# CS-GY 9223 D: Lecture 3 Supplemental The Johnson-Lindenstrauss Lemma

NYU Tandon School of Engineering, Prof. Christopher Musco

## SKETCHING ALGORITHMS

# Abstract architecture of a sketching algorithm:

- Given a dataset  $\underline{D} = \underline{d_1}, \dots, \underline{d_n}$  with n pieces of data, we want to output f(D) for some function f.
- Sketch phase: For each  $i \in 1, ..., n$ , compute  $s_i = C(d_i)$ , where C is some compression function and  $|s_i| \ll d_i$ .
- Process phase: Using (lower dimensional) dataset  $s_1, \ldots, s_n$ , compute an approximation to f(D).



Better space complexity, communication complexity, runtime, all at once.

#### **BINARY VECTOR COMPRESSION**

We already saw a powerful application of sketching (the MinHash algorithm) to compressing binary vectors.



Let us estimate the Jaccard similarity between any two binary vectors  $\mathbf{q}$  and  $\mathbf{y}$  using the information in  $C(\mathbf{q})$  and  $C(\mathbf{y})$  alone.



Euclidean norm / distance:

В

- Given  $\underline{\mathbf{q}} \in \mathbb{R}^d$ ,  $\|\mathbf{q}\|_2 = \sqrt{\sum_{i=1}^d q(i)^2}$ .
- Given  $\mathbf{q}, \mathbf{y} \in \mathbb{R}^d$ , distance defined as  $\|\mathbf{q} \mathbf{y}\|_2$ .

Can we find compact sketches that preserve Euclidean distance, just as we did for Jaccard similarity?

# Lemma (Johnson-Lindenstrauss, 1<u>984</u>)

n cc d

For any set of n data points  $\underline{\mathbf{q}}_1, \dots, \underline{\mathbf{q}}_n \in \mathbb{R}^d$  there exists a <u>linear map</u>  $\underline{\Pi} : \mathbb{R}^d \to \mathbb{R}^k$  where  $k = O\left(\frac{\log n}{\varepsilon^2}\right)$  such that <u>for all</u>  $\underline{i}, \underline{j}$ ,

$$\left((1-\epsilon)\|\mathbf{q}_i-\mathbf{q}_j\|_2\right) \leq \left(\|\underline{\mathbf{\Pi}}\mathbf{q}_i-\mathbf{\Pi}\mathbf{q}_j\|_2\right) \leq \left((1+\epsilon)\|\mathbf{q}_i-\mathbf{q}_j\|_2\right)$$

$$k \leq s = k \qquad \Pi$$

$$k = 0 \left(\frac{\log \pi}{4\pi}\right)$$



Please remember: This is equivalent to:

# Lemma (Johnson-Lindenstrauss, 1984)

For any set of n data points  $\mathbf{q}_1, \dots, \mathbf{q}_n \in \mathbb{R}^d$  there exists a linear map  $\Pi : \mathbb{R}^d \to \mathbb{R}^k$  where  $k = O\left(\frac{\log n}{\epsilon^2}\right)$  such that for all  $\underline{i,j}$ ,

$$(1-\epsilon)\|\mathbf{q}_{i}-\mathbf{q}_{j}\|_{2}^{2} \leq \|\mathbf{\Pi}\mathbf{q}_{i}-\mathbf{\Pi}\mathbf{q}_{j}\|_{2}^{2} \leq (1+\epsilon)\|\mathbf{q}_{i}-\mathbf{q}_{j}\|_{2}^{2}.$$

because for small  $\epsilon$ ,  $(1 + \epsilon)^2 = \underbrace{1 + O(\epsilon)}_{}$  and  $(1 - \epsilon)^2 = \underbrace{1 - O(\epsilon)}_{}$ .

And this is equivalent to:

# Lemma (Johnson-Lindenstrauss, 1984)

For any set of n data points  $\mathbf{q}_1, \dots, \mathbf{q}_n \in \mathbb{R}^d$  there exists a <u>linear map</u>  $\Pi : \mathbb{R}^d \to \mathbb{R}^k$  where  $k = O\left(\frac{\log n}{\epsilon^2}\right)$  such that <u>for all</u>  $\underline{i,j}$ ,

$$(1-\epsilon)\|\Pi q_i - \Pi q_j\|_2^2 \le \|q_i - q_j\|_2^2 \le (1+\epsilon)\|\Pi q_i - \Pi q_j\|_2^2.$$

because for small  $\epsilon$ ,  $\frac{1}{1+\epsilon} = 1 - O(\epsilon)$  and  $\frac{1}{1-\epsilon} = 1 + O(\epsilon)$ .

Remarkably,  $\Pi$  can be chosen <u>completely at random!</u>

One possible construction: Random Gaussian.

$$\mathbf{\Pi}_{i,j} = \frac{1}{\sqrt{k}} \mathcal{N}(0,1)$$

The map  $\Pi$  is <u>oblivious</u> to the data set. This stands in contrast to e.g. PCA, amoung other differences.

[Indyk, Motwani 1998] [Arriage, Vempala 1999] [Achlioptas 2001] [Dasgupta, Gupta 2003].

Many other possible choices suffice – you can use random  $\{+1, -1\}$  variables, sparse random matrices, pseudorandom  $\Pi$ . Each with different advantages.

#### RANDOMIZED JL CONSTRUCTIONS

Let  $\Pi \in \mathbb{R}^{k \times d}$  be chosen so that each entry equals  $\frac{1}{\sqrt{k}}\mathcal{N}(0,1)$ . ... or each entry equals  $\frac{1}{\sqrt{k}} \pm 1$  with equal probability.



A random orthogonal matrix also works. I.e. with  $\Pi\Pi^T = I_{k \times k}$ . For this reason, the JL operation is often called a "<u>random</u> projection", even though it technically isn't a projection when entries are i.i.d.

# RANDOM PROJECTION



Intuitively, close points will remain close after projection, and far points will remain far.

# Intermediate result:

# Lemma (Distributional JL Lemma)

Let  $\underline{\Pi} \in \mathbb{R}^{k \times d}$  be chosen so that each entry equals  $\frac{1}{\sqrt{k}} \mathcal{N}(0,1)$ , where  $\mathcal{N}(0,1)$  denotes a standard Gaussian random variable. If we choose  $k = O\left(\frac{\log(1/\delta)}{\epsilon_2^2}\right)$ , then for any vector  $\mathbf{x}$ , with probability  $(1 - \delta)$ :

$$(1 - \epsilon) \|\mathbf{x}\|_2^2 \le \|\mathbf{\Pi}\mathbf{x}\|_2^2 \le (1 + \epsilon) \|\mathbf{x}\|_2^2$$

Given this lemma, how do we prove the traditional Johnson-Lindenstrauss lemma?

# JL FROM DISTRIBUTIONAL JL

We have a set of vectors  $\underline{\mathbf{q}}_1, \dots, \underline{\mathbf{q}}_n$ . Fix  $i, j \in 1, \dots, n$ .

Let 
$$\mathbf{x} = \underline{\mathbf{q}_i - \mathbf{q}_j}$$
. By linearity,  $\underline{\mathbf{\Pi}}\mathbf{x} = \mathbf{\Pi}(\mathbf{q}_i - \mathbf{q}_j) = \underline{\mathbf{\Pi}}\mathbf{q}_i - \underline{\mathbf{\Pi}}\mathbf{q}_j$ .

By the Distributional JL Lemma, with probability 1  $-\delta$ ,

$$(1 - \epsilon) \|\mathbf{q}_i - \mathbf{q}_j\|_2 \le \|\mathbf{\Pi}\mathbf{q}_i - \mathbf{\Pi}\mathbf{q}_j\|_2 \le (1 + \epsilon) \|\mathbf{q}_i - \mathbf{q}_j\|_2.$$

Finally, set  $\delta = \frac{1}{n^2}$ . Since there are  $< n^2$  total i, j pairs, by a union bound we have that with probability 9/10, the above will hold <u>for all</u> i, j, as long as we compress to:

$$k = O\left(\frac{\log(1/(1/n^2))}{\epsilon^2}\right) = O\left(\frac{\log n}{\epsilon^2}\right)$$
 dimensions.  $\square$ 

Want to argue that, with probability  $(1 - \delta)$ ,

$$(1 - \epsilon) \|\mathbf{x}\|_{2}^{2} \le \|\mathbf{\Pi}\mathbf{x}\|_{2}^{2} \le (1 + \epsilon) \|\mathbf{x}\|_{2}^{2}$$
Claim:  $\mathbb{E}\|\mathbf{\Pi}\mathbf{x}\|_{2}^{2} = \|\mathbf{x}\|_{2}^{2}$ .

Some notation:



So each  $\pi_i$  contains  $\mathcal{N}(0,1)$  entries.

$$\|\mathbf{\Pi}\mathbf{x}\|_{2}^{2} = \sum_{i=1}^{k} \mathbf{s}(i)^{2} = \sum_{i=1}^{k} \left(\frac{1}{\sqrt{k}}\langle \boldsymbol{\pi}_{i}, \mathbf{x} \rangle\right)^{2} = \frac{1}{k} \sum_{i=1}^{k} (\langle \boldsymbol{\pi}_{i}, \mathbf{x} \rangle)^{2}$$

$$= \mathbb{E}\left[\left(\langle \boldsymbol{\pi}_{i}, \mathbf{x} \rangle\right)^{2}\right]$$

$$= \mathbb{E}\left[\left(\langle \boldsymbol{\pi}_{i}, \mathbf{x} \rangle\right)^{2}\right]$$

**Goal**: Prove  $\mathbb{E} \| \mathbf{\Pi} \mathbf{x} \|_{2}^{2} = \| \mathbf{x} \|_{2}^{2}$ .

$$\underbrace{\overline{x_i} \mathbf{x}}_{i} = \underbrace{Z_1 \cdot \mathbf{x}(1)}_{1} + Z_2 \cdot \mathbf{x}(2) + \ldots + Z_d \cdot \mathbf{x}(d)$$
where each  $Z_1, \ldots, Z_d$  is a standard normal  $\underbrace{\mathcal{N}(0, 1)}_{1}$  random

variable.

This implies that  $Z_i \cdot \mathbf{x}(i)$  is a normal  $(\mathcal{N}(0,\mathbf{x}(i)^2))$  random variable.

**Goal**: Prove  $\mathbb{E}\|\mathbf{\Pi}\mathbf{x}\|_2^2 = \|\mathbf{x}\|_2^2$ . Established:  $\mathbb{E}\|\mathbf{\Pi}\mathbf{x}\|_2^2 = \mathbb{E}\left[\left(\langle \boldsymbol{\pi}_i, \mathbf{x} \rangle\right)^2\right]$ 

## STABLE RANDOM VARIABLES

What type of random variable is  $\langle \pi_i, x \rangle$ ?

$$\underbrace{\mathcal{N}(\mu_1, \sigma_1^2) + \mathcal{N}(\mu_2, \sigma_2^2)}_{====} = \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

$$\begin{array}{c}
\langle \boldsymbol{\pi}_{i}, \boldsymbol{x} \rangle = \mathcal{N}(0, \boldsymbol{x}(1)^{2}) + \mathcal{N}(0, \boldsymbol{x}(2)^{2}) + \ldots + \mathcal{N}(0, \boldsymbol{x}(d)^{2}) \\
= \mathcal{N}(0, \|\boldsymbol{x}\|_{2}^{2}). & \stackrel{1}{\geq} \boldsymbol{x}(i)^{2} = \|\boldsymbol{x}\|_{2}^{2} \\
\text{So} \mathbb{E}\|\boldsymbol{\Pi}\boldsymbol{x}\|_{2}^{2} \Rightarrow \mathbb{E}\left[(\langle \boldsymbol{\pi}_{i}, \boldsymbol{x} \rangle)^{2}\right] = \|\boldsymbol{x}\|_{2}^{2} \text{ as desired.}$$

Want to argue that, with probability  $(1 - \delta)$ ,

$$(1 - \epsilon) \|\mathbf{x}\|_2^2 \le \|\mathbf{\Pi}\mathbf{x}\|_2^2 \le (1 + \epsilon) \|\mathbf{x}\|_2^2$$

- 1.  $\mathbb{E} \| \mathbf{\Pi} \mathbf{x} \|_2^2 = \| \mathbf{x} \|_2^2$ .
- 2. Need to use a concentration bound.

$$\|\mathbf{\Pi}\mathbf{x}\|_{2}^{2} = \frac{1}{k} \sum_{i=1}^{k} \left( \langle \boldsymbol{\pi}_{i}, \mathbf{x} \rangle \right)^{2} = \frac{1}{k} \sum_{i=1}^{k} \mathcal{N}(0, \|\mathbf{x}\|_{2}^{2})^{2}$$

"Chi-squared random variable with k degrees of freedom."

# CONCENTRATION OF CHI-SQUARED RANDOM VARIABLES

# Lemma

Let Z be a Chi-squared random variable with <u>k</u> degrees of freedom.

$$Pr[|EZ - Z| \ge \epsilon EZ] \le 2e^{-k\epsilon^{2}/8}$$

$$Z = ||T| \times ||_{2}^{2} \qquad 2 e^{-k} e^{2}/8 = S \quad ||A|C^{2} = O(1008)$$

$$|E(Z] = ||X||_{2}^{2} \qquad ||X||_{2}^{2} = ||X||_{2$$

**Goal**: Prove  $\|\mathbf{\Pi}\mathbf{x}\|_2^2$  concentrates within  $1 \pm \epsilon$  of its expectation, which equals  $\|\mathbf{x}\|_2^2$ .

## SAMPLE APPLICATION

**k-means clustering**: Give data points  $\widehat{a_1}, \ldots, \widehat{a_n} \in \mathbb{R}^d$ , find centers  $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$  to minimize:

$$Cost(\underline{\mu_1}, \dots, \underline{\mu_k}) = \sum_{i=1}^n \min_{j=1,\dots,k} \|\underline{\mu_j} - \mathbf{\alpha};$$

a

 $a_2$ 

•

a<sub>n</sub>

## SAMPLE APPLICATION

**k-means clustering**: Give data points  $\mathbf{a}_1, \dots, \mathbf{a}_n \in \mathbb{R}^d$ , find centers  $\boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_k \in \mathbb{R}^d$  to minimize:

$$Cost(\mu_1, ..., \mu_k) = \sum_{i=1}^n \min_{j=1,...,k} \|\mu_j - \mathbf{\ell}_i\|_2^2$$



# SAMPLE APPLICATION

**k-means clustering**: Give data points  $\mathbf{a}_1, \dots, \mathbf{a}_n \in \mathbb{R}^d$ , find centers  $\boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_k \in \mathbb{R}^d$  to minimize:

$$Cost(\mu_1, ..., \mu_k) = \sum_{i=1}^n \min_{j=1,...,k} \|\mu_j - \mathbf{a}_i\|_2^2$$



NP hard to solve exactly, but there are many good approximation algorithms. All depend at least linearly on the dimension d.

**Approximation scheme**: Find clusters  $\tilde{C}_1, \dots, \tilde{C}_k$  for the  $k = O\left(\frac{\log n}{\epsilon^2}\right)$  dimension data set  $\Pi a_1, \dots, \Pi a_n$ . 6  $IB^k$ 



Argue these clusters are near optimal for  $\mathbf{a}_1, \dots, \mathbf{a}_n$ .

**Equivalent formulation**: Find clusters  $C_1, \ldots, C_k \subseteq \{1, \ldots, n\}$  to minimize:

nt formulation: Find clusters 
$$C_1, \ldots, C_k \subseteq \{1, \ldots, n\}$$
 to
$$C_1 \circ C_2 \circ \ldots \circ C_k$$

$$Cost(C_1, \ldots, C_k) = \sum_{j=1}^k \frac{1}{2|C_j|} \sum_{u,v \in C_j} \|\mathbf{a}_u - \mathbf{a}_v\|_2^2.$$



**Equivalent formulation**: Find clusters  $C_1, \ldots, C_k \subseteq \{1, \ldots, n\}$  to minimize:



$$Cost(C_{1},...,C_{k}) = \sum_{j=1}^{R} \frac{1}{2|C_{j}|} \sum_{u,v \in C_{j}} ||a_{u} - a_{v}||_{2}^{2}$$

$$\widetilde{Cost}(C_{1},...,C_{k}) = \sum_{j=1}^{k} \frac{1}{2|C_{j}|} \sum_{u,v \in C_{j}} ||\Pi a_{u} - \Pi a_{v}||_{2}^{2}$$

$$F_{o} = C_{o} \text{ or } C_{o}$$

25

Let 
$$Cost^* = min Cost(C_1, ..., C_k)$$
 and  $Cost^* = min Cost(C_1, ..., C_k)$ .

Claim:  $(1 - \epsilon)Cost^* \le Cost^* \le (1 + \epsilon)Cost^*$ .

B<sub>1</sub>,... B<sub>1</sub> > ephalo (luples for sixe) dete a<sub>1</sub>,..., a<sub>n</sub>

Cost  $\le Cost (B_1, ... B_n) \le (1 + \epsilon)(cost (B_1, ... B_n))$ 

=  $(1 + \epsilon)(cost^*)$ 

Suppose we use an approximation algorithm to find clusters  $B_1, \ldots, B_k$  such that:

$$\widetilde{\text{Cost}}(\underline{B_1,\ldots,B_k}) \leq (1+\underline{\alpha})\widetilde{\underline{\text{Cost}}^*}$$

Then:

$$Cost(\underline{B_1, \dots, B_k}) \leq \frac{1}{1 - \epsilon} \underbrace{Cost(B_1, \dots, B_k)}_{\leq (1 + \alpha)(1 + O(\epsilon))Cost^*}$$
$$\leq (1 + \alpha)(1 + O(\epsilon))(1 + \epsilon)Cost^*$$
$$= 1 + O(\alpha + \epsilon)Cost^*$$

## CONNECTION TO LAST LECTURE

If high dimensional geometry is so different from low-dimensional geometry, why is <u>dimensionality reduction</u> <u>possible?</u> Doesn't Johnson-Lindenstrauss tell us that high-dimensional geometry can be approximated in low dimensions?

## CONNECTION TO DIMENSIONALITY REDUCTION

**Hard case:**  $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$  are all mutually orthogonal unit vectors:

$$\|\mathbf{x}_i - \mathbf{x}_j\|_2^2 = 2 + 4$$
 for all  $i, j$ .

From our result earlier, in  $O(\log n/\epsilon^2)$  dimensions, there exists  $2^{O(\log n/\epsilon^2)} \ge n$  unit vectors that are close to mutually orthogonal.

 $O(\log n/\epsilon^2)$  = <u>just enough</u> dimensions.