SEARCH

Common goal: Find all vectors in database qy,...,q, € R? that
are close to some input query vectory € RY. le. find all of y's
“nearest neighbors” in the database.

- Audio + video search.
- Finding duplicate or near duplicate documents.
- Detecting seismic events.

How does similarity sketching help in these applications?

- Improves runtime of “linear scan” from O(nd) to O(nk).

- Improves space complexity from O(nd) to O(nk). This can
be super important - e.g. if it means the linear scan only
accesses vectors in fast memory.



BEYOND A LINEAR SCAN

New goal: Sublinear o(n) time to find near neighbors.



LOCALITY SENSITIVE HASH FUNCTIONS

Leth:RY — {1,...,m} be a random hash function.

We call h locality sensitive for similarity function s(q,y) if

Prih(q) == h(y)] is:

- Higher when q and y are more similar, i.e. s(q,y) is higher.
- Lower when q and y are more dissimilar, i.e. s(q,y) is
lower.

Locality Sensitive Hash Function

LYPYS~~~=0000



LOCALITY SENSITIVE HASH FUNCTIONS

LSH for s(q,y) equal to Jaccard similarity:

- Let ¢:{0,1}¢ — [0,1] be a single instantiation of MinHash.
- Letg:[0,1 — {1,...,m} be a fully random hash function.

- Let h(q) = g(c(q))-




LOCALITY SENSITIVE HASH FUNCTIONS

LSH for Jaccard similarity:

- Let c: {0,1}Y — [0, 7] be a single instantiation of MinHash.
- Letg:[0,1 — {1,...,m} be a fully random hash function.

- Let h(x) = g(c(x)).
IfJ(a,y) = v,

Pr[h(a) == h(y)] =
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NEAR NEIGHBOR SEARCH

Basic approach for near neighbor search in a database.

Pre-processing:

- Select random LSH function h: {0,1}4 = 1,...,m.
- Create table T with m = O(n) slots.
- Fori=1,...,n, insert g; into T(h(q;)).

Query:

- Want to find near neighbors of inputy € {0,1}7.

- Linear scan through all vectors q € T(h(y)) and return any
that are close toy. Time required is O(d - [T(h(y)]).

"



NEAR NEIGHBOR SEARCH
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NEAR NEIGHBOR SEARCH

Two main considerations:

- False Negative Rate: What's the probability we do not find
a vector that is close to y?

- False Positive Rate: What's the probability that a vector in
T(h(y)) is not close to y?

A higher false negative rate means we miss near neighbors.

A higher false positive rate means increased runtime - we
need to compute J(q,y) for every q € T(h(y)) to check if it's
actually close toy.
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REDUCING FALSE NEGATIVE RATE

Suppose the nearest database point q has J(y,q) = .4.

What's the probability we do not find g?

14



REDUCING FALSE NEGATIVE RATE

qq/92|93|94

<
c|zq3|

T

N
a ‘ ‘ q, oee q,

N
\ﬁqaq“
T;

Pre-processing:

- Select t independent LSH's hy,..., he: {0,139 = 1,...,m.
- Create tables Ty, ..., Tt, each with m slots.
- Fori=1,...,n,j=1,...,t insert q; into T;(h;(q;)).
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REDUCING FALSE NEGATIVE RATE

Query:

- Want to find near neighbors of input'y € {0,1}9.

- Linear scan through all vectors in
Ta(h1(y)) U Ta(ha(y)) U - ..., Te(he(y))-



REDUCING FALSE NEGATIVE RATE

Query:

- Want to find near neighbors of input'y € {0,1}9.

- Linear scan through all vectors in
Ta(h1(y)) U Ta(ha(y)) U - ..., Te(he(y))-

Suppose the nearest database point q has J(y,q) = .4.

What's the probability we find g?



WHAT HAPPENS TO FALSE POSITIVES?

Suppose there is some other database point z with J(y,z) = .2.
What is the probability we will need to compute J(z,y) in our
hashing scheme with one table?

In the new scheme with t = 10 tables?



REDUCING FALSE POSITIVES

Change our locality sensitive hash function.

Tunable LSH for Jaccard similarity:

- Choose parameterr e Z™.

- Letcy,...,cs: {0,139 = [0,1] be random MinHash.

- Letg:[0,1]° — {1,...,m} be a fully random hash function.
- Let h(x) = g(c1(X), ..., c(X)).

r “bands”

c(q)

cw | | |

a)
L J

Y

M )

N
18

1 2 m




REDUCING FALSE POSITIVES

Tunable LSH for Jaccard similarity:

- Choose parameter r € Z+.

- Letcy,...,cs: {0,139 = [0,1] be random MinHash.

- Letg:[0,1]°* — {1,...,m} be a fully random hash function.
- Let h(x) = g(c1(X), . . ., c(X)).

IfJ(q,y) = v, then Pr{h(q) == h(y)] =

19



I
(%2]
—
Ll
-
a4}
<
=
)
[t

- @ @ ™~ @ w < @
= =1 S =) = = =

02

Anpqeqoad worsifjoo

Jaccard similarity v

20



TUNABLE LSH

Full LSH cheme has two parameters to tune:

T1
r “bands” ]
Gala)|ci(q) c,dq) ]
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= | T —
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TUNABLE LSH

Effect of increasing number of tables t on:

False Negatives False Positives

Effect of increasing number of bands r on:

False Negatives False Positives
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SOME EXAMPLES

Choose tables t large enough so false negative rate to 1%.
Parameter: r = 1.

Chance we find q with J(y,q) = .8:

Chance we need to check z with J(y,z) = .4:
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SOME EXAMPLES

Choose tables t large enough so false negative rate to 1%.
Parameter: r = 2.

Chance we find q with J(y,q) = .8:

Chance we need to check z with J(y,z) = .4:

2%



SOME EXAMPLES

Choose tables t large enough so false negative rate to 1%.
Parameter: r = 5.

Chance we find q with J(y,q) = .8:

Chance we need to check z with J(y,z) = .4:
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S-CURVE TUNING

Probability we check q when queryingy if J(q,y) = v:
~1—(1=Vv)

collision probability
]
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r=51t=5
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S-CURVE TUNING

Probability we check q when queryingy if J(q,y) = v:
~1—(1=Vv)

collision probability
o o & © o o o ®
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°

°
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r=5,t=140
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S-CURVE TUNING

Probability we check q when queryingy if J(q,y) = v:
~1—(1=Vv)

collision probability
]
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Jaccard similarity v
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r=40,t=5
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S-CURVE TUNING

Probability we check q when queryingy if J(q,y) = v:
1= v

05

collision probability

0 o1 02 03 o4 05 08 07 08 03 1
Jaccard similarity v

Increasing both r and t gives a steeper curve.

Better for search, but worse space complexity. 28



FIXED THRESHOLD

Use Case 1: Fixed threshold.
- Shazam wants to find match to audio clip y in a database of 10
million clips.
- There are 10 true matches with J(y, q) > .9.
- There are 10,000 near matches with J(y,q) € [.7,.9].
- All other items have J(y,q) < .7.

With s = 25 and t = 40,

- Hit probability for J(y,q) > .9 is > 1— (1 —.9%)% = 95
- Hit probability for J(y,q) € [.7,.9] is <1— (1 —.9%)% = .95
- Hit probability for J(y,q) < .7is <1— (1 —.7%)* = .005

Expected total number of items checked:

.95-104.95-10,000 4 .005 - 9,989,990 ~ 60,000 <« 10,000, 000. 30



FIXED THRESHOLD

Space complexity: 40 hash tables ~ 40 - O(n).

Directly trade space for fast search.

31



FIXED THRESHOLD R

Concrete worst case result:
Theorem (Indyk, Motwani, 1998)
If there exists some q with ||q — y|lo < R, return a vector q
with || —y|lo < C-Rin:
« Time: O (n"/©).
- Space: O (n™/9).

lla — yllo = "hamming distance” = number of elements that
differ between q and y.

32



APPROXIMATE NEAREST NEIGHBOR SEARCH

Theorem (Indyk, Motwani, 1998)
Let g be the closest database vector toy. Return a vector q
with [[§ —yllo < C-[lq —yllo in:

- Time: O (n"/©).

- Space: O (n'+V/).
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OTHER LSH FUNCTIONS

Good locality sensitive hash functions exists for many other
similarity measures.

Cosine similarity cos (6(x,y)) = ||X<||);,\3\/3>/H2:

—1<cos(8(x,y)) <.

34



COSINE SIMILARITY

Cosine similarity is natural “inverse” for Euclidean distance.

Euclidean distance ||x — y||3:

- Suppose for simplicity that ||x||3 = |ly||3 = 1.
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SIMHASH

Locality sensitive hash for cosine similarity:

- Let g € RY be randomly chosen with each entry (0, 1).

- Letf: {-1,1} = {1,...,m} be a uniformly random hash
function.

- h:RY— {1,...,m} is definied h(x) = f(sign((g,x))).

If cos(6(x,y)) = v, what is Pr[h(x) == h(y)]?

36



SIMHASH ANALYSIS

Theorem: If cos(6(x,y)) = v, then

Prih(x) == h(y)] = 1— & =1_ ')

s ™

[l

cos(0)+1
— 5

collision probability
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SIMHASH

SimHash can be tuned, just like our MinHash based LSH
function for Jaccard similarity:

- Letg,...,g € RY be randomly chosen with each entry
N(0,1).

- Letf: {-1,1} = {1,...,m} be a uniformly random hash
function.

- h:RY = {1,...,m} is defined
h(x) = f([sign((g1, X)), . . ., sign((gr, X))]).

Prin) == h) = (1- %)

38



SIMHASH ANALYSIS

Y

h(x) = f(sign((g,x)))
Prin(x) == h(y)] = v+ Y ~v.
where v = Pr[sign((g,x)) == sign((g,y))] 39



SIMHASH ANALYSIS

Pr[h(x) == h(y)] ~ probability x and y are on the same side of
hyperplane orthogonal to g.
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