


CS-GY 9223 D: Lecture 2
Streaming and Sketching Algorithms via
Hashing

NYU Tandon School of Engineering, Prof. Christopher Musco



PROBLEM SET

| really appreciate everyone’s high activity on Piazza and in
office hours!

- Ly Cao set up a student Slack channel. You can join via
link on the course website.

- Due this Friday 9/18 at midnight ET. Due to weirdness in
NYU Classes, deadline appears to be 11:55pm. Don't worry
if you submit after.

- Remember to list any collaborators. And remember to
write up all solutions on your own.



NOTE ON MATHEMATICAL PROOFS

It can be hard to know how formal to be. I will try to provide
feedback on first problem set for anyone who is either too rigorous
or too loose. It's a learning process.

Things that are generally fine:
- Can assume input size n is > C for some constant c. E.g.
n>2n>10.
- Similarly can assume e < ¢ for constantc. E.g. ¢ < .1, ¢ < .07

- If I write O(z), you are free to choose the constant. E.g,, it's fine
if your method only works for tables of size 1000 - m".

- Derivatives, integrals, etc. can be taken from e.g. WolframAlpha
without working through steps.

- Basic inequalities can be used without proof, as long as you
verify numerically. Don’t need to include plot on problem set.
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GENERAL ADVICE

Tip: When confronted with a complex expression, try to simplify by
using big-Oh notation, or just rounding things off. Then clean-up
your proof after you get to a solution.

Examples:

- log(n/2) ~ log(n)



QUIZ REVIEW

Which of the following properties hold for *all* random variables X,Y? Check any that apply.

\/E[a*X + b*Y] = a*E[X] + b*E[Y] for constants a,b.
X EIXEIY] = EIXY]

X Var[a*X + b*Y] = a*2*Var[X] + bA2*Var[Y] for constants a,b.

><Pr[X > a] <= E[X]/a for constant a.

Which of the following properties hold for *all independent* random variables X,Y? Check any that
apply.

/E[a*X + b*Y] = a*E[X] + b*E[Y] for constants a,b.
/ E[X]E[Y] = E[XY]

\/Var[a*X + b*Y] = a*2*Var[X] + b*2*Var[Y] for constants a,b.

7<PF[X > a] <= E[X]/a for constant a. Wowvy - Vs b QJ\\) L



QUIZ REVIEW

Priul) v wed We)=H7Y = Pr(x)-2) e pfg\"(ﬁ“):‘ﬂ

A uniformly random hash function h(x) is: A pairwise independent hash function h(x) is:
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QUIZ REVIEW
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a
List two possible advantages of Cheblys'hev's inequality over Markov's inequality.

Long answer text

True or False? The Union Bound only applies to independent random events.
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QUIZ REVIEW

Let A be the random event that it rains on Dec. 1, 2020. Let B be the random event that it snows on
Dec. 12020. Suppose A happens with 10% probability, and B happens with 5% probability. Using the
union bound, give an upper bound on the probability that *either* it rains or snows on Dec. 1, 2020.

Short answer text ) 50/77

Do you suspect the bound you gave above is tight for this specific A and B? Why or why not?

Long answer text
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LAST WEEK

Central question in randomized algorithms: How well does a
random variable X concentrate around it's expectation E[X]?

Three Concentration bounds.

Markov's Inequality. Pr[X > RE[X]] < £
- Requires that X > 0 always.
Chebyshev’s Inequality. Pr[|X — E[X]| > ko] < 7
- Here o2 = Var[X] = E[(X — E[X])?].
Exponential Tail Bounds (Chernoff/Bernstein).
- Will be covered in video lecture.

These bounds are not precise! They use only give a coarse idea
of probability random variable deviates from it's expectation.

1



PREVIEW FOR VIDEO LECTURE

Motivating question: Is Chebyshev's Inequality tight?

68-95-99 rule for Gaussian bell-curve. X ~ N(0, o?)

Chebyshev's Inequality: Truth:
Pr(iX —E[X]| > 10) <100% Pr(iX —E[X]| > 10) =~ 32%
r(X—EKX]| > 20) < 25% Pr(|X —E[X]| > 20) ~ 5%
Pr(X —E[X]| > 30) < 11% Pr(X —E[X]| > 30) = 1%
Pr(X —E[X]| > 40) < 6%. Pr(IX —E[X]| > 40) ~.01% 12



THIS LECTURE

- Introduce two paradigms for algorithm design: sketching
and streaming.

- Learn about an application of hashing to the district
elements problem and estimating Jaccard similarity.

- During first part of next weeks lecture (9/23) Dr. Aline
Bessa will discuss a recent project that uses similar
techniques for data set search and augmentation.

13



STREAMING ALGORITHMS

Abstract architecture of a streaming algorithm:

Have massive dataset D = d,, ..., d, with n pieces of data that
arrive in a sequential stream. There is far too much data to
store or process it in a single location.

- Still want to analyze the data: i.e. it a model or
(approximately) compute some function f(D).

- To do so, we must compress data “on-the-fly”, storing
some smaller data structure which still contains
interesting information.

- Often can only take a single-pass over the data.

A typical goal is to minimize space complexity over
computational complexity.

14



EASY EXAMPLE: MEAN

Design a single-pass streaming algorithm for computing the

mean of a data set ds, ..., d,. How much space is required?
]{o(' |- X/ .

G - S A d‘

W = nr)
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HARDER EXAMPLE: MEDIAN

Design a single-pass streaming algorithm for computing the
median of a data set ds, ..., d,. How much space is required?

]A - O ((/(07”

P\)Cﬁk(,\)b"‘(\ ém,\?\”,szé,
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STREAMING ALGORITHMS IN PRACTICE

Sensor data: GPS or seismometer readings to detect
geological anomalies, telescope images, satellite imagery,
highway travel time sensors.

Web traffic and data: User data for website, including e.g. click
data, web searches and API queries, posts and image uploads
on social media.

Training machine learning models: Often done in a streaming
setting when training dataset is huge, often with multiple
passes.

5D STORM % Gfka. ©
Elink §€kafka,; © samza

Lots of software frameworks exist for easy development of
streaming algorithms. 17



DISTINCT ELEMENTS PROBLEM

Input: di,...,d, € U where U is a huge universe of items.

Output: Number of distinct inputs. [ * deshiel L

Example: f(1,10,2,4,9,2,10,4) ey D(D)
Applications: Tl ([2] ] m

- Distinct users hitting a webpage.

- Distinct values in a database column (e.g. for estimating
the size of group by queries)

- Number of distinct queries to a search engine.

- Distinct motifs in DNA sequence.

Implementations widely used at Google (Sawzall, Dremel,
PowerDrill), Yahoo, Twitter, Facebook Presto, etc.

(C10,%,4,9) s



DISTINCT ELEMENTS PROBLEM

BONCR R
Input: ds,...,d, € U where U is a huge universe of items.

Output: Number of distinct inputs.

Example: f(;g2,4,9,2.,10,4)@ w(d,)= Wl A,)

Flajolet-Martin (simplified):

- Choose random hash function h : ¢« — [0, 1].

- S=0
=

- Fori=1,...,n
/) ehvre velve of
miv MQK‘,)

. 1
Return: S —1
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HOLD UP...

The hash function h maps from ¢/ to a random point in [0,1]?

Hashing to real numbers: \% (X %/D

- Impossible to implement h(x) in reality, but you can
replace it with Z%L where g is a hash function that maps
to {0,1,..., R} for sufficiently large k.

- All results hold if this “discrete” hash is used instead, but
the analysis is simpler if we assume access to h.

- Just like when we assumed fully random hash functions,
this is a useful abstraction which makes understanding
and analyzing the underlying algorithms easier.

20



VISUALIZATION

Flajolet-Martin (simplified):
- Choose random hash function h : &/ — [0, 1].
- S=00

- Fori=1,...,n
- S« min(S, h(d)))

* Return: D=1 -1

X1X2 ... ..

0 rT%%: M ;:Exﬂ 1

21



FM ANALYSIS

Let D equal the number of distinct elements in our stream.

Xq Xy X0
o o 0o
S
[
— 00— 00—
0o hx) =~ h(xs) hGo) 1

h(xq)
@mique locations after hashing
Intuition: When D is larger, S will be smaller. Makes sense to

return the estimate D = £ —1.
22



FM ANALYSIS

|
What is ES? D~ g -

— -
D randomly placed balls

S
—
|_
0
Let D equal the number of distinct elements in our stream.
Lemma

_ 1

f‘r(\jn Ys -1 = D “



THE CALCULUS PROOF

} Pla=XT- A A A
= 0

Proof: 2

;
E[S] = / Pr[S > AldA Exercise: Why?
O —_—

= /1(1 — )P
0
_ _(1 _ )\)D+1 ’1

D+1 A=0

24



PROOF “FROM THE BOOK"

pg/_gs;—, [ pe(e- AT A

/
E[S] = Pr[(D + 1) item has the smallest hash value].
S S Pefe Ry el dat boll grealer]

= 5= X
0o A T

D randomly placed balls

i S PCsn osd 41 el

15 yus

By symmetry, this equa@smce every ball is equally likely O
to be first).

S
g oLsy - 93/

25



FM ANALYSIS

: == - =0
ES = 5. Estimate: D= ¢ —1. ES/

This does not imply that E[D] = D, but we have for e < 1:
—_— =

o

If |S — ES| < € - ES, then:

Exercise: Prove this to vo

So, it suffices to show that S concentrates around its mean. We
will useyChebyshev’s inequality as our concentration bound.

(-6)861 ¢ 5 < (1+0)ELS]

26



CALCULUS PROOF

Lemma

Var[s] E[S]? (D+1)2(D+;l, @@

Proof:

»

E[S?] = /O:Pr[s2 > Nd).

1
_/ Pr[S > v/AJdA
) —=r=

1
:/ (1—vA)Pdx
20—
B 2
~(D+1)(D+2)
www.wolframalpha.com/input/?i=integral+from+0+to+1+
0f+%281-sqrt%28x%29%29%5ED

_—
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www.wolframalpha.com/input/?i=integral+from+0+to+1+of+%25281-sqrt%2528x%2529%2529%255ED
www.wolframalpha.com/input/?i=integral+from+0+to+1+of+%25281-sqrt%2528x%2529%2529%255ED

PROOF “FROM THE BOOK"

E[S] =77.

— - —

S
—
|_

¢ D randomly placed balls
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FM ANALYSIS

l/o

(Ax\)

5 =1 _
EPl=gg =1
+ Var[s] < p?. Standard devigtion: o < p.

- Want to bound Pr[|S — y| ﬂ;_e__g] < 0.

y 7 %
Chebyshev's: Pr[|S — p| # eu] = Pr[|S — p| # eo] o

Vacuous bound. Our variance is way too high!

Pells-wly ku] € Yir
- €
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VARIANCE REDUCTION

Trick of the trade: Repeat many independent trials and take
the mean to get a better estimator.

Given i.i.d. (independent, identically distributed) random
variables Xy, ..., X, with mean p and variance o?, what is:

U
CE[1 38X = ii%ﬁ)ﬁ]; K o,

'Vaf[%ZLXﬂ: L \}ar[_% X‘,} - ,l:’ Keb =

=
‘h
=) —
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FM ANALYSIS

Using independent hash functions, maintain k independent
sketches Sq,..., Sp.

2
0 o—0— - ®0C —0—0— -0-0{1
3D randomly placed balls

Flajolet-Martin:

- Choose k random hash function hy, ..., hg : U — [0,1].
'§_l:OO,...,§R_:OO
- Fori=1,...,n

© Sj«min(S; hj(d;)) forallj€1,...,k
“S=(S1+...+Sp)/R
- Return: 1 —1

31



FM ANALYSIS

1 estimator:
* E[S] = 5
A CUS ENT PRy

kR estimators:

- E[S] = 525 = e
- Varl[9] ;ﬂz/k e M/

- By Chebyshev, Pr[|S — ES| > cu/VR] < &.
Setting c = 1/v/6 and k = O (;) gives:
Pr{|S — p| > ep] <0.

\B

Total space complexity: O (’%) to estimate distinct elements

2

up to error e with success probability 1 — 4.

32



NOTE ON FAILURE PROBABILITY

olve) & 'ep0id)

o) (’(%) space is an impressive bound:

- Achieves any accuracy desired. 1/¢* dependence cannot
be improved.

- No dependence on number of distinct elements D. Naive
algorithm takes O(D) space.

- But.. 1/0 dependence is not ideal. For 95% success rate,
pay a 5%/0 = 20 factor overhead in space.

We will discuss how to get a better bound depending on
O(log(1/6)) in the online lecture.
—_—
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DISTINCT ELEMENTS IN PRACTICE

In practice, we cannot hash to real numbers on [0, 1]. Instead,

map to bit vectors. \’)%/“’“&

Real Flajolet-Martin / HyperLogLog:

h(x) | 1010010
h(x,) | 1001100
h(x) | 1001110
h(x) | 1011000

- Estimate # distinct elements

based on maximum number of
trailing zeros m.

- The more distinct hashes we see,

the higher we expect this
maximum to be.

With D distinct elements what do we expect m to be?

34



DISTINCT ELEMENTS IN PRACTICE

Real Flajolet-Martin / HyperLoglLog:

h(x) | 1010010
h(x,) | 1001100
h(x) | 1001110
h(x) | 1011000

- Estimate # distinct elements

based on maximum number of
trailing zeros m.

- The more distinct hashes we see,

the higher we expect this
maximum to be.

Pr(h(x;) has logD trailing zeros) =

So with D distinct hashes, expect to see 1 with logD trailing
zeros. Expect m = log D. m takes O(loglog D) bits to store.

35



LOGLOG SPACE

Total Space: O (‘0272@ + log D) for an e approximate count.

“Using an auxiliary memory smaller than the size of this abstract, the
LogLog algorithm makes it possible to estimate in a single pass and

within a few percents the number of different words in the whole of
Shakespeare’'s works.” - Flajolet, Durand.

Using HyperlLoglLog to count 1 billion distinct items with 2% accuracy:

space used =0 ( oglogD + log D)
6

_ 1041108, 108, D, 10g, b1 bits
€
= 1.04-5 -+ 30 = 13030 bits ~ 1.6 kB!

S 022
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DISTRIBUTED DISTINCT ELEMENTS

fgifgjfgiigi

S, = min[h(x,), ..., h(xg)] m|n[hx7) - = min[h(x), ..., xm = min[h(xy), ..., h(x,,)]

N\ /S

S=min[s,, S,, Sy S,

D‘]Jh"li(' ALWC“)‘ <
MeHastr summaries are “mergeable”. No need to share lists of
distinct elements if those elements are stored on different
machines. Just share minimum hash value.

37



HYPERLOGLOG IN PRACTICE

Implementations: Google PowerDrill, Facebook Presto, Twitter
Algebird, Amazon Redshift.

Use Case: Exploratory SQL-like queries on tables with 100’s of
billions of rows.
- Count number of distinct users in Germany that made at least

one search containing the word ‘auto’ in the last month.

- Count number of distinct subject lines in emails sent by users
that have registered in the last week, in comparison to number
of emails sent overall (to estimate rates of spam accounts).

Answering a query requires a (distributed) linear scan over the
database: 2 seconds in Google's distributed implementation.

38



HYPERLOGLOG IN PRACTICE

“The system has been in production since end of 2008 and was
made available for internal users across all of Google mid
2009. Each month it is used by more than 800 users sending
out about 4 million SQL queries. After a hard day’s work, one
of our top users has spent over 6 hours in the Ul, triggering
up to 12 thousand queries. When using our column-store as a
backend, this may amount to scanning as much as 525 trillion
cells in (hypothetical) full scans.”

39



SKETCHING ALGORITHMS

Abstract architecture of a sketching algorithm:

- Given a (high dimensional) dataset D = d,...,d, with n
pieces of data each in RY.

- Sketch phase: For eachi e 1,...,n, compute s; :,
where C is some compression function and s; .eiRifor
k< d.

- Process phase: Use (more compact) dataset sy,...,S, to
approximately compute something about D.

Sketching phase is easily
distributed, parallelized, etc.
Better space complexity,
communication complexity,
runtime, all at once.

40



SIMILARITY ESTIMATION

How does Shazam match a song clip against a library of 8
million songs (32 TB of data) in a fraction of a second?

»'“

vvvvvv

Spectrogram extracted ~ Processed spectrogram:

from audio clip. used to construct audio
“fingerprint” q € {0,1}¢.

Each clip is represented by a high dimensional binary vector q.
1 111 1 111 1

41



SIMILARITY ESTIMATION

Given q, find any nearby “fingerprint” y in a database - i.e. any
y with dist(y, q) small.
—_—

Challenges:

- Database is possibly huge: O@ bits.
- Expensive to compute dist(y, q): O(d) time.

42



SIMILARITY ESTIMATION

Goal: Design a more compact sketch for comparing
q,y € {0,1}9. Ideally < d space/time complexity.

dg) e R

C(y) € R"

(ATl ToTo] Iooonno 1))
bl 5, 37

Homomorphic Compression:

C_;Q should be similar to CJ(/)Q if q is similar toy.
\ V’
O f\(x):‘l /\4(5(&);)/._‘ M(Xﬂ) . bcl —(’\;) 3




JACCARD SIMILARITY

Definition (Jaccard Similarity)

__lgny| _ #of non-zero entries in common

J(a,y) = lquy|  total # of non-zero entries

Natural similarity measure for binary vectors. 0 < J(q,y) < 1.

Can be applied to any data which has a natural binary
representation (more than you might think).

44



JACCARD SIMILARITY FOR DOCUMENT COMPARISON

“Bag-of-words” model:

This|is|asentencel

LTI T T T T T A T T T T T T T T I T T I T T T T T T T I T I AT T I T T

aaardvark Z00 zyzzyva

How many words do a pair of documents have in common?

45



JACCARD SIMILARITY FOR DOCUMENT COMPARISON

“Bag-of-words” model:

This]is[asentence]

AT T T I T T T T T T T T I T T T T I T T I T T T Tl T T T T T ITTITT]

“a sentence” “isa” “this is”

How many bigrams do a pair of documents have in common?

46



APPLICATIONS: DOCUMENT SIMILARITY

- Finding duplicate or new duplicate documents or
webpages.
- Change detection for high-speed web caches.

- Finding near-duplicate emails or customer reviews which
could indicate spam.

Other types of data with a natural binary representation?

47



SIMILARITY ESTIMATION

Goal: Design a compact sketch C: {0,1} — R

[1]o]1[1]o]ofo[1]ofofo]o[1]1]o]1]

lc
sl 10]3]

Homomorphic Compression: Want to use C(q), C(y) to
approximately compute the Jaccard similarity J(q,Y).

48



MINHASH

MinHash (Broder, '97):

- Choose k random hash functions
h1,---;hfe : {1,...,!’7}—) [071]

- Forien,...,k let ¢ =min;q_ hj(j).
- Ca) =[c, ..., cl-
1 111 1 111 1
e——o o o o o —
0 1
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MINHASH

- Choose k random hash functions
hy,....hg : {1,...,n} = [0,1].

- Foriel,...,k let¢c = minjvqjﬁ hi()).

- C(q) =[c1,. -, Crl

1 111 1 111 1
——o——0o——0o-c—0o-0g
0 \ 1
24
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MINHASH ANALYSIS

Claim: Pr[ci(q) = ci(y)] = J(a,y).

q 1 11 1

y|1 1/0[1]|0]1
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MINHASH ANALYSIS

Claim: Pr[ci(q) = ci(y)] = J(a,y).

q 14011 N
\\ /
¥ 5

Every non-zero index in qUYy is equally likely to produce the
lowest hash value. ¢j(q) = ¢j(y) only if this index is 1in both q
andy. There are g Ny such indices. So:

Prci(q) = ci(y)] = w =J(a,y) .



MINHASH ANALYSIS

Return: = 1 3°F  1[ci(q) = ci(y)].

Unbiased estimate for Jaccard similarity:

EJ =

cla)| 12| 24] 76|35 | c(y)|12].98].76]a1 |

The more repetitions, the lower the variance.
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MINHASH ANALYSIS

Let ) =J(q,y) denote the true Jaccard similarity: Estimator:
J=

%Zfﬂ 1[ci(q) = ¢i(y)]-

Var[]] =

Try to plug into Chebyshev inequality. How large does k need
to be so that:

-J| <e?

54



MINHASH ANALYSIS

Chebyshev inequality: As longas k = O (%) then with prob.
1—9,

J(a,y) — e <T(C(a), C(y)) < J(a,y) +e.

And J only takes O(k) time to compute! Independent of
original fingerprint dimension d.

55



