
CS-GY 9223 Lecture 1 Supplemental
Load Balancing, Union Bound, Chebyshev’s
Inequality

NYU Tandon School of Engineering, Prof. Christopher Musco

1

last lecture

Showed how to design an O(m) sized hash table that
supported O(1) time queries using a 2-level approach.

In doing so, we did not provide a bound on the maximum
number of elements in each row of the level one hash table.

For some applications, this would be nice to have!

2

example applications

Load balancing problem:

Suppose Google answers map search queries using servers
A1, . . . ,Aq. Given a query like “new york to rhode island”,
common practice is to choose a random hash function
h→ {1 . . . ,q} and to route this query to server:

Ah(“new york to rhode island’)

The advantage of this is that duplicate requests always get
routed to the same server, saving computation time.

Goal: Ensure that requests are distributed evenly, so no one
server gets loaded with too many requests. We want to avoid
downtime and slow responses to clients.

3

lecture road map

1. Show that Linearity of Expectation + Markov’s are too weak
to get any interesting theoretical bounds.

2. Introduce two new tools: the Union Bound and Chebyshev
Inequality to prove something much more interesting.

These four simple tools combined are surprising powerful
and flexible. Along with exponential tail bounds (next class),
they form the cornerstone of randomized algorithm design.

4

load balancing

Suppose we have n servers and m requests, x1, . . . , xm. Let si
be the number of requests sent to server i ∈ {1, . . . ,n} :

si =
m∑
j=1

1[h(xj) = i].

Formally, our goal is to understand the value of maximum load
on any server, which can be written as the random variable:

S = max
i∈{1,...,n}

si.

5

load balancing

A good first step in any analysis of random variables is to first
think about expectations. If we have n servers and m requests,
for any i ∈ {1, . . . ,n}:

E[si] =
m∑
j=1

E
[
1[h(xj) = i]

]
=
m
n .

But it’s very unclear what the expectation of S = maxi∈{1,...,n} si
is... in particular, E[S] ̸= maxi∈{1,...,n} E[si].

Exercise: Convince yourself that for two random variables A
and B, E[max(A,B)] ̸= max(E[A],E[B]) even if those random
variable are independent.

6

simplifying assumptions

Number of servers: To reduce notation and keep the math
simple, let’s assume that m = n. I.e., we have exactly the same
number of servers and requests.

Hash function: Continue to assume a fully (uniformly) random
hash function h.

Often called the “balls-into-bins” model.

E[si] = expected number of balls per bin = m
n = 1. We would

like to prove a bound of the form:

Pr[max
i
si ≥ C] ≤ 1

10 .

for as tight a value of C. I.e., something much better than C = n.
7

bounding a union of events

Goal: Prove that for some C≪ n,

Pr[max
i
si ≥ C] ≤ 1

10 .

∪ means “or”. ∩ means “and”.

Equivalent statement: Prove that for some C≪ n,

Pr[(s1 > C) ∪ (s2 ≥ C) ∪ . . . ∪ (sn ≥ C)] ≤ 1
10 .

Need to bound the probability of a union of different events.

These events are not independent!!

n = number of balls and number of bins. si is number of balls in
bin i. C = upper bound on maximum number of balls in any bin.

8

use a union bound

Lemma (Union Bound)
For any random events A1, . . . ,Ak:

Pr[A1 ∪ A2 ∪ . . . ∪ Ak] ≤ Pr[A1] + Pr[A2] + . . .+ Pr[Ak].

Proof by picture. 9

application of union bound

We want to prove that:

Pr[max
i
si ≥ C] = Pr[(s1 ≥ C) ∪ (s2 ≥ C) ∪ . . . ∪ (sn ≥ C)] ≤ 1

10 .

To do so, it suffices to prove that for all i:

Pr[si ≥ C] ≤ 1
10n .

Why? Because then by the union bound,

Pr[max
i
si ≥ C] ≤

n∑
i=1

Pr[si ≥ C] (Union bound)

≤
n∑
i=1

1
10n =

1
10 .

n = number of balls and number of bins. si is number of balls in
bin i.

10

new goal

Prove that for some C≪ n,

Pr[si ≥ C] ≤ 1
10n .

This should look hard! We need to prove that si < C (i.e. the ith

bin has a small number of balls) with very high probability
(specifically 1− 1

10n .

Markov’s inequality is too weak of a bound for this.

n = number of balls and number of bins. si is number of balls in
bin i. C = upper bound on maximum number of balls in any bin.

11

attempt with markov’s inequality

Goal: Prove that Pr[si ≥ C] ≤ 1
10n .

• Step 1. Verify we can apply Markov’s: si takes on
non-negative values only. Good to go!

• Step 2. Apply Markov’s: Pr[si ≥ C] ≤ E[si]
C = 1

C .

To prove our target statement, need to see C = 10n.

Meaningless! There are only n balls, so of course there can’t
be more than 10n in the most overloaded bin.

n = number of balls and number of bins. si is number of balls in
bin i. E[si] = 1. C = upper bound on maximum number of balls in
any bin. Markov’s inequality: for positive r.v. X, Pr[X ≥ t] ≤ E[X]/t.

12

a new tool: chebyshev’s inequality

A new concentration inequality:

Lemma (Chebyshev’s Inequality)
Let X be a random variable with expectation E[X] and variance
σ2 = Var[X]. Then for any k > 0,

Pr[|X− E[X]| ≥ k · σ] ≤ 1
k2

σ =
√
Var[X] is called the standard deviation of X. Intuitively this
bound makes sense: it is tighter when σ is smaller.

13

comparison to markov’s inequality

Properties of Chebyshev’s inequality:

• Good: No requirement of non-negativity. X can be anything.

• Good: Two-sided. Bounds the probability that |X− EX| is large,
which means that X isn’t too far above or below its expectation.
Markov’s only bounded probability that X exceeds E[X].

• Bad/Good: Requires a bound on the variance of of X.

No hard rule for which to apply! Both Markov’s and Chebyshev’s are
useful in different settings.

14

proof of chebyshev’s inequality

Idea: Apply Markov’s inequality to the (non-negative) random
variable S = (X− E[X])2.

Lemma (Chebyshev’s Inequality)
Let X be a random variable with expectation E[X] and variance
σ2 = Var[X]. Then for any k > 0,

Pr[|X− E[X]| ≥ k · σ] ≤ 1
k2

Let S = (E− E[X])2.

Pr[S ≥ k2σ2] ≤ E[S]
k2σ2 (Markov inequality)

Pr[
√
S ≥ kσ] ≤ E[(X− E[X])2]

k2σ2

Pr[|X− E[X]| ≥ kσ] ≤ σ2

k2σ2 =
1
k2 .

Markov’s inequality: for positive r.v. S, Pr[S ≥ t] ≤ E[S]/t.

15

application to balls into bins

Goal: Prove that Pr[si ≥ C] ≤ 1
10n .

• Step 1. To apply Chebyshev’s inequality, we need to
understand σ2 = Var[si].

Use linearity of variance. Let si,j be a {0, 1} indicator random
variable for the event that ball j falls in bin i. Clearly:

si =
n∑
j=1

si,j.

And si,1, . . . , si,n are (pairwise) independent so:

Var[si] =
n∑
j=1

Var[si,j].

n = number of balls and number of bins. si is number of balls in
bin i. E[si] = 1. C = upper bound on max number of balls in bin. 16

variance analysis

Use identity from first class: Var[si,j] = E[s2i,j]− E[si,j]2.

si,j =

1 with probability 1
n

0 otherwise.

E[si,j] = 1 · 1n + 0 · (1− 1
n) =

1
n .

E[s2i,j] = 12 · 1n + 02 · (1− 1
n) =

1
n .

So:

Var[si,j] = E[s2i,j]− E[si,j]2 =
1
n − 1

n2 .

n = number of balls and number of bins. si,j is event ball j lands in
bin i.

17

applying chebyshev’s

Goal: Prove that Pr[si ≥ C] ≤ 1
10n .

Step 1. To apply Chebyshev’s inequality, we need to
understand σ2 = Var[si].

Var[si] =
n∑
j=1

Var[si,j] =
n∑
j=1

1
n − 1

n2 = 1− 1
n .

Step 2. Apply Chebyshev’s inequality:

Pr
[
|si − E[si]| ≥ k ·

√
1− 1/n

]
≤ 1
k2

which implies Pr [|si − 1| ≥ k · 1] ≤ 1
k2 .

n = number of balls and number of bins. si = number of balls in
bin i. si,j is event ball j lands in bin i. E[si] = 1.

18

applying chebyshev’s

Goal: Prove that Pr[si ≥ C] ≤ 1
10n .

We just proved: Pr[|si − 1| ≥ k] ≤ 1
k2 .

Setting k =
√
10n gives:

Pr[|si − 1| ≥
√
10n] ≤ 1

10n .

So, we have that:

Pr[si ≥
√
10n+ 1] ≤ 1

10n .

By the union bound argument from earlier, it thus holds that:

Pr[max
i∈{1,...,n}

si ≥
√
10n+ 1] ≤ 1

10 .

n = number of balls and number of bins. si is number of balls in
bin i. C = upper bound on maximum number of balls in any bin. 19

final result

When hashing n balls into n bins, the maximum bin contains
o(
√
n) balls with probability 9

10 .

Much better than the trivial bound of n!

20

takeaways

Techniques used that will appear again:

• Union bound to control the maximum of many random
variables.

• Chebyshev’s inequality to bound a variable whose
variance we can compute.

• To compute the variance, break down random variable
into smaller pieces and apply linearity of variance.

Next class: We will use even stronger tools to prove a better
bound of o(logn) for the most loaded bin.

21

