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sketching algorithms

Abstract architecture of a sketching algorithm:

• Given a (high dimensional) dataset D = d1, . . . ,dn with n
pieces of data each in Rd.

• Sketch phase: For each i ∈ 1, . . . ,n, compute si = C(di),
where C is some compression function and si ∈ Rk for
k≪ d.

• Process phase: Use (more compact) dataset s1, . . . , sn to
approximately compute something about D.

Sketching phase is easily
distributed, parallelized, etc.
Better space complexity,
communication complexity,
runtime, all at once.
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similarity estimation

How does Shazam match a song clip against a library of 8
million songs (32 TB of data) in a fraction of a second?

Spectrogram extracted
from audio clip.

Processed spectrogram:
used to construct audio
“fingerprint” q ∈ {0, 1}d.

Each clip is represented by a high dimensional binary vector q.
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similarity estimation

Given q, find any nearby “fingerprint” y in a database – i.e. any
y with dist(y,q) small.

Challenges:

• Database is possibly huge: O(nd) bits.
• Expensive to compute dist(y,q): O(d) time.
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similarity estimation

Goal: Design a more compact sketch for comparing
q, y ∈ {0, 1}d. Ideally≪ d space/time complexity.

C(q) ∈ Rk

C(y) ∈ Rk

Homomorphic Compression:

C(q) should be similar to C(y) if q is similar to y.
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jaccard similarity

Definition (Jaccard Similarity)

J(q, y) = |q ∩ y|
|q ∪ y| =

# of non-zero entries in common
total # of non-zero entries

Natural similarity measure for binary vectors. 0 ≤ J(q, y) ≤ 1.

Can be applied to any data which has a natural binary
representation (more than you might think).
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jaccard similarity for document comparison

“Bag-of-words” model:

How many words do a pair of documents have in common?
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jaccard similarity for document comparison

“Bag-of-words” model:

How many bigrams do a pair of documents have in common?
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applications: document similarity

• Finding duplicate or new duplicate documents or
webpages.

• Change detection for high-speed web caches.
• Finding near-duplicate emails or customer reviews which
could indicate spam.

Other types of data with a natural binary representation?
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similarity estimation

Goal: Design a compact sketch C : {0, 1} → Rk:

Homomorphic Compression: Want to use C(q), C(y) to
approximately compute the Jaccard similarity J(q, y).
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minhash

MinHash (Broder, ’97):

• Choose k random hash functions
h1, . . . ,hk : {1, . . . ,n} → [0, 1].

• For i ∈ 1, . . . , k, let ci = minj,qj=1 hi(j).
• C(q) = [c1, . . . , ck].
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minhash

• Choose k random hash functions
h1, . . . ,hk : {1, . . . ,n} → [0, 1].

• For i ∈ 1, . . . , k, let ci = minj,qj=1 hi(j).
• C(q) = [c1, . . . , ck].
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minhash analysis

Claim: Pr[ci(q) = ci(y)] = J(q, y).
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minhash analysis

Claim: Pr[ci(q) = ci(y)] = J(q, y).

Every non-zero index in q ∪ y is equally likely to produce the
lowest hash value. ci(q) = ci(y) only if this index is 1 in both q
and y. There are q ∩ y such indices. So:

Pr[ci(q) = ci(y)] =
q ∩ y
q ∪ y = J(q, y)

14



minhash analysis

Return: J̃ = 1
k
∑k

i=1 1[ci(q) = ci(y)].

Unbiased estimate for Jaccard similarity:

ẼJ =

The more repetitions, the lower the variance.
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minhash analysis

Let J = J(q, y) denote the true Jaccard similarity.

Estimator: J̃ = 1
k
∑k

i=1 1[ci(q) = ci(y)].

Var[̃J] =

Plug into Chebyshev inequality. How large does k need to be
so that with probability > 1− δ:

|J− J̃| ≤ ϵ?
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minhash analysis

Chebyshev inequality: As long as k = O
( 1
ϵ2δ

)
, then with prob.

1− δ,

J(q, y)− ϵ ≤ J̃ (C(q), C(y)) ≤ J(q, y) + ϵ.

And J̃ only takes O(k) time to compute! Independent of
original fingerprint dimension d.

However, a linear dependence on 1
δ is not good! Suppose we

have a database of n songs slips, and Shazam wants to ensure
the similarity between a query q and every song clip y is
approximated well.

We would need δ ≈ 1/n. I.e. our compression need to use
k = O(n/ϵ2) dimensions, which is far too large!
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beyond chebyshev

Motivating question: Is Chebyshev’s Inequality tight?

68-95-99 rule for Gaussian bell-curve. X ∼ N(0, σ2)

Chebyshev’s Inequality:

Pr (|X− E[X]| ≥ 1σ) ≤ 100%
Pr (|X− E[X]| ≥ 2σ) ≤ 25%
Pr (|X− E[X]| ≥ 3σ) ≤ 11%
Pr (|X− E[X]| ≥ 4σ) ≤ 6%.

Truth:

Pr (|X− E[X]| ≥ 1σ) ≈ 32%
Pr (|X− E[X]| ≥ 2σ) ≈ 5%
Pr (|X− E[X]| ≥ 3σ) ≈ 1%
Pr (|X− E[X]| ≥ 4σ) ≈ .01% 18



gaussian concentration

For X ∼ N (µ, σ2):

Pr[X = µ± x] = 1
σ
√
2π
e−x2/2σ2

Lemma (Guassian Tail Bound)
For X ∼ N (µ, σ2):

Pr[|X− EX| ≥ α · σ] ≤ O(e−α2/2).

Standard y-scale. Logarithmic y-scale. 19



gaussian concentration

Takeaway: Gaussian random variables concentrate much
tighter around their expectation than variance alone predicts.

Why does this matter for algorithm design?
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central limit theorem

Theorem (CLT – Informal)
Any sum of independent, (identically distributed) r.v.’s
X1, . . . , Xk with mean µ and finite variance σ2 converges to a
Gaussian r.v. with mean k · µ and variance k · σ2, as k→ ∞.

S =
n∑
i=1

Xi =⇒ N (k · µ, k · σ2).
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independence

Definition (Mutual Independence)
Random variables X1, . . . , Xk are mutually independent if, for
all possible values v1, . . . , vk,

Pr[X1 = v1, . . . , Xk = vk] = Pr[X1 = v1] · . . . · Pr[Xk = vk]

Strictly stronger than pairwise independence.
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exercise

You have access to a coin and want to determine if it’s ϵ-close to
unbiased. To do so, you flip the coin repeatedly and check that the
ratio of heads flips is between 1/2− ϵ and 1/2+ ϵ. If it is not, you
reject the coin as overly biased.

(a) How many flips k are required so that, with probability (1− δ),
you do not accidentally reject a truly unbiased coin? The
solution with depend on ϵ and δ.

For this problem, we will assume the CLT holds exactly for a sum of
independent random variables – i.e., that this sum looks exactly like
a Gaussian random variable.
Lemma (Guassian Tail Bound)
For X ∼ N (µ, σ2):

Pr[|X− EX| ≥ α · σ] ≤ O(e−α2/2).
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back-of-the-envelop calculation
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quantitative versions of the clt

These back-of-the-envelop calculations can be made
rigorous! Lots of different “versions” of bound which do so.

• Chernoff bound
• Bernstein bound
• Hoeffding bound
• . . .

Different assumptions on random varibles (e.g. binary,
bounded, i.i.d), different forms (additive vs. multiplicative

error), etc. Wikipedia is your friend.
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quantitative versions of the clt

Theorem (Chernoff Bound)
Let X1, X2, . . . , Xk be independent {0, 1}-valued random
variables and let pi = E[Xi], where 0 < pi < 1. Then the sum
S =

∑k
i=1 Xi, which has mean µ =

∑k
i=1 pi, satisfies

Pr[S ≥ (1+ ϵ)µ] ≤ e
−ϵ2µ
2+ϵ .

and for 0 < ϵ < 1

Pr[S ≤ (1− ϵ)µ] ≤ e
−ϵ2µ
2 .
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quantitative versions of the clt

Theorem (Bernstein Inequality)
Let X1, X2, . . . , Xk be independent random variables with each
Xi ∈ [−1, 1]. Let µi = E[Xi] and σ2i = Var[Xi]. Let µ =

∑
i µi and

σ2 =
∑

i σ
2
i . Then, for α ≤ 1

2σ, S =
∑

i Xi satisfies

Pr[|S− µ| > α · σ] ≤ 2 exp(−α2

4 ).
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quantitative versions of the clt

Theorem (Hoeffding Inequality)
Let X1, X2, . . . , Xk be independent random variables with each
Xi ∈ [ai,bi]. Let µi = E[Xi] and µ =

∑
i µi. Then, for any α > 0,

S =
∑

i Xi satisfies:

Pr[|S− µ| > α] ≤ 2 exp(− α2∑k
i=1(bi − ai)2

).
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how are these bounds proven?

Variance is a natural measure of central tendency, but there
are others.

qth central moment: E[(X− EX)q]

k = 2 gives the variance. Proof of Chebyshev’s applies
Markov’s inequality to the random variable (X− EX)2).

Idea in brief: Apply Markov’s inequality to E[(X− EX)q for
larger q, or more generally to f(X− EX) for some other
non-negative function f. E.g., to exp(X− EX).

We will explore this approach in the next problem set.
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chernoff bound application

Sample Application: Flip biased coin k times: i.e. the coin is heads
with probability b. As long as k ≥ O

(
log(1/δ)

ϵ2

)
,

Pr[|# heads− b · k| ≥ ϵk] ≤ δ

Setup: Let Xi = 1[ith flip is heads]. Want bound probability that∑k
i=1 Xi deviates from it’s expectation.

Corollary of Chernoff bound: Let S =
∑k

i=1 Xi and µ = E[S]. For
0 < ∆ < 1,

Pr[|S− µ| ≥ ∆µ] ≤ 2e−∆2µ/3
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chernoff bound application

Sample Application: Flip biased coin k times: i.e. the coin is
heads with probability b. As long as k ≥ O

(
log(1/δ)

ϵ2

)
,

Pr[|# heads− b · k| ≥ ϵk] ≤ δ

Pay very little for higher probability – if you increase the
number of coin flips by 2x, δ goes from
1/10→ 1/100→ 1/10000
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application to minhash

Let J = J(q, y) denote the true Jaccard similarity.

Estimator: J̃ = 1
k
∑k

i=1 1[ci(q) = ci(y)].

By the analysis above,

Pr[|̃J− J| ≥ ϵ] = Pr[|̃J · k− J · k| ≥ ϵk] ≤ δ

as long as k = O
(
log(1/δ)

ϵ2

)
.

Much better than the k = O
( 1
δϵ2

)
.

For example, if we had a data base of n = 1, 000, 000 songs,
setting δ = 1

n would only require space depending on
log(n) ≈ 14, instead of on n = 1, 000, 000.
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load balancing

As in the first video lecture, we want to use concentration bounds to
study the randomized load balancing problem. n jobs are distributed
randomly to n servers using a hash function. Let Si be the number of
jobs sent to server i. What’s the smallest B for which we can prove:

Pr[maxiSi ≥ B] ≤ 1/10

Recall: Suffices to prove that, for any i, Pr[Si ≥ B] ≤ 1/10n:

Pr[maxiSi ≥ B] = Pr[S1 ≥ B or . . . or S1 ≥ B]
≤ Pr[S1 ≥ B] + . . .+ Pr[Sn ≥ B] (union bound).
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load balancing

Theorem (Chernoff Bound)
Let X1, X2, . . . , Xn be independent {0, 1}-valued random
variables and let pi = E[Xi], where 0 < pi < 1. Then the sum
S =

∑n
j=1 Xi, which has mean µ =

∑n
j=1 pi, satisfies

Pr[X ≥ (1+ ϵ)µ] ≤ e
−ϵ2µ
3+3ϵ .

Consider a single bin. Let Xj = 1[ball j lands in that bin].
E[Xj] = 1

n , so µ = 1.

Pr[S ≥ (1+ c logn)µ] ≤ e
−c2 log2 n
c+c log n ≤ e

−c log2 n
2 log n ≤ e−.5c log n ≤ 1

10n ,

for sufficiently large c
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power of two choices

So max load for randomized load balancing is O(logn)! Best
we could prove with Chebyshev’s was O(

√
n).

Power of 2 Choices: Instead of assigning job to random server,
choose 2 random servers and assign to the least loaded. With
probability 1/10 the maximum load is bounded by:

(a) O(logn)
(b) O(

√
logn)

(c) O(log logn)
(d) O(1)
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