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sketching algorithms

Abstract architecture of a sketching algorithm:

• Given a dataset D = d1, . . . ,dn with n pieces of data, we
want to output f(D) for some function f.

• Sketch phase: For each i ∈ 1, . . . ,n, compute si = C(di),
where C is some compression function and |si| ≪ di.

• Process phase: Using (lower dimensional) dataset
s1, . . . , sn, compute an approximation to f(D).

Better space complexity,
communication complexity,
runtime, all at once.
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binary vector compression

We already saw a powerful application of sketching (the
MinHash algorithm) to compressing binary vectors.

Let us estimate the Jaccard similarity between any two binary
vectors q and y using the information in C(q) and C(y) alone.
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today: euclidean dimensionality reduction

Euclidean norm / distance:

• Given q ∈ Rd, ∥q∥2 =
√∑d

i=1 q(i)2.
• Given q, y ∈ Rd, distance defined as ∥q− y∥2.

Can we find compact sketches that preserve Euclidean
distance, just as we did for Jaccard similarity?

4



euclidean dimensionality reduction

Lemma (Johnson-Lindenstrauss, 1984)
For any set of n data points q1, . . . ,qn ∈ Rd there exists a
linear map Π : Rd → Rk where k = O

(
log n
ϵ2

)
such that for all

i, j,

(1− ϵ)∥qi − qj∥2 ≤ ∥Πqi −Πqj∥2 ≤ (1+ ϵ)∥qi − qj∥2.
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euclidean dimensionality reduction

Please remember: This is equivalent to:

Lemma (Johnson-Lindenstrauss, 1984)
For any set of n data points q1, . . . ,qn ∈ Rd there exists a
linear map Π : Rd → Rk where k = O

(
log n
ϵ2

)
such that for all

i, j,

(1− ϵ)∥qi − qj∥22 ≤ ∥Πqi −Πqj∥22 ≤ (1+ ϵ)∥qi − qj∥22.

because for small ϵ, (1+ ϵ)2 = 1+ O(ϵ) and (1− ϵ)2 = 1− O(ϵ).
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euclidean dimensionality reduction

And this is equivalent to:

Lemma (Johnson-Lindenstrauss, 1984)
For any set of n data points q1, . . . ,qn ∈ Rd there exists a
linear map Π : Rd → Rk where k = O

(
log n
ϵ2

)
such that for all

i, j,

(1− ϵ)∥Πqi −Πqj∥22 ≤ ∥qi − qj∥22 ≤ (1+ ϵ)∥Πqi −Πqj∥22.

because for small ϵ, 1
1+ϵ = 1− O(ϵ) and 1

1−ϵ = 1+ O(ϵ).

7



euclidean dimensionality reduction

Remarkably, Π can be chosen completely at random!

One possible construction: Random Gaussian.

Πi,j =
1√
k
N (0, 1)

The map Π is oblivious to the data set. This stands in contrast
to e.g. PCA, amoung other differences.

[Indyk, Motwani 1998] [Arriage, Vempala 1999] [Achlioptas 2001]
[Dasgupta, Gupta 2003].

Many other possible choices suffice – you can use random
{+1,−1} variables, sparse random matrices, pseudorandom Π.
Each with different advantages.
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randomized jl constructions

Let Π ∈ Rk×d be chosen so that each entry equals 1√
k
N (0, 1).

... or each entry equals 1√
k
± 1 with equal probability.

A random orthogonal matrix also works. I.e. with ΠΠT = Ik×k.
For this reason, the JL operation is often called a “random

projection”, even though it technically isn’t a projection when
entries are i.i.d.
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random projection

Intuitively, close points will remain close after projection, and
far points will remain far.
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euclidean dimensionality reduction

Intermediate result:
Lemma (Distributional JL Lemma)
Let Π ∈ Rk×d be chosen so that each entry equals 1√

k
N (0, 1),

where N (0, 1) denotes a standard Gaussian random variable.

If we choose k = O
(
log(1/δ)

ϵ2

)
, then for any vector x, with

probability (1− δ):

(1− ϵ)∥x∥22 ≤ ∥Πx∥22 ≤ (1+ ϵ)∥x∥22

Given this lemma, how do we prove the traditional
Johnson-Lindenstrauss lemma?
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jl from distributional jl

We have a set of vectors q1, . . . ,qn. Fix i, j ∈ 1, . . . ,n.

Let x = qi − qj. By linearity, Πx = Π(qi − qj) = Πqi −Πqj.

By the Distributional JL Lemma, with probability 1− δ,

(1− ϵ)∥qi − qj∥2 ≤ ∥Πqi −Πqj∥2 ≤ (1+ ϵ)∥qi − qj∥2.

Finally, set δ = 1
n2 . Since there are < n2 total i, j pairs, by a

union bound we have that with probability 9/10, the above will
hold for all i, j, as long as we compress to:

k = O
(
log(1/(1/n2))

ϵ2

)
= O

(
logn
ϵ2

)
dimensions.
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proof of distributional jl

Want to argue that, with probability (1− δ),

(1− ϵ)∥x∥22 ≤ |Πx∥22 ≤ (1+ ϵ)∥x∥22

Claim: E∥Πx∥22 = ∥x∥22.
Some notation:

So each πi contains N (0, 1) entries. 13



proof of distributional jl

∥Πx∥22 =
k∑
i
s(i)2 =

k∑
i

(
1√
k
⟨πi, x⟩

)2
=
1
k

k∑
i
(⟨πi, x⟩)2

E
[
∥Πx∥22

]
=
1
k

k∑
i
E
[
(⟨πi, x⟩)2

]
= E

[
(⟨πi, x⟩)2

]

Goal: Prove E∥Πx∥22 = ∥x∥22.
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proof of distributional jl

⟨πi, x⟩ = Z1 · x(1) + Z2 · x(2) + . . .+ Zd · x(d)

where each Z1, . . . , Zd is a standard normal N (0, 1) random
variable.

This implies that Zi · x(i) is a normal N (0, x(i)2) random
variable.

Goal: Prove E∥Πx∥22 = ∥x∥22. Established: E∥Πx∥22 = E
[
(⟨πi, x⟩)2

]
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stable random variables

What type of random variable is ⟨πi, x⟩?

Fact (Stability of Gaussian random variables)

N (µ1, σ
2
1 ) +N (µ2, σ

2
2) = N (µ1 + µ2, σ

2
1 + σ22)

⟨πi, x⟩ = N (0, x(1)2) +N (0, x(2)2) + . . .+N (0, x(d)2)
= N (0, ∥x∥22).

So E∥Πx∥22 = E
[
(⟨πi, x⟩)2

]
= ∥x∥22, as desired.
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proof of distributional jl

Want to argue that, with probability (1− δ),

(1− ϵ)∥x∥22 ≤ ∥Πx∥22 ≤ (1+ ϵ)∥x∥22

1. E∥Πx∥22 = ∥x∥22.
2. Need to use a concentration bound.

∥Πx∥22 =
1
k

k∑
i=1

(⟨πi, x⟩)2 =
1
k

k∑
i=1

N (0, ∥x∥22)

“Chi-squared random variable with k degrees of freedom.”
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concentration of chi-squared random variables

Lemma
Let Z be a Chi-squared random variable with k degrees of
freedom.

Pr[|EZ− Z| ≥ ϵEZ] ≤ 2e−kϵ2/8

Goal: Prove ∥Πx∥22 concentrates within 1± ϵ of its expectation,
which equals ∥x∥22. 18



sample application

k-means clustering: Give data points a1, . . . , an ∈ Rd, find
centers µ1, . . . ,µk ∈ Rd to minimize:

Cost(µ1, . . . ,µk) =
n∑
i=1

min
j=1,...,k

∥µj − Xi∥22
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sample application

k-means clustering: Give data points a1, . . . , an ∈ Rd, find
centers µ1, . . . ,µk ∈ Rd to minimize:

Cost(µ1, . . . ,µk) =
n∑
i=1

min
j=1,...,k

∥µj − Xi∥22
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sample application

k-means clustering: Give data points a1, . . . , an ∈ Rd, find
centers µ1, . . . ,µk ∈ Rd to minimize:

Cost(µ1, . . . ,µk) =
n∑
i=1

min
j=1,...,k

∥µj − ai∥22
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k-means clustering

NP hard to solve exactly, but there are many good
approximation algorithms. All depend at least linearly on the
dimension d.

Approximation scheme: Find clusters C̃1, . . . , C̃k for the
k = O

(
log n
ϵ2

)
dimension data set Πa1, . . . ,Πan.

Argue these clusters are near optimal for a1, . . . , an.
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k-means clustering

Equivalent formulation: Find clusters C1, . . . , Ck ⊆ {1, . . . ,n} to
minimize:

Cost(C1, . . . , Ck) =
k∑
j=1

1
2|Cj|

∑
u,v∈Cj

∥au − av∥22.
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k-means clustering

Equivalent formulation: Find clusters C1, . . . , Ck ⊆ {1, . . . ,n} to
minimize:

Cost(C1, . . . , Ck) =
k∑
j=1

1
2|Cj|

∑
u,v∈Cj

∥au − av∥22.

Exercise: Prove this to your self.
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k-means clustering

Cost(C1, . . . , Ck) =
k∑
j=1

1
2|Cj|

∑
u,v∈Cj

∥au − av∥22

C̃ost(C1, . . . , Ck) =
k∑
j=1

1
2|Cj|

∑
u,v∈Cj

∥Πau − Πav∥22
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k-means clustering

Let Cost∗ = min Cost(C1, . . . , Ck) and
C̃ost

∗
= min C̃ost(C1, . . . , Ck).

Claim: (1− ϵ)Cost∗ ≤ C̃ost
∗
≤ (1+ ϵ)Cost∗.
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k-means clustering

Suppose we use an approximation algorithm to find clusters
B1, . . . ,Bk such that:

C̃ost(B1, . . . ,Bk) ≤ (1+ α)C̃ost
∗

Then:

Cost(B1, . . . ,Bk) ≤
1

1− ϵ
C̃ost(B1, . . . ,Bk)

≤ (1+ α)(1+ O(ϵ))C̃ost
∗

≤ (1+ α)(1+ O(ϵ))(1+ ϵ)Cost∗

= 1+ O(α+ ϵ)Cost∗
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connection to last lecture

If high dimensional geometry is so different from
low-dimensional geometry, why is dimensionality reduction
possible? Doesn’t Johnson-Lindenstrauss tell us that
high-dimensional geometry can be approximated in low
dimensions?

28



connection to dimensionality reduction

Hard case: x1, . . . , xn ∈ Rd are all mutually orthogonal unit
vectors:

∥xi − xj∥22 = 2 for all i, j.

From our result earlier, in O(logn/ϵ2) dimensions, there exists
2O(ϵ2·log n/ϵ2) ≥ n unit vectors that are close to mutually
orthogonal.

O(logn/ϵ2) = just enough dimensions.
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