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The Johnson-Lindenstrauss Lemma
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SKETCHING ALGORITHMS

Abstract architecture of a sketching algorithm:

- Given a dataset D = dj, ..., d, with n pieces of data, we
want to output f(D) for some function f.

- Sketch phase: For eachie€1,...,n, compute s; = C(d)),
where C is some compression function and |s;| < d;.

- Process phase: Using (lower dimensional) dataset
S1,...,Sp, COmpute an approximation to f(D).

Better space complexity,
communication complexity,
runtime, all at once.




BINARY VECTOR COMPRESSION

We already saw a powerful application of sketching (the
MinHash algorithm) to compressing binary vectors.
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Let us estimate the Jaccard similarity between any two binary
vectors q and y using the information in C(q) and C(y) alone.




TODAY: EUCLIDEAN DIMENSIONALITY REDUCTION
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Euclidean norm / distance: ) LS

- Given g € R, [|ql2 = /1 9(1)%

- Given q,y € RY, distance defined as ||q — y||,.

Can we find compact sketches that preserve Euclidean
distance, just as we did for Jaccard similarity?



EUCLIDEAN DIMENSIONALITY REDUCTION

Lemma (Johnson-Lindenstrauss, 1984) wee d

For any set of n data points qg,...,qn € RY there exists a
linear map N : RY — R/’? where R = O (loe%”> such that for all
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EUCLIDEAN DIMENSIONALITY REDUCTION

Please remember: This is equivalent to:
Lemma (Johnson-Lindenstrauss, 1984)

.0n € RY there exists a

For any set of n data points qp, . ..
0 (log”) such that for all
/

linear map N : RY — R¥ where k =

1),
\/% o
(1~ ellai—aqjll; < INg; — Ngjll; < (1+€)lla; — qjll-

because for small e, (1+¢€)? =1+ 0(e) and (1—€)? = 1— O(e).
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EUCLIDEAN DIMENSIONALITY REDUCTION

And this is equivalent to:

Lemma (Johnson-Lindenstrauss, 1984)

For any set of n data points qu, ..., qn € RY there exists a
linear map N : RY — R¥ where k = O (log”) such that for all

Iy,

(1-e)INg; — Ngj|3 < [|a; — q|l5 < (1+ €)||Mg; — Ng;|)3.

—_—

- =1-0(€) and 7= =1+ O(e).
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EUCLIDEAN DIMENSIONALITY REDUCTION

Remarkably, T can be chosen completely at random!

One possible construction: Random Gaussian.
1
= N
The map M is oblivious to the data set. This stands in contrast
) S Wit .
to e.g. PCA, amoung other differences.

n N(0,1)
e

( [Indyk, Motwani 1998] [Arriage, Vempala 1999] [Achlioptas 2001]
[Dasgupta, Gupta 2003].

Many other possible choices suffice — you can use random

{+1, -1} variables, sparse random matrices, pseudorandom .
Each with different advantages.



RANDOMIZED JL CONSTRUCTIONS

Let M € R**9 be chosen so that each entry equals ﬁN(O, 1).

.. or each entry equals == + 1 with equal probability.

T

NG

>> Pi = randn(m,d); >> Pi = 2*randi(2,m,d)-3;
>> s = (1/sqrt(m))*Pixq; >> s = (1/sqrt(m))*Pixq;

A random orthogonal matrix also works. l.e. with MM" = lyp.
For this reason, the JL operation is often called a “random
projection”, even though it technically isn't a projection when

—/ . ..
entries are i.i.d.



RANDOM PROJECTION
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Intuitively, close points will remain close after projection, and
far points will remain far.



EUCLIDEAN DIMENSIONALITY REDUCTION

Intermediate result:
Lemma (Distributional JL Lemma)

Let 1 € R be chosen so that each entry equals ﬁN(O, 1),
where N'(0,1) denotes a standard Gaussian random variable.

If we choose k = O (%) then for any vectoé ; )Wfth
=

probability (1 —=0):

(1= e)lIxllz < M]3 < (1 + &) Ix]l2

1



JL FROM DISTRIBUTIONAL JL

We have a set of vectors Qs,...,qs. Fixi,j€1,...,n

Letx=q; — qi — 0 By linearity, I'Ix =N(q; — q;) = Ngq; —Ng;.

By the Distributional JL Lemma, with probability 1 — 4,
(1—e)lla; - qjllz < |Ng; — Ngjll2 < (1+ €)lla; — gjf2-

Finally, set § ="%. Since there are < n? total i,/ pairs, by a
union bound we have that with probability 9/10, the above will
hold for all 1,/, as long as we compress to:

fe:O(mwm) O<l gn) dimensions. O

€2 €2
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PROOF OF DISTRIBUTIONAL JL

N |65 178D
Want to argue that, with probability (1— 4), u=0C == )
(1= oI5 £IMx[3 & (1 + ¢)[Ix[13

Some notation:

/_
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V0T,

M
- ﬁ?a(bfsk oo of 77) -
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So each mr; contains AV(0,1) entries. 3




PROOF OF DISTRIBUTIONAL JL

Goal: Prove E||Mx||3 = ||x]|2.
14



PROOF OF DISTRIBUTIONAL JL

T X> +Z2X(2)—|—+ZdX(d)
where each Zy, ..., 2575 a standard normal (0, 1) random
——

variable.

This implies that Z; - x(1) is a normarandom
variable.

Goal: Prove E[|Mx| = |[x|2. Established: E|[Mx|2 = E {((w,,x))z}

15



STABLE RANDOM VARIABLES

What type of random variable is (m;, x)?

Fact (Stability of Gaussian random variables)

N, 07) + N2, 03) = N (i + p2, 0% + 07)

—_—

= N(Q. IXIB). Loy kNI

S E [((77,-,X>)2} s desired.
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PROOF OF DISTRIBUTIONAL JL

Want to argue that, with probability (1 — ¢),
(1= e)lIxI3 < IMx[I3 < (1+ €)lIx|3

1. E(Nx||3 = [Ix]I5.
2. Need to use a concentration bound.

—

1 k k

P = 2 ™ (X)) = 2 A0, I3

=1 =1

)7_»

“Chi-squared random variable with k degrees of freedom.”

17



CONCENTRATION OF CHI-SQUARED RANDOM VARIABLES

Lemma
Letibe a Chi-squared random variable with R degrees of
dom.
freedom /
Pr{|EZ — Z| > eZ] < 2e~k€'/8
_W eME
Z =17« ”; & = & weroled
2 W &*-cley %)
2 x|
EC e Il 3} </
e (L= Al 1 dixly < 2e —
— — < g >

Goal: Prove ||Mx||3 concentrates within 1+ € of its expectation,
which equals [|x][3. 18



SAMPLE APPLICATION

k-means clustering: Give data point@ . .e RY, find
—_— —
centers p, ..., uy € RY to minimize:

n a‘
Cost(pn, . .., py) = min || —%i||3
(N_17 g_fe) ;J—L--,k”g ill2

a, a
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SAMPLE APPLICATION

k-means clustering: Give data points ai, ..., a, € R? find
centers p, ..., uy € RY to minimize:

n q,
Cost(py, - .-, py) = Zj_rﬁ””,? 1 — %113
=1

a,

H4

=lyeeuy

a;

H3 20



SAMPLE APPLICATION

k-means clustering: Give data points ai, ..., a, € R? find
centers p, ..., uy € RY to minimize:

n
Cost(pr, . . ., pup) = Zj_f?mh e — aill5
g U b

& :

M2
H4
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K-MEANS CLUSTERING

NP hard to solve exactly, but there are many good
approximation algorithms. All depend at least linearly on the

dimension d. Q,,..a, ¢Re

Approximation scheme: Find clusters (s, ..., C for the
k=0 (lo%) dimension data set May, ..., Na,. é i

Argue these clusters are near optimal for as, ..., ap.
22



K-MEANS CLUSTERING

Equivalent formulation: Find clusters Cy,...,C, C {1,...,n} to
minimize: (ot . vl
g e
Cost(Cy, ..., Cp) = Z 2] > llau —avli3.
J=A u,veG

a, a;
7%
H4
an

' €:}]3
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K-MEANS CLUSTERING

Equivalent formulation: Find clusters Cy,...,C, C {1,...,n} to
minimize:

Cost(Cr, ..., Cp Z |C‘ > llau —avll3.

-—/ u,veg

24




K-MEANS CLUSTERING

for (}1\42, Swslers G, -, («

1-9 e, - ©) < Srlo. L) £ (10 ltlore)

s (1+0) Nag-als

. W
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K-MEANS CLUSTERING

Let Cost* = min Cost(Cy, ..., Cg) and
Cost = min Cost(C1,...,C .

Claim: (1 — €)Cost* ¢ Cost” < (1+ €)Cost*.

B B ye sy doles &=
V- o 30 deote ay,.-,an

o+ pe
st < 035%’ (?)\,... ﬁ\) < (’,,Q) Cbs‘\’(%l/“g‘ﬂ>

= (_\4’ Q) C,Oﬁ'\"p
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K-MEANS CLUSTERING

Suppose we use an approximation algorithm to find clusters
B1,...,_B/,?such that:

Cost(By......, Bx) < (1+ a)Cost.

— _—

Then: | + 56@)
: e
Cost(B/h...,B/,?) < — M

<(+ a)(i_g_ge»@j
<(1+a)(1+ O(e))(ﬂt*
=1+ O( v + €)Cost™ \

27



CONNECTION TO LAST LECTURE

If high dimensional geometry is so different from
low-dimensional geometry, why is dimensionality reduction
possible? Doesn't Johnson-Lindenstrauss tell us that
high-dimensional geometry can be approximated in low
dimensions?

28



CONNECTION TO DIMENSIONALITY REDUCTION

“7('. ”q, < “Xj“z‘“ 1

Hard case: 1, ...,X, € R? are all mutually orthogonal unit
vectors:

s

IXi — x5 =2%¢ for all i,j.

’
e —— ve

From our result earlier, in O(log n/e?) dimensions, there exists

20@@,—”_152) > n unit vectors that are close to mutually
orthogonal. /}OU"D“)

O(logn/e?) = just enough dimensions.
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