CS-GY 9223 D: Lecture 3 Supplemental
The Johnson-Lindenstrauss Lemma

NYU Tandon School of Engineering, Prof. Christopher Musco



SKETCHING ALGORITHMS

Abstract architecture of a sketching algorithm:

- Given a dataset D = ds, ..., d, with n pieces of data, we
want to output f(D) for some function f.
- Sketch phase: Foreach i€ 1,...,n, compute s; = C(d),

where C is some compression function and |s;| < d;.

- Process phase: Using (lower dimensional) dataset
S1,...,Sp, compute an approximation to f(D).

Better space complexity,
communication complexity,
runtime, all at once.




BINARY VECTOR COMPRESSION

We already saw a powerful application of sketching (the
MinHash algorithm) to compressing binary vectors.
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Let us estimate the Jaccard similarity between any two binary
vectors q and y using the information in C(q) and C(y) alone.




TODAY: EUCLIDEAN DIMENSIONALITY REDUCTION
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Euclidean norm / distance:

- Given g € RY, ||qll2 = /2L, q(i)2.
- Given q,y € RY, distance defined as ||q — y||..

Can we find compact sketches that preserve Euclidean
distance, just as we did for Jaccard similarity?



EUCLIDEAN DIMENSIONALITY REDUCTION

Lemma (Johnson-Lindenstrauss, 1984)

For any set of n data points qu, ..., qn € RY there exists a
linear map N : RY — Rf where k = 0 (log”) such that for all

L

(1=e)llai — qjll2 < |Ng; — Ag;ll2 < (1 + €)la; — gj2-




EUCLIDEAN DIMENSIONALITY REDUCTION

Please remember: This is equivalent to:

Lemma (Johnson-Lindenstrauss, 1984)

For any set of n data points qq, ..., qn € RY there exists a
linear map N : RY — Rf where k = 0 (log”) such that for all
ILL

(1=e)llai—qjll; < INg; — Ng;ll; < (T + €)lla; — q;ll>-

because for small e, (1+¢€)?> =1+ 0(e) and (1 —€)? =1 — O(e).



EUCLIDEAN DIMENSIONALITY REDUCTION

And this is equivalent to:

Lemma (Johnson-Lindenstrauss, 1984)

For any set of n data points qq, ..., qn € RY there exists a
linear map M : RY — Rf where k = 0 (log”) such that for all
[N}

(1—€)INg; — Najl5 < lla; — q;l13 < (1+ €)[[Ng; — Ng;|3.

because for small e, 11? =1-0(e) and - =14 O(e).



EUCLIDEAN DIMENSIONALITY REDUCTION

Remarkably, T can be chosen completely at random!

One possible construction: Random Gaussian.

1
=T
The map N is oblivious to the data set. This stands in contrast
to e.g. PCA, amoung other differences.

n N(0,1)

[Indyk, Motwani 1998] [Arriage, Vempala 1999] [Achlioptas 2001]
[Dasgupta, Gupta 2003].

Many other possible choices suffice = you can use random
{+1, =1} variables, sparse random matrices, pseudorandom [1.
Each with different advantages.



RANDOMIZED JL CONSTRUCTIONS

Let M € R®™9 be chosen so that each entry equals \/iEN(O, 7).
.. or each entry equals \/LE + 1 with equal probability.

>> Pi = randn(m,d); >> Pi = 2%randi(2,m,d)-3;
>> s = (1/sqrt(m))*Pixq; >> s = (1/sqrt(m))*Pixq;

A random orthogonal matrix also works. l.e. with N7 = I, p.
For this reason, the JL operation is often called a “random
projection”, even though it technically isn’'t a projection when
entries are i.i.d.



RANDOM PROJECTION
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Intuitively, close points will remain close after projection, and

far points will remain far.
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EUCLIDEAN DIMENSIONALITY REDUCTION

Intermediate result:
Lemma (Distributional JL Lemma)

Let N € R**9 be chosen so that each entry equals - ZN(0,7),
where N'(0, 1) denotes a standard Gaussian random var/able.

If we choose k = O (log(w ) then for any vector x, with
probability (1 —9):

(1= lxllz < M5 < (1 + e)Ix]12

"



JL FROM DISTRIBUTIONAL JL

We have a set of vectors q1,...,qn. Fixi,j€1,...,n
Let x = g; — q;. By linearity, Nx = MN(q; — q;) = Nq; — Nq;.
By the Distributional JL Lemma, with probability 1 — ¢,

(1=e)lldi — qjll2 < |Ng; — Ag;ll < (1 + €)la; — g}

Finally, set § = % Since there are < n? total i,j pairs, by a
union bound we have that with probability 9/10, the above will
hold for all 1,j, as long as we compress to:

k:O(W) O(log )dimensions. O

€ 6
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PROOF OF DISTRIBUTIONAL JL

Want to argue that, with probability (1 —4),

(1= e)lIxllz < IMx]lz < (1+ €)lIx]I3

Some notation:

VKT, ]
= 1/Vk) T,
AN T,

So each mrj contains M(0, 1) entries. s



PROOF OF DISTRIBUTIONAL JL

Goal: Prove E||Mx||5 = ||x]|2.
14



PROOF OF DISTRIBUTIONAL JL

<7T,',X>:Z1-X(1)+Zz-X(2)—|—...+Zd'X(d)

where each Zy,...,Z4 is a standard normal A/(0,1) random
variable.

This implies that Z; - x(i) is a normal N(0, x(/)?) random
variable.

Goal: Prove E|[Mx|2 = [[x|%. Established: E[[Mx|? = E [(<7r,-,x>)2]
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STABLE RANDOM VARIABLES

What type of random variable is (m;,x)?

Fact (Stability of Gaussian random variables)

N(p,09) + N(p2,03) = N(p1 + a2, 07 + 03)

(71, X) = N(0,x(1)2) + N(0,%(2)*) + ... + N(0,x(d)?)
= N(0, [Ix]3)-

SO E|Nx|3 =E [(<m,x>)2} = |x|12, as desired.



PROOF OF DISTRIBUTIONAL JL

Want to argue that, with probability (1 —4),

(1= x|z < IMxlz < (1 + e)Ix]12

1. E[INx|1 = [Ix]I5.
2. Need to use a concentration bound.

k 1 3

X = 2 7 (4mis X)) = SN0, IXIR)

i=1 =1

“Chi-squared random variable with k degrees of freedom.”



CONCENTRATION OF CHI-SQUARED RANDOM VARIABLES

Lemma
Let Z be a Chi-squared random variable with k degrees of
freedom.

PrEZ — Z| > €EZ] < 20~ F</8

Goal: Prove ||Mx||3 concentrates within 1+ € of its expectation,
which equals ||x||3. 18



SAMPLE APPLICATION

k-means clustering: Give data points ai, ..., a, € RY, find
centers gy, ..., ur € R to minimize:

gee

n
Costlyar, o) = D0 [~ Xi[3
=1 """

a1 a2
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SAMPLE APPLICATION

k-means clustering: Give data points ai, ..., a, € RY, find
centers gy, ..., ur € R to minimize:

n
Costlpar, ) = 3 1INl —Xi[3
=177

a,

H4

1.

a;

U 20



SAMPLE APPLICATION

k-means clustering: Give data points ai, ..., a, € RY, find
centers gy, ..., ur € R to minimize:

n
Costlp, -, ) = 3 min Iy — a3
j=1 1=

a1 a2

Ha
H4



K-MEANS CLUSTERING

NP hard to solve exactly, but there are many good
approximation algorithms. All depend at least linearly on the
dimension d.

Approximation scheme: Find clusters Cs, ..., Cy for the
k=0 (loﬁ) dimension data set Ma, ..., Na,.
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Argue these clusters are near optimal for as, ..., an.
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K-MEANS CLUSTERING

Equivalent formulation: Find clusters Cy,...,C, C {1,...,n} to
minimize:

Cost(Cy,...,Cp sz > llau —avlf3.

u,ve(;

a, a
fé
H4
a,

el z:}]3
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K-MEANS CLUSTERING

Equivalent formulation: Find clusters Cy,...,C, C {1,...,n} to
minimize:

Cost(Cy,...,Cp sz > llau —avlf3.

u,ve(;

a, a;
Z—""a

n
/0
Y
S 2%



K-MEANS CLUSTERING

R
:
Cost(CrysC) = D iy 2 12w —al
]

u,ved;

C/OxS/t(Q, b .,Ch) = A0 Z Hnau - naVH%
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K-MEANS CLUSTERING

Let Cost* = min Cost(Cy, ..., Ck) and
Cost = min Cost(GCy, ..., Cp).

Claim: (1 — €)Cost* < Cost™ < (14 €)Cost™.
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K-MEANS CLUSTERING

Suppose we use an approximation algorithm to find clusters
Bs,...,B such that:

Cost(By,...,Bx) < (1+ a)Cost’

Then:

1 —
COSt(B17 5000 Bk) < ] COSt(Bq, 0000 Bk)

< (14 a)(1+ O(e))Cost”
< (1+ a)(1+ 0(e))(1 + €)Cost*
=1+ O(«a + €)Cost*
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CONNECTION TO LAST LECTURE

If high dimensional geometry is so different from
low-dimensional geometry, why is dimensionality reduction
possible? Doesn’t Johnson-Lindenstrauss tell us that
high-dimensional geometry can be approximated in low
dimensions?

28



CONNECTION TO DIMENSIONALITY REDUCTION

Hard case: x1, ..., X, € RY are all mutually orthogonal unit
vectors:

1X; — X;||3 =2 for all i, ).

From our result earlier, in O(logn/€?) dimensions, there exists
20(*logn/€’) > 1 ynit vectors that are close to mutually
orthogonal.

O(logn/e?) = just enough dimensions.
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