# CS-GY 9223 D: Lecture 3 Supplemental The Johnson-Lindenstrauss Lemma

NYU Tandon School of Engineering, Prof. Christopher Musco

## SKETCHING ALGORITHMS

# Abstract architecture of a sketching algorithm:

- Given a dataset  $D = d_1, \ldots, d_n$  with *n* pieces of data, we want to output f(D) for some function *f*.
- Sketch phase: For each  $i \in 1, ..., n$ , compute  $s_i = C(d_i)$ , where C is some compression function and  $|s_i| \ll d_i$ .
- **Process phase:** Using (lower dimensional) dataset  $s_1, \ldots, s_n$ , compute an approximation to f(D).



Better space complexity, communication complexity, runtime, all at once. We already saw a powerful application of sketching (the MinHash algorithm) to compressing binary vectors.



Let us estimate the Jaccard similarity between any two binary vectors  $\mathbf{q}$  and  $\mathbf{y}$  using the information in  $C(\mathbf{q})$  and  $C(\mathbf{y})$  alone.

## TODAY: EUCLIDEAN DIMENSIONALITY REDUCTION



Euclidean norm / distance:

- Given  $\mathbf{q} \in \mathbb{R}^d$ ,  $\|\mathbf{q}\|_2 = \sqrt{\sum_{i=1}^d q(i)^2}$ .
- Given  $\mathbf{q}, \mathbf{y} \in \mathbb{R}^d$ , distance defined as  $\|\mathbf{q} \mathbf{y}\|_2$ .

Can we find compact sketches that preserve Euclidean distance, just as we did for Jaccard similarity?

### EUCLIDEAN DIMENSIONALITY REDUCTION

# Lemma (Johnson-Lindenstrauss, 1984)

For any set of n data points  $\mathbf{q}_1, \ldots, \mathbf{q}_n \in \mathbb{R}^d$  there exists a <u>linear map</u>  $\Pi : \mathbb{R}^d \to \mathbb{R}^k$  where  $k = O\left(\frac{\log n}{\epsilon^2}\right)$  such that <u>for all</u> *i*, *j*,

$$(1-\epsilon)\|\mathbf{q}_i-\mathbf{q}_j\|_2 \leq \|\mathbf{\Pi}\mathbf{q}_i-\mathbf{\Pi}\mathbf{q}_j\|_2 \leq (1+\epsilon)\|\mathbf{q}_i-\mathbf{q}_j\|_2.$$



Please remember: This is equivalent to:

Lemma (Johnson-Lindenstrauss, 1984)

For any set of n data points  $\mathbf{q}_1, \ldots, \mathbf{q}_n \in \mathbb{R}^d$  there exists a <u>linear map</u>  $\Pi : \mathbb{R}^d \to \mathbb{R}^k$  where  $k = O\left(\frac{\log n}{\epsilon^2}\right)$  such that <u>for all</u> <u>i,j</u>,

$$(1-\epsilon) \|\mathbf{q}_i - \mathbf{q}_j\|_2^2 \le \|\mathbf{\Pi}\mathbf{q}_i - \mathbf{\Pi}\mathbf{q}_j\|_2^2 \le (1+\epsilon) \|\mathbf{q}_i - \mathbf{q}_j\|_2^2.$$

because for small  $\epsilon$ ,  $(1 + \epsilon)^2 = 1 + O(\epsilon)$  and  $(1 - \epsilon)^2 = 1 - O(\epsilon)$ .

And this is equivalent to:

Lemma (Johnson-Lindenstrauss, 1984)

For any set of n data points  $\mathbf{q}_1, \ldots, \mathbf{q}_n \in \mathbb{R}^d$  there exists a <u>linear map</u>  $\Pi : \mathbb{R}^d \to \mathbb{R}^k$  where  $k = O\left(\frac{\log n}{\epsilon^2}\right)$  such that for all  $\underline{i, j}$ ,

$$(1-\epsilon)\|\mathbf{\Pi}\mathbf{q}_i-\mathbf{\Pi}\mathbf{q}_j\|_2^2 \leq \|\mathbf{q}_i-\mathbf{q}_j\|_2^2 \leq (1+\epsilon)\|\mathbf{\Pi}\mathbf{q}_i-\mathbf{\Pi}\mathbf{q}_j\|_2^2.$$

because for small  $\epsilon$ ,  $\frac{1}{1+\epsilon} = 1 - O(\epsilon)$  and  $\frac{1}{1-\epsilon} = 1 + O(\epsilon)$ .

Remarkably,  $\Pi$  can be chosen <u>completely at random</u>!

One possible construction: Random Gaussian.

$$\mathbf{\Pi}_{i,j} = \frac{1}{\sqrt{k}} \mathcal{N}(0,1)$$

The map **Π** is oblivious to the data set. This stands in contrast to e.g. PCA, amoung other differences.

[Indyk, Motwani 1998] [Arriage, Vempala 1999] [Achlioptas 2001] [Dasgupta, Gupta 2003].

Many other possible choices suffice – you can use random  $\{+1, -1\}$  variables, sparse random matrices, pseudorandom  $\Pi$ . Each with different advantages. Let  $\Pi \in \mathbb{R}^{k \times d}$  be chosen so that each entry equals  $\frac{1}{\sqrt{k}}\mathcal{N}(0,1)$ . ... or each entry equals  $\frac{1}{\sqrt{k}} \pm 1$  with equal probability.

| -2.1384 | 2,9888  | -0.3538 | 8.8229  | 0,5201  | -0,2938 | -1.3320 | -1.3617 | -0.1952 |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| -0.8396 | 0.8252  | -0.8236 | -8.2620 | -0.0208 | -0.8479 | -2.3299 | 0.4550  | -0.2176 |
| 1.3546  | 1.3798  | -1.5771 | -1.7502 | -0.0348 | -1.1201 | -1.4491 | -0.8487 | -0.3031 |
| -1.0722 | -1.0582 | 0.5080  | -8.2857 | -0.7982 | 2.5260  | 0.3335  | -0.3349 | 0.0230  |
| 0.9610  | -0.4686 | 0.2820  | -0.8314 | 1.0187  | 1.6555  | 0.3914  | 0.5528  | 0.0513  |
| 0.1240  | -0.2725 | 0.0335  | -0.9792 | -0.1332 | 0.3075  | 0.4517  | 1.0391  | 0.8261  |
| 1.4367  | 1.0984  | -1.3337 | -1.1564 | -0.7145 | -1.2571 | -0.1303 | -1.1176 | 1.5270  |
| -1.9609 | -0.2779 | 1.1275  | -0.5336 | 1.3514  | -0.8655 | 0.1837  | 1.2607  | 0.4669  |
| -0.1977 | 0.7015  | 0.3502  | -2.0026 | -0.2248 | -0.1765 | -8.4762 | 0.6601  | -0.2097 |
| -1.2078 | -2.0518 | -0.2991 | 8.9642  | -0.5898 | 0.7914  | 8.8620  | -0.0679 | 0.6252  |

>> Pi = randn(m,d);
>> s = (1/sqrt(m))\*Pi\*q;

| -1<br>-1 | -1<br>-1 | -1 | -1 | -1 | -1 | -1 | -1 | 1  | -1 | -1 | -1 | 1  | -1<br>-1 | -1 | 1 -1 | 1  |
|----------|----------|----|----|----|----|----|----|----|----|----|----|----|----------|----|------|----|
| 1        | -1       | -1 | 1  | -1 | 1  | 1  | -1 | -1 | -1 | 1  | -1 | -1 | -1       | 1  | 1    | 1  |
| -1       | -1       | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1        | -1 | 1    | -1 |
| 1        | 1        | -1 | -1 | -1 | -1 | -1 | -1 | 1  | -1 | -1 | 1  | -1 | -1       | -1 | -1   | -1 |

>> Pi = 2\*randi(2,m,d)-3;
>> s = (1/sqrt(m))\*Pi\*q;

A random orthogonal matrix also works. I.e. with  $\Pi\Pi^T = I_{k \times k}$ . For this reason, the JL operation is often called a "random projection", even though it technically isn't a projection when entries are i.i.d.

### RANDOM PROJECTION



Intuitively, close points will remain close after projection, and far points will remain far.

# Intermediate result:

# Lemma (Distributional JL Lemma)

Let  $\mathbf{\Pi} \in \mathbb{R}^{k \times d}$  be chosen so that each entry equals  $\frac{1}{\sqrt{k}}\mathcal{N}(0,1)$ , where  $\mathcal{N}(0,1)$  denotes a standard Gaussian random variable. If we choose  $k = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$ , then for any vector **x**, with probability  $(1 - \delta)$ :

$$(1 - \epsilon) \|\mathbf{x}\|_2^2 \le \|\mathbf{\Pi}\mathbf{x}\|_2^2 \le (1 + \epsilon) \|\mathbf{x}\|_2^2$$

# Given this lemma, how do we prove the traditional Johnson-Lindenstrauss lemma?

## JL FROM DISTRIBUTIONAL JL

We have a set of vectors  $\mathbf{q}_1, \dots, \mathbf{q}_n$ . Fix  $i, j \in 1, \dots, n$ . Let  $\mathbf{x} = \mathbf{q}_i - \mathbf{q}_j$ . By linearity,  $\mathbf{\Pi} \mathbf{x} = \mathbf{\Pi}(\mathbf{q}_i - \mathbf{q}_j) = \mathbf{\Pi} \mathbf{q}_i - \mathbf{\Pi} \mathbf{q}_j$ . By the Distributional JL Lemma, with probability  $1 - \delta$ ,

$$(1-\epsilon)\|\mathbf{q}_i-\mathbf{q}_j\|_2 \le \|\mathbf{\Pi}\mathbf{q}_i-\mathbf{\Pi}\mathbf{q}_j\|_2 \le (1+\epsilon)\|\mathbf{q}_i-\mathbf{q}_j\|_2.$$

Finally, set  $\delta = \frac{1}{n^2}$ . Since there are  $< n^2$  total *i*, *j* pairs, by a union bound we have that with probability 9/10, the above will hold <u>for all</u> *i*, *j*, as long as we compress to:

$$k = O\left(\frac{\log(1/(1/n^2))}{\epsilon^2}\right) = O\left(\frac{\log n}{\epsilon^2}\right) \text{ dimensions.} \quad \Box$$

# PROOF OF DISTRIBUTIONAL JL

Want to argue that, with probability  $(1 - \delta)$ ,  $(1 - \epsilon) \|\mathbf{x}\|_2^2 \le |\mathbf{\Pi}\mathbf{x}\|_2^2 \le (1 + \epsilon) \|\mathbf{x}\|_2^2$ 

Claim:  $\mathbb{E} \| \mathbf{\Pi} \mathbf{x} \|_2^2 = \| \mathbf{x} \|_2^2$ .

Some notation:



So each  $\pi_i$  contains  $\mathcal{N}(0, 1)$  entries.

# PROOF OF DISTRIBUTIONAL JL

$$\|\mathbf{\Pi}\mathbf{x}\|_{2}^{2} = \sum_{i}^{k} \mathbf{s}(i)^{2} = \sum_{i}^{k} \left(\frac{1}{\sqrt{k}} \langle \boldsymbol{\pi}_{i}, \mathbf{x} \rangle\right)^{2} = \frac{1}{k} \sum_{i}^{k} \left(\langle \boldsymbol{\pi}_{i}, \mathbf{x} \rangle\right)^{2}$$
$$\mathbb{E}\left[\|\mathbf{\Pi}\mathbf{x}\|_{2}^{2}\right] = \frac{1}{k} \sum_{i}^{k} \mathbb{E}\left[\left(\langle \boldsymbol{\pi}_{i}, \mathbf{x} \rangle\right)^{2}\right]$$
$$= \mathbb{E}\left[\left(\langle \boldsymbol{\pi}_{i}, \mathbf{x} \rangle\right)^{2}\right]$$

# **Goal**: Prove $\mathbb{E} \| \mathbf{\Pi} \mathbf{x} \|_{2}^{2} = \| \mathbf{x} \|_{2}^{2}$ .

$$\langle \boldsymbol{\pi}_i, \mathbf{x} \rangle = Z_1 \cdot \mathbf{x}(1) + Z_2 \cdot \mathbf{x}(2) + \ldots + Z_d \cdot \mathbf{x}(d)$$

where each  $Z_1, \ldots, Z_d$  is a standard normal  $\mathcal{N}(0, 1)$  random variable.

This implies that  $Z_i \cdot \mathbf{x}(i)$  is a normal  $\mathcal{N}(0, \mathbf{x}(i)^2)$  random variable.

**Goal**: Prove 
$$\mathbb{E} \| \mathbf{\Pi} \mathbf{x} \|_2^2 = \| \mathbf{x} \|_2^2$$
. Established:  $\mathbb{E} \| \mathbf{\Pi} \mathbf{x} \|_2^2 = \mathbb{E} \left[ \left( \langle \boldsymbol{\pi}_i, \mathbf{x} \rangle \right)^2 \right]$ 

What type of random variable is  $\langle \pi_i, x \rangle$ ?

Fact (Stability of Gaussian random variables)

$$\mathcal{N}(\mu_1, \sigma_1^2) + \mathcal{N}(\mu_2, \sigma_2^2) = \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

$$\langle \boldsymbol{\pi}_i, \mathbf{x} \rangle = \mathcal{N}(0, \mathbf{x}(1)^2) + \mathcal{N}(0, \mathbf{x}(2)^2) + \ldots + \mathcal{N}(0, \mathbf{x}(d)^2)$$
  
=  $\mathcal{N}(0, \|\mathbf{x}\|_2^2).$ 

So 
$$\mathbb{E} \| \mathbf{\Pi} \mathbf{x} \|_2^2 = \mathbb{E} \left[ (\langle \boldsymbol{\pi}_i, \mathbf{x} \rangle)^2 \right] = \| \mathbf{x} \|_2^2$$
, as desired.

Want to argue that, with probability  $(1 - \delta)$ ,

$$(1 - \epsilon) \|\mathbf{x}\|_2^2 \le \|\mathbf{\Pi}\mathbf{x}\|_2^2 \le (1 + \epsilon) \|\mathbf{x}\|_2^2$$

1.  $\mathbb{E} \| \mathbf{\Pi} \mathbf{x} \|_2^2 = \| \mathbf{x} \|_2^2$ .

2. Need to use a concentration bound.

$$\|\mathbf{\Pi}\mathbf{x}\|_{2}^{2} = \frac{1}{k} \sum_{i=1}^{k} (\langle \boldsymbol{\pi}_{i}, \mathbf{x} \rangle)^{2} = \frac{1}{k} \sum_{i=1}^{k} \mathcal{N}(0, \|\mathbf{x}\|_{2}^{2})$$

"Chi-squared random variable with k degrees of freedom."

#### Lemma

Let Z be a Chi-squared random variable with k degrees of freedom.

$$\Pr[|\mathbb{E}Z - Z| \ge \epsilon \mathbb{E}Z] \le 2e^{-k\epsilon^2/8}$$

**Goal**: Prove  $\|\Pi \mathbf{x}\|_2^2$  concentrates within  $1 \pm \epsilon$  of its expectation, which equals  $\|\mathbf{x}\|_2^2$ .

**k-means clustering**: Give data points  $\mathbf{a}_1, \ldots, \mathbf{a}_n \in \mathbb{R}^d$ , find centers  $\boldsymbol{\mu}_1, \ldots, \boldsymbol{\mu}_k \in \mathbb{R}^d$  to minimize:

$$Cost(\boldsymbol{\mu}_1,\ldots,\boldsymbol{\mu}_k) = \sum_{i=1}^n \min_{j=1,\ldots,k} \|\boldsymbol{\mu}_j - \boldsymbol{X}_i\|_2^2$$



**k-means clustering**: Give data points  $\mathbf{a}_1, \ldots, \mathbf{a}_n \in \mathbb{R}^d$ , find centers  $\boldsymbol{\mu}_1, \ldots, \boldsymbol{\mu}_k \in \mathbb{R}^d$  to minimize:

$$Cost(\boldsymbol{\mu}_1,\ldots,\boldsymbol{\mu}_k) = \sum_{i=1}^n \min_{j=1,\ldots,k} \|\boldsymbol{\mu}_j - \boldsymbol{X}_i\|_2^2$$



**k-means clustering**: Give data points  $\mathbf{a}_1, \ldots, \mathbf{a}_n \in \mathbb{R}^d$ , find centers  $\boldsymbol{\mu}_1, \ldots, \boldsymbol{\mu}_k \in \mathbb{R}^d$  to minimize:

$$Cost(\boldsymbol{\mu}_1,\ldots,\boldsymbol{\mu}_k) = \sum_{i=1}^n \min_{j=1,\ldots,k} \|\boldsymbol{\mu}_j - \mathbf{a}_i\|_2^2$$



NP hard to solve exactly, but there are many good approximation algorithms. All depend at least linearly on the dimension *d*.

**Approximation scheme**: Find clusters  $\tilde{C}_1, \ldots, \tilde{C}_k$  for the  $k = O\left(\frac{\log n}{\epsilon^2}\right)$  dimension data set  $\Pi \mathbf{a}_1, \ldots, \Pi \mathbf{a}_n$ .



Argue these clusters are near optimal for  $\mathbf{a}_1, \ldots, \mathbf{a}_n$ .

**Equivalent formulation**: Find clusters  $C_1, \ldots, C_k \subseteq \{1, \ldots, n\}$  to minimize:

$$Cost(C_1,...,C_k) = \sum_{j=1}^k \frac{1}{2|C_j|} \sum_{u,v \in C_j} \|\mathbf{a}_u - \mathbf{a}_v\|_2^2.$$



**Equivalent formulation**: Find clusters  $C_1, \ldots, C_k \subseteq \{1, \ldots, n\}$  to minimize:

$$Cost(C_1,...,C_k) = \sum_{j=1}^k \frac{1}{2|C_j|} \sum_{u,v \in C_j} \|\mathbf{a}_u - \mathbf{a}_v\|_2^2.$$





# K-MEANS CLUSTERING

$$Cost(C_1, ..., C_k) = \sum_{j=1}^k \frac{1}{2|C_j|} \sum_{u, v \in C_j} \|\mathbf{a}_u - \mathbf{a}_v\|_2^2$$
$$\widetilde{Cost}(C_1, ..., C_k) = \sum_{j=1}^k \frac{1}{2|C_j|} \sum_{u, v \in C_j} \|\Pi \mathbf{a}_u - \Pi \mathbf{a}_v\|_2^2$$

### K-MEANS CLUSTERING

Let  $Cost^* = min Cost(C_1, ..., C_k)$  and  $\widetilde{Cost}^* = min \widetilde{Cost}(C_1, ..., C_k)$ . Claim:  $(1 - \epsilon)Cost^* \le \widetilde{Cost}^* \le (1 + \epsilon)Cost^*$ . Suppose we use an approximation algorithm to find clusters  $B_1, \ldots, B_k$  such that:

$$\widetilde{Cost}(B_1,\ldots,B_k) \leq (1+\alpha)\widetilde{Cost}^*$$

Then:

$$Cost(B_1, \dots, B_k) \le \frac{1}{1 - \epsilon} \widetilde{Cost}(B_1, \dots, B_k)$$
$$\le (1 + \alpha)(1 + O(\epsilon))\widetilde{Cost}^*$$
$$\le (1 + \alpha)(1 + O(\epsilon))(1 + \epsilon)Cost^*$$
$$= 1 + O(\alpha + \epsilon)Cost^*$$

If high dimensional geometry is so different from low-dimensional geometry, why is <u>dimensionality reduction</u> <u>possible?</u> Doesn't Johnson-Lindenstrauss tell us that high-dimensional geometry can be approximated in low dimensions? **Hard case:**  $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^d$  are all mutually orthogonal unit vectors:

$$\|\mathbf{x}_i - \mathbf{x}_j\|_2^2 = 2 \qquad \qquad \text{for all } i, j.$$

From our result earlier, in  $O(\log n/\epsilon^2)$  dimensions, there exists  $2^{O(\epsilon^2 \cdot \log n/\epsilon^2)} \ge n$  unit vectors that are close to mutually orthogonal.

 $O(\log n/\epsilon^2)$  = just enough dimensions.