CS-GY 9223 D: Lecture 2 Supplemental Finish MinHash, Exponential Tail Bounds

NYU Tandon School of Engineering, Prof. Christopher Musco

SKETCHING ALGORITHMS

Abstract architecture of a sketching algorithm:

- Given a (high dimensional) dataset $\underline{D=d_1,\ldots,d_n}$ with n pieces of data each in \mathbb{R}^d .
- Sketch phase: For each $i \in 1, ..., n$, compute $s_j = C(d_j)$, where C is some compression function and $s_i \in \mathbb{R}^k$ for $k \ll d$.
- Process phase: Use (more compact) dataset s_1, \ldots, s_n to approximately compute something about D.

Sketching phase is easily distributed, parallelized, etc. Better space complexity, communication complexity, runtime, all at once.

How does **Shazam** match a song clip against a library of 8 million songs (32 TB of data) in a fraction of a second?

Spectrogram extracted from audio clip.

Processed spectrogram: used to construct audio "fingerprint" $\mathbf{q} \in \{0,1\}^d$.

Each clip is represented by a high dimensional binary vector **q**.

Given q, find any nearby "fingerprint" y in a database – i.e. any y with dist(y,q) small.

Challenges:

- Database is possibly huge: O(nd) bits.
- Expensive to compute dist(y, q): O(d) time.

Goal: Design a more compact sketch for comparing $\mathbf{q}, \mathbf{y} \in \{0, 1\}^d$. Ideally $\ll d$ space/time complexity.

$$C(q) \in \mathbb{R}^{k}$$

$$C(y) \in \mathbb{R}^{k}$$
1 0 1 1 0 0 0 1 0 0 0 1 1 0 1
$$C$$
.45 .68 .10 .92

Homomorphic Compression:

 $C(\mathbf{q})$ should be similar to $C(\mathbf{y})$ if \mathbf{q} is similar to \mathbf{y}

JACCARD SIMILARITY

Definition (Jaccard Similarity)

$$J(q,y) = \frac{|q \cap y|}{|q \cup y|} = \frac{\text{\# of non-zero entries in common}}{\text{total \# of non-zero entries}} \frac{2}{5}$$

Natural similarity measure for binary vectors. $0 \le J(q, y) \le 1$.

Can be applied to any data which has a natural binary representation (more than you might think).

JACCARD SIMILARITY FOR DOCUMENT COMPARISON

"Bag-of-words" model:

How many words do a pair of documents have in common?

JACCARD SIMILARITY FOR DOCUMENT COMPARISON

"Bag-of-words" model:

How many bigrams do a pair of documents have in common?

APPLICATIONS: DOCUMENT SIMILARITY

- Finding duplicate or new duplicate documents or webpages.
- · Change detection for high-speed web caches.
- Finding near-duplicate emails or customer reviews which could indicate spam.

Other types of data with a natural binary representation?

Goal: Design a compact sketch $C: \{0,1\} \to \mathbb{R}^k$:

Homomorphic Compression: Want to use C(q), C(y) to approximately compute the Jaccard similarity J(q,y).

MINHASH

MinHash (Broder, '97):

· Choose k random hash functions

$$\underbrace{h_1}\ldots\underline{h_k}:\{\underline{1,\ldots,n}\}\to\underline{[0,1]}.$$

• For $i \in 1, ..., k$, let $c_i = \min_{j, \mathbf{q}_i = 1} h_i(j)$.

MINHASH

• Choose k random hash functions $h_1, \ldots, h_k : \{1, \ldots, n\} \rightarrow [0, 1].$

• For
$$i \in 1, ..., k$$
, let $c_i = \min_{j, \mathbf{q}_i = 1} h_i(j)$.

• $C(\mathbf{q}) = [c_1, \ldots, c_k].$

MINHASH ANALYSIS

Claim: $Pr[\underline{c_i(q)} = \underline{c_i(y)}] = J(q, y).$

MINHASH ANALYSIS

Every non-zero index in $\mathbf{q} \cup \mathbf{y}$ is equally likely to produce the lowest hash value. $c_i(\mathbf{q}) = c_i(\mathbf{y})$ only if this index is 1 in <u>both</u> \mathbf{q} and \mathbf{y} . There are $\mathbf{q} \cap \mathbf{y}$ such indices. So:

$$\Pr[c_i(q) = c_i(y)] = \frac{q \cap y}{q \cup y} = J(q, y)$$

Return
$$\underbrace{\tilde{j}}_{k} \xrightarrow{1} \underbrace{\sum_{i=1}^{k} \mathbb{1}[\underline{c_i(q)} = \underline{c_i(y)}]}.$$

Unbiased estimate for Jaccard similarity:

$$\mathbb{E}\tilde{J} = \frac{1}{N} \mathbb{Z}_{j=1}^{N} \mathbb{E} \left[\mathbb{I} \left(C_{j} \left(\frac{q}{q} \right) = C_{j} \left(\frac{1}{Q} \right) \right) \right] = \frac{1}{N} \mathbb{Z}_{j=1}^{N} \mathbb{I} \left(\frac{1}{Q} \right)$$

$$= \underbrace{\mathbb{I} \left(\frac{q}{q} \right)}_{= 24} \mathbb{I}_{24}^{N} \mathbb{I}_{$$

The more repetitions, the lower the variance.

MINHASH ANALYSIS

Let J = J(q, y) denote the true Jaccard similarity.

Estimator:
$$\tilde{J} = \frac{1}{k} \sum_{i=1}^{k} \mathbb{1}[c_i(\mathbf{q}) = c_i(\mathbf{y})].$$

$$Var[\tilde{J}] = \frac{1}{k^2} \sum_{i=1}^{k} Var(\mathbb{1}[c_i(\mathbf{q}) = c_i(\mathbf{y})]) \leq \frac{1}{k^2}$$

$$= \int (\mathbf{q}, \mathbf{y}) - \int (\mathbf{q}, \mathbf{y})^2$$
Plug into Chebyshev inequality. How large does k need to be

so that with probability $> 1 - \delta$:

so that with probability
$$> 1 - \delta$$
:
$$|J - \tilde{J}| \le \underline{\epsilon}?$$

$$|J - \tilde{J}| \le \frac{1}{\alpha^2}$$

$$|J - \tilde{J}| = \delta$$

MINHASH ANALYSIS

Chebyshev inequality: As long as $k = O(\frac{1}{e^2\delta})$, then with prob. $1 - \delta$,

$$J(q,y) - \epsilon \le \tilde{J}(C(q),C(y)) \le J(q,y) + \epsilon.$$

And \tilde{J} only takes O(k) time to compute! Independent of original fingerprint dimension d.

However, a linear dependence on $\frac{1}{\delta}$ s not good! Suppose we have a database of n songs slips, and Shazam wants to ensure the similarity between a query \mathbf{q} and $\underline{\text{every song clip }}\mathbf{y}$ is approximated well.

We would need $\delta \approx 1/\mathbf{m}$ I.e. our compression need to use $k = (\mathbf{m})^2$ dimensions, which is far too large!

BEYOND CHEBYSHEV

Motivating question: Is Chebyshev's Inequality tight?

68-95-99 rule for Gaussian bell-curve. $X \sim N(0, \sigma^2)$

Chebyshev's Inequality:

$$\Pr(|X - \mathbb{E}[X]| \ge 1\sigma) \le 100\%$$

$$\Pr(|X - \mathbb{E}[X]| \ge 2\sigma) = 25\%$$

$$\Pr(|X - \mathbb{E}[X]| \ge 3\sigma) = 11\%$$

$$\Pr(|X - \mathbb{E}[X]| \ge 4\sigma) \le 6\%.$$

Truth:

$$\Pr(|X - \mathbb{E}[X]| \ge 1\sigma) \approx 32\%$$

$$\Pr(|X - \mathbb{E}[X]| \ge 2\sigma) \approx 5\%$$

$$\Pr(|X - \mathbb{E}[X]| \ge 3\sigma) \approx 1\%$$

$$\Pr(|X - \mathbb{E}[X]| \ge 4\sigma) \approx .01\%$$

GAUSSIAN CONCENTRATION

For
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
:

$$\Pr[X = \mu \pm x] = \frac{1}{\sqrt{2\sigma^2}}$$

Lemma (Guassian Tail Bound)

For
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
:

$$\leq /a^2$$

$$\sigma^2$$
): $\underline{\varrho} / \underline{\sigma^2}$

$$\Pr[|X - \mathbb{E}X| \ge \alpha \cdot \sigma] \le \underline{O(e^{-\alpha^2/2})}.$$

Standard y-scale.

Logarithmic y-scale.

GAUSSIAN CONCENTRATION

Takeaway: Gaussian random variables concentrate much tighter around their expectation than variance alone predicts.

Why does this matter for algorithm design?

CENTRAL LIMIT THEOREM

Theorem (CLT - Informal)

Any sum of independent, (identically distributed) r.v.'s X_1, \ldots, X_k with mean μ and finite variance σ^2 converges to a Gaussian r.v. with mean $k \cdot \mu$ and variance $k \cdot \sigma^2$, as $k \to \infty$.

$$S = \sum_{i=1}^{n} X_i \longrightarrow \mathcal{N}(\underline{k \cdot \mu}, \underline{k \cdot \sigma^2}).$$

(a) Distribution of # of heads after 10 coin flips, compared to a Gaussian.

(b) Distribution of # of heads after 50 coin flips, compared to a Gaussian.

INDEPENDENCE

Definition (Mutual Independence)

Random variables $X_1, ..., X_k$ are <u>mutually independent</u> if, for all possible values $v_1, ..., v_k$,

$$Pr[X_1 = v_1, \dots, X_k = v_k] = Pr[X_1 = v_1] \cdot \dots \cdot Pr[X_k = v_k]$$

Strictly stronger than pairwise independence.

EXERCISE

You have access to a coin and want to determine if it's ϵ -close to unbiased. To do so, you flip the coin repeatedly and check that the ratio of heads flips is between $1/2 - \epsilon$ and $1/2 + \epsilon$. If it is not, you reject the coin as overly biased.

(a) How many flips k are required so that, with probability $(1 - \delta)$, you do not accidentally reject a truly unbiased coin? The solution with depend on ϵ and δ .

For this problem, we will assume the CLT holds exactly for a sum of independent random variables – i.e., that this sum looks exactly like a Gaussian random variable.

Lemma (Guassian Tail Bound) For $X \sim \mathcal{N}(\mu, \sigma^2)$: $\Pr[|X - \mathbb{E}X| \ge \underline{\alpha \cdot \sigma}] \le O(e^{-\alpha^2/2})$

BACK-OF-THE-ENVELOP CALCULATION

Pr[15-85| 7 96] < ce- 02/2 Pr[| 5- 15 | 7 & Obin) = (ce-q2/2)

Q= O(JIOS(VE)) Pr(15-IES) > O(+U10)(VE))]=8

$$Pr\left[|S - ES| > 2kJ \le 6\right]$$
 $Pr\left[|S - ES| > 96J \le ce^{-\alpha^{2}/2}\right]$

These back-of-the-envelop calculations can be made rigorous! Lots of different "versions" of bound which do so.

- Chernoff bound
- Bernstein bound
- Hoeffding bound
- . . .

Different assumptions on random varibles (e.g. binary, bounded, i.i.d), different forms (additive vs. multiplicative error), etc. Wikipedia is your friend.

Theorem (Chernoff Bound)

Let $\underline{X_1}, X_2, \ldots, \underline{X_k}$ be independent $\{0,1\}$ -valued random variables and let $p_i = \mathbb{E}[X_i]$, where $0 < p_i < 1$. Then the sum $S = \sum_{i=1}^k X_i$, which has mean $\mu = \sum_{i=1}^k p_i$, satisfies

$$\Pr[\underline{S} \ge (\underline{1+\epsilon})\mu] \le e^{\frac{-\epsilon^2\mu}{2+\epsilon}}.$$

and for $0 < \epsilon < 1$

$$\Pr[S \le (\underline{1 - \epsilon})\mu] \le e^{\frac{-\epsilon^2 \mu}{2}}.$$

Theorem (Bernstein Inequality)

Let X_1, X_2, \ldots, X_k be independent random variables with each $X_i \in [-1, 1]$. Let $\mu_i = \mathbb{E}[X_i]$ and $\sigma_i^2 = \text{Var}[X_i]$. Let $\mu = \sum_i \mu_i$ and $\sigma^2 = \sum_i \sigma_i^2$. Then, for $\alpha \leq \frac{1}{2}\sigma$, $S = \sum_i X_i$ satisfies

$$\Pr[|S - \mu| > \alpha \cdot \sigma] \le 2 \exp(-\frac{\alpha^2}{4}).$$

Theorem (Hoeffding Inequality)

Let $X_1, X_2, ..., X_k$ be independent random variables with each $X_i \in \underline{[a_i, b_i]}$. Let $\mu_i = \mathbb{E}[X_i]$ and $\mu = \sum_i \mu_i$. Then, for any $\alpha > 0$, $S = \sum_i X_i$ satisfies:

$$\Pr[|S - \mu| > \alpha] \le 2 \exp(-\frac{\alpha^2}{\sum_{i=1}^k (b_i - a_i)^2}).$$

HOW ARE THESE BOUNDS PROVEN?

Variance is a natural <u>measure of central tendency</u>, but there are others.

$$g^{\text{th}}$$
 central moment: $\mathbb{E}(X - \mathbb{E}X)^{q}$

k=2 gives the variance. Proof of Chebyshev's applies Markov's inequality to the random variable $(X - \mathbb{E}X)^2$).

Idea in brief: Apply Markov's inequality to $\mathbb{E}[(X - \mathbb{E}X)^q]$ for larger q, or more generally to $f(X - \mathbb{E}X)$ for some other non-negative function f. E.g., to $\exp(X - \mathbb{E}X)$.

We will explore this approach in the next problem set.

CHERNOFF BOUND APPLICATION

u= bk

Sample Application: Flip biased coin *k* times: i.e. the coin is heads with probability b. As long as $k \ge O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$,

Corollary of Chernoff bound: Let $S = \sum_{i=1}^{k} X_i$ and $\mu = \mathbb{E}[S]$. For

1-8(1/2) by = 2k

$$0 < \Delta < 1,$$

$$\Pr[|S - \mu| \ge \Delta \mu] \le 2e^{-\Delta^2 \mu/3} \le S \qquad K = O(|Q_{\mu}^{(V)})$$

$$\Delta^* M = O(|Q_{\mu}^{(V)}|)$$

K= 6100 (N)

$$0 < \Delta < 1,$$

$$Pr[|S - \mu| \ge \Delta \mu] \le 2e^{-\Delta^2 \mu/3} \le S \qquad K = O(|\varphi|^{1/2})$$

$$\Delta^{-} \mu = O(|\varphi|^{1/2})$$

$$\Delta = O(|\varphi|^{1/2})$$

$$Pr[|S - \mu| \ge \Delta \mu] \le S$$

$$Pr[|S - \mu| \ge \delta |\varphi|^{1/2}]$$

$$Pr[|S - \mu| \ge \delta |\varphi|^{1/2}]$$

Corollary of Chernoff bound: Let
$$S = \sum_{i=1}^{k} X_i$$
 and $\mu = \mathbb{E}[S]$. For $0 < \Delta < 1$,
$$\Pr[|S - \mu| \ge \Delta \mu] \le 2e^{-\Delta^2 \mu/3} \le S \qquad \text{if } S = 0 \text{ for } S$$

Setup: Let $X_i = \mathbb{1}[i^{th} \text{ flip is heads}]$. Want bound probability that $5 = \sum_{i=1}^{k} X_i$ deviates from it's expectation.

with probability
$$\underline{b}$$
. As long as $k \ge O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$,

$$\Pr[\|\# \text{ heads } - b \cdot k\| \ge \epsilon k] \le \delta$$
Setup: Let $X = \mathbb{I}[i^{th} \text{ flip is heads}]$. Want bound probability that

0(===)

CHERNOFF BOUND APPLICATION

Sample Application: Flip biased coin k times: i.e. the coin is heads with probability b. As long as $k \ge O(\frac{\log(1/\delta)}{\epsilon^2})$,

$$\Pr[|\# \text{ heads} - b \cdot k| \ge \epsilon k] \le \delta$$

Pay very little for higher probability – if you increase the number of coin flips by 2x, δ goes from $1/10 \rightarrow 1/100 \rightarrow 1/10000$

APPLICATION TO MINHASH

Let
$$J = J(q, y)$$
 denote the true laccard similarity.

Estimator: $\tilde{J} = \sum_{i=1}^{k} \mathbb{1}[c_i(q) = c_i(y)]$.

By the analysis above.

$$\Pr[|\tilde{J} - J| \ge \epsilon] = \Pr[|\tilde{J} \cdot k - J \cdot k| \ge \epsilon k] \le \delta$$
 as long as $k = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$. Much better than the $k = O\left(\frac{1}{\delta\epsilon^2}\right)$.

For example, if we had a data base of n=1,000,000 songs, setting $\delta=\frac{1}{n}$ would only require space depending on $\log(n)\approx 14$, instead of on n=1,000,000.

LOAD BALANCING

As in the first video lecture, we want to use concentration bounds to study the randomized load balancing problem. \underline{n} jobs are distributed randomly to \underline{n} servers using a hash function. Let S_i be the number of jobs sent to server i. What's the smallest \underline{B} for which we can prove:

$$Pr[max] \geq B \leq 1/10 \qquad 13 = to(\sqrt{n})$$

Recall: Suffices to prove that, for any
$$i$$
, $\Pr[S_i \ge B] \le 1/10n$:
$$\Pr[max_iS_i \ge B] = \Pr[S_1 \ge B \text{ or } \dots \text{ or } S_1 \ge B]$$

$$\le \Pr[S_1 \ge B] + \dots + \Pr[S_n \ge B] \text{ (union bound)}.$$

LOAD BALANCING

Theorem (Chernoff Bound)

Let $X_1, X_2, ..., X_n$ be independent $\{0, 1\}$ -valued random variables and let $p_i = \mathbb{E}[X_i]$, where $0 < p_i < 1$. Then the sum $S = \sum_{i=1}^{n} X_i$, which has mean $\mu = \sum_{i=1}^{n} p_i$, satisfies

$$\Pr[X \ge (1+\epsilon)\mu] \le e^{\frac{-\epsilon^2\mu}{3+3\epsilon}}.$$

Consider a single bin. Let
$$X_j = 1$$
 [ball j lands in that bin].
$$\mathbb{E}[X_j] = \frac{1}{n}, \text{ so } \mu = 1.$$
 So $\mu = 1$. For $\mu = 1$ and $\mu = 1$. So $\mu = 1$. So $\mu = 1$. So $\mu = 1$. For sufficiently large $\mu = 1$ and $\mu = 1$. So $\mu = 1$ So $\mu = 1$. So $\mu = 1$.

So max load for randomized load balancing is $O(\log n)$! Best we could prove with Chebyshev's was $O(\sqrt{n})$.

Power of 2 Choices: Instead of assigning job to random server, choose 2 random servers and assign to the least loaded. With probability 1/10 the maximum load is bounded by: