## CS-GY 9223 D: Lecture 2 Supplemental Finish MinHash, Exponential Tail Bounds

NYU Tandon School of Engineering, Prof. Christopher Musco

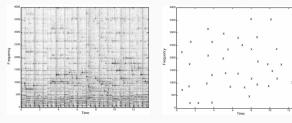
#### SKETCHING ALGORITHMS

## Abstract architecture of a sketching algorithm:

- Given a (high dimensional) dataset  $D = d_1, \ldots, d_n$  with n pieces of data each in  $\mathbb{R}^d$ .
- Sketch phase: For each  $i \in 1, ..., n$ , compute  $s_i = C(d_i)$ , where C is some compression function and  $s_i \in \mathbb{R}^k$  for  $k \ll d$ .
- **Process phase:** Use (more compact) dataset  $s_1, \ldots, s_n$  to approximately compute something about *D*.



Sketching phase is easily distributed, parallelized, etc. Better space complexity, communication complexity, runtime, all at once. How does **Shazam** match a song clip against a library of 8 million songs (32 TB of data) in a fraction of a second?



Spectrogram extracted from audio clip.

Processed spectrogram: used to construct audio "fingerprint"  $\mathbf{q} \in \{0,1\}^d$ .

Each clip is represented by a high dimensional binary vector **q**.

1 0 1 1 0 0 0 1 0 0 0 1 0 0 1 1 0 1

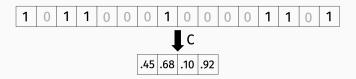
# Given **q**, find any nearby "fingerprint" **y** in a database – i.e. any **y** with dist(**y**, **q**) small.

Challenges:

- Database is possibly huge: O(nd) bits.
- Expensive to compute dist(y, q): O(d) time.

**Goal:** Design a more compact sketch for comparing  $\mathbf{q}, \mathbf{y} \in \{0, 1\}^d$ . Ideally  $\ll d$  space/time complexity.

 $C(\mathbf{q}) \in \mathbb{R}^k$  $C(\mathbf{y}) \in \mathbb{R}^k$ 



Homomorphic Compression:

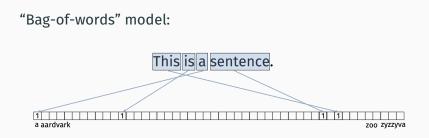
C(q) should be similar to C(y) if q is similar to y.

## Definition (Jaccard Similarity)

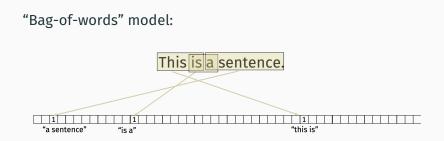
$$J(\mathbf{q},\mathbf{y}) = \frac{|\mathbf{q} \cap \mathbf{y}|}{|\mathbf{q} \cup \mathbf{y}|} = \frac{\text{\# of non-zero entries in common}}{\text{total \# of non-zero entries}}$$

Natural similarity measure for binary vectors.  $0 \le J(q, y) \le 1$ .

Can be applied to any data which has a natural binary representation (more than you might think).



How many words do a pair of documents have in common?

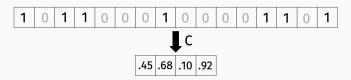


How many bigrams do a pair of documents have in common?

- Finding duplicate or new duplicate documents or webpages.
- Change detection for high-speed web caches.
- Finding near-duplicate emails or customer reviews which could indicate spam.

Other types of data with a natural binary representation?

## **Goal:** Design a compact sketch $C : \{0, 1\} \rightarrow \mathbb{R}^k$ :



Homomorphic Compression: Want to use C(q), C(y) to approximately compute the Jaccard similarity J(q, y).

#### MINHASH

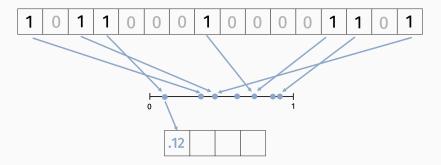
## MinHash (Broder, '97):

• Choose *k* random hash functions

 $h_1,\ldots,h_k:\{1,\ldots,n\}\to [0,1].$ 

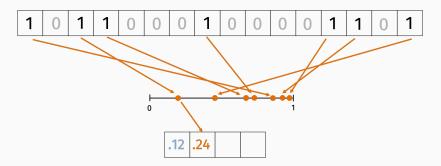
• For  $i \in 1, \ldots, k$ , let  $c_i = \min_{j, \mathbf{q}_j = 1} h_i(j)$ .

• 
$$C(\mathbf{q}) = [c_1, \ldots, c_k].$$

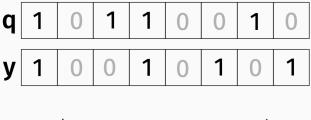


#### MINHASH

- Choose k random hash functions  $h_1, \ldots, h_k : \{1, \ldots, n\} \rightarrow [0, 1].$
- For  $i \in 1, ..., k$ , let  $c_i = \min_{j, \mathbf{q}_j = 1} h_i(j)$ .
- $C(\mathbf{q}) = [c_1, \ldots, c_k].$



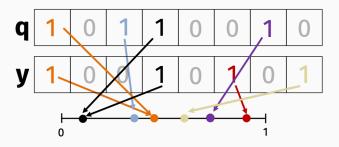
Claim:  $Pr[c_i(q) = c_i(y)] = J(q, y).$ 





1

Claim:  $Pr[c_i(q) = c_i(y)] = J(q, y).$ 



Every non-zero index in  $\mathbf{q} \cup \mathbf{y}$  is equally likely to produce the lowest hash value.  $c_i(\mathbf{q}) = c_i(\mathbf{y})$  only if this index is 1 in <u>both</u>  $\mathbf{q}$  and  $\mathbf{y}$ . There are  $\mathbf{q} \cap \mathbf{y}$  such indices. So:

$$\Pr[c_i(\mathbf{q}) = c_i(\mathbf{y})] = \frac{\mathbf{q} \cap \mathbf{y}}{\mathbf{q} \cup \mathbf{y}} = J(\mathbf{q}, \mathbf{y})$$

Return: 
$$\tilde{J} = \frac{1}{k} \sum_{i=1}^{k} \mathbb{1}[c_i(\mathbf{q}) = c_i(\mathbf{y})].$$

Unbiased estimate for Jaccard similarity:

$$\mathbb{E}\tilde{J} =$$
C(q) .12 .24 .76 .35 C(y) .12 .98 .76 .11

The more repetitions, the lower the variance.

Let  $J = J(\mathbf{q}, \mathbf{y})$  denote the true Jaccard similarity. Estimator:  $\tilde{J} = \frac{1}{k} \sum_{i=1}^{k} \mathbb{1}[c_i(\mathbf{q}) = c_i(\mathbf{y})].$  $\operatorname{Var}[\tilde{J}] =$ 

Plug into Chebyshev inequality. How large does k need to be so that with probability  $> 1 - \delta$ :

$$|J - \tilde{J}| \le \epsilon?$$

**Chebyshev inequality:** As long as  $k = O\left(\frac{1}{\epsilon^2 \delta}\right)$ , then with prob.  $1 - \delta$ ,

$$J(\mathbf{q},\mathbf{y}) - \epsilon \leq \tilde{J}(C(\mathbf{q}),C(\mathbf{y})) \leq J(\mathbf{q},\mathbf{y}) + \epsilon.$$

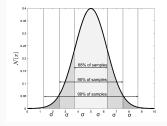
And  $\tilde{J}$  only takes O(k) time to compute! Independent of original fingerprint dimension d.

However, a linear dependence on  $\frac{1}{\delta}$  is not good! Suppose we have a database of *n* songs slips, and Shazam wants to ensure the similarity between a query **q** and <u>every song clip</u> **y** is approximated well.

We would need  $\delta \approx 1/n$ . I.e. our compression need to use  $k = O(n/\epsilon^2)$  dimensions, which is far too large!

#### **BEYOND CHEBYSHEV**

#### Motivating question: Is Chebyshev's Inequality tight?



68-95-99 rule for Gaussian bell-curve.  $X \sim N(0, \sigma^2)$ 

#### Chebyshev's Inequality:

#### Truth:

$$\begin{aligned} & \Pr\left(|X - \mathbb{E}[X]| \geq 1\sigma\right) \leq 100\% \\ & \Pr\left(|X - \mathbb{E}[X]| \geq 2\sigma\right) \leq 25\% \\ & \Pr\left(|X - \mathbb{E}[X]| \geq 3\sigma\right) \leq 11\% \\ & \Pr\left(|X - \mathbb{E}[X]| \geq 4\sigma\right) \leq 6\%. \end{aligned}$$

$$\Pr(|X - \mathbb{E}[X]| \ge 1\sigma) \approx 32\%$$
  

$$\Pr(|X - \mathbb{E}[X]| \ge 2\sigma) \approx 5\%$$
  

$$\Pr(|X - \mathbb{E}[X]| \ge 3\sigma) \approx 1\%$$
  

$$\Pr(|X - \mathbb{E}[X]| \ge 4\sigma) \approx .01\%$$

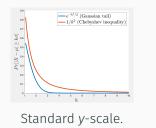
#### GAUSSIAN CONCENTRATION

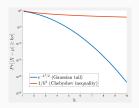
For 
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
:  

$$\Pr[X = \mu \pm x] = \frac{1}{\sigma\sqrt{2\pi}} e^{-x^2/2\sigma^2}$$

## Lemma (Guassian Tail Bound)

For  $X \sim \mathcal{N}(\mu, \sigma^2)$ :  $\Pr[|X - \mathbb{E}X| \ge \alpha \cdot \sigma] \le O(e^{-\alpha^2/2}).$ 





Logarithmic y-scale.

**Takeaway:** Gaussian random variables concentrate much tighter around their expectation than variance alone predicts.

Why does this matter for algorithm design?

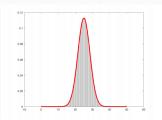
#### Theorem (CLT - Informal)

Any sum of independent, (identically distributed) r.v.'s  $X_1, \ldots, X_k$  with mean  $\mu$  and finite variance  $\sigma^2$  converges to a Gaussian r.v. with mean  $k \cdot \mu$  and variance  $k \cdot \sigma^2$ , as  $k \to \infty$ .

$$S = \sum_{i=1}^{n} X_i \Longrightarrow \mathcal{N}(k \cdot \mu, k \cdot \sigma^2).$$



(a) Distribution of # of heads after 10 coin flips, compared to a Gaussian.



(b) Distribution of # of heads after 50 coin flips, compared to a Gaussian.

## Definition (Mutual Independence)

Random variables  $X_1, \ldots, X_k$  are <u>mutually independent</u> if, for all possible values  $v_1, \ldots, v_k$ ,

$$\Pr[X_1 = v_1, \dots, X_k = v_k] = \Pr[X_1 = v_1] \cdot \dots \cdot \Pr[X_k = v_k]$$

Strictly stronger than pairwise independence.

#### EXERCISE

You have access to a coin and want to determine if it's  $\epsilon$ -close to unbiased. To do so, you flip the coin repeatedly and check that the ratio of heads flips is between  $1/2 - \epsilon$  and  $1/2 + \epsilon$ . If it is not, you reject the coin as overly biased.

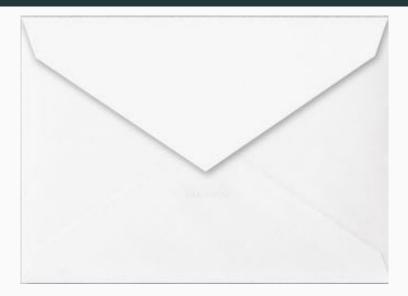
(a) How many flips k are required so that, with probability  $(1 - \delta)$ , you do not accidentally reject a truly unbiased coin? The solution with depend on  $\epsilon$  and  $\delta$ .

For this problem, we will assume the CLT holds exactly for a sum of independent random variables – i.e., that this sum looks exactly like a Gaussian random variable.

Lemma (Guassian Tail Bound) For  $X \sim \mathcal{N}(\mu, \sigma^2)$ :

$$\Pr[|X - \mathbb{E}X| \ge \alpha \cdot \sigma] \le O(e^{-\alpha^2/2}).$$

#### BACK-OF-THE-ENVELOP CALCULATION



These back-of-the-envelop calculations can be made rigorous! Lots of different "versions" of bound which do so.

- Chernoff bound
- Bernstein bound
- Hoeffding bound
- . . .

Different assumptions on random varibles (e.g. binary, bounded, i.i.d), different forms (additive vs. multiplicative error), etc. **Wikipedia is your friend.** 

### Theorem (Chernoff Bound)

Let  $X_1, X_2, ..., X_k$  be independent  $\{0, 1\}$ -valued random variables and let  $p_i = \mathbb{E}[X_i]$ , where  $0 < p_i < 1$ . Then the sum  $S = \sum_{i=1}^k X_i$ , which has mean  $\mu = \sum_{i=1}^k p_i$ , satisfies

$$\Pr[S \ge (1+\epsilon)\mu] \le e^{\frac{-\epsilon^2\mu}{2+\epsilon}}.$$

and for  $0 < \epsilon < 1$ 

$$\Pr[S \le (1 - \epsilon)\mu] \le e^{\frac{-\epsilon^2\mu}{2}}.$$

## Theorem (Bernstein Inequality)

Let  $X_1, X_2, \ldots, X_k$  be independent random variables with each  $X_i \in [-1, 1]$ . Let  $\mu_i = \mathbb{E}[X_i]$  and  $\sigma_i^2 = \operatorname{Var}[X_i]$ . Let  $\mu = \sum_i \mu_i$  and  $\sigma^2 = \sum_i \sigma_i^2$ . Then, for  $\alpha \leq \frac{1}{2}\sigma$ ,  $S = \sum_i X_i$  satisfies

$$\Pr[|\mathsf{S}-\mu| > \alpha \cdot \sigma] \le 2\exp(-\frac{\alpha^2}{4}).$$

## Theorem (Hoeffding Inequality)

Let  $X_1, X_2, ..., X_k$  be independent random variables with each  $X_i \in [a_i, b_i]$ . Let  $\mu_i = \mathbb{E}[X_i]$  and  $\mu = \sum_i \mu_i$ . Then, for any  $\alpha > 0$ ,  $S = \sum_i X_i$  satisfies:

$$\Pr[|\mathsf{S}-\mu| > \alpha] \le 2\exp(-\frac{\alpha^2}{\sum_{i=1}^k (b_i - a_i)^2}).$$

Variance is a natural <u>measure of central tendency</u>, but there are others.

$$q^{\text{th}}$$
 central moment:  $\mathbb{E}[(X - \mathbb{E}X)^q]$ 

k = 2 gives the variance. Proof of Chebyshev's applies Markov's inequality to the random variable  $(X - \mathbb{E}X)^2$ ).

**Idea in brief:** Apply Markov's inequality to  $\mathbb{E}[(X - \mathbb{E}X)^q$  for larger q, or more generally to  $f(X - \mathbb{E}X)$  for some other non-negative function f. E.g., to  $\exp(X - \mathbb{E}X)$ .

We will explore this approach in the next problem set.

**Sample Application:** Flip biased coin *k* times: i.e. the coin is heads with probability *b*. As long as  $k \ge O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$ , Pr[|# heads  $-b \cdot k| \ge \epsilon k$ ]  $\le \delta$ 

**Setup:** Let  $X_i = \mathbb{1}[i^{\text{th}} \text{ flip is heads}]$ . Want bound probability that  $\sum_{i=1}^{k} X_i$  deviates from it's expectation.

**Corollary of Chernoff bound**: Let  $S = \sum_{i=1}^{k} X_i$  and  $\mu = \mathbb{E}[S]$ . For  $0 < \Delta < 1$ ,  $\Pr[|S - \mu| > \Delta \mu] < 2e^{-\Delta^2 \mu/3}$ 

30

**Sample Application:** Flip biased coin *k* times: i.e. the coin is heads with probability *b*. As long as  $k \ge O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$ ,

 $\Pr[|\# \text{ heads} - b \cdot k| \ge \epsilon k] \le \delta$ 

Pay very little for higher probability – if you increase the number of coin flips by 2x,  $\delta$  goes from  $1/10 \rightarrow 1/100 \rightarrow 1/10000$ 

Let  $J = J(\mathbf{q}, \mathbf{y})$  denote the true Jaccard similarity. Estimator:  $\tilde{J} = \frac{1}{k} \sum_{i=1}^{k} \mathbb{1}[c_i(\mathbf{q}) = c_i(\mathbf{y})].$ 

By the analysis above,

$$\Pr[|\tilde{J} - J| \ge \epsilon] = \Pr[|\tilde{J} \cdot k - J \cdot k| \ge \epsilon k] \le \delta$$

as long as  $k = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$ .

Much better than the  $k = O\left(\frac{1}{\delta\epsilon^2}\right)$ .

For example, if we had a data base of n = 1,000,000 songs, setting  $\delta = \frac{1}{n}$  would only require space depending on  $\log(n) \approx 14$ , instead of on n = 1,000,000.

#### LOAD BALANCING

As in the first video lecture, we want to use concentration bounds to study the randomized load balancing problem. n jobs are distributed randomly to n servers using a hash function. Let  $S_i$  be the number of jobs sent to server i. What's the smallest **B** for which we can prove:

 $\Pr[max_iS_i \geq \mathbf{B}] \leq 1/10$ 

**Recall:** Suffices to prove that, for any *i*,  $Pr[S_i \ge B] \le 1/10n$ :

$$\begin{aligned} \Pr[max_iS_i \geq \mathbf{B}] &= \Pr[S_1 \geq \mathbf{B} \text{ or } \dots \text{ or } S_1 \geq \mathbf{B}] \\ &\leq \Pr[S_1 \geq \mathbf{B}] + \dots + \Pr[S_n \geq \mathbf{B}] \quad (\text{union bound}). \end{aligned}$$

#### LOAD BALANCING

### Theorem (Chernoff Bound)

Let  $X_1, X_2, ..., X_n$  be independent  $\{0, 1\}$ -valued random variables and let  $p_i = \mathbb{E}[X_i]$ , where  $0 < p_i < 1$ . Then the sum  $S = \sum_{j=1}^n X_j$ , which has mean  $\mu = \sum_{j=1}^n p_j$ , satisfies

$$\Pr[X \ge (1+\epsilon)\mu] \le e^{\frac{-\epsilon^2\mu}{3+3\epsilon}}.$$

Consider a single bin. Let  $X_j = \mathbb{1}[\text{ball } j \text{ lands in that bin}]$ .  $\mathbb{E}[X_j] = \frac{1}{n}$ , so  $\mu = 1$ .

$$\Pr[S \ge (1 + c \log n)\mu] \le e^{\frac{-c^2 \log^2 n}{c + c \log n}} \le e^{\frac{-c \log^2 n}{2 \log n}} \le e^{-.5c \log n} \le \frac{1}{10n},$$

for sufficiently large *c* 

So max load for randomized load balancing is  $O(\log n)!$  Best we could prove with Chebyshev's was  $O(\sqrt{n})$ .

**Power of 2 Choices:** Instead of assigning job to random server, choose 2 random servers and assign to the least loaded. With probability 1/10 the maximum load is bounded by:

- (a) *O*(log *n*)
- (b)  $O(\sqrt{\log n})$
- (c) O(loglogn)
- (d) O(1)