CS-GY 9223 D: Lecture 14 Leverage Score Sampling, Spectral Sparsification, Taste of my research

NYU Tandon School of Engineering, Prof. Christopher Musco

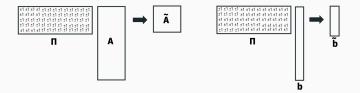
- Final project needs to be submitted by 12/18 on NYU Classes. 6 page writeup minimum. I am still available for last minute meetings if needed.
- Please fill out course feedback!
- I desperately need graders to help next year if you will be around in the Fall 2021 semester, let me know.

Main idea: If you want to compute singular vectors or eigenvectors, multiply two matrices, solve a regression problem, etc.:

- 1. Compress your matrices using a randomized method.
- 2. Solve the problem on the smaller or sparser matrix.
 - $\cdot\,\,\tilde{A}$ called a "sketch" or "coreset" for A.



Randomized approximate regression using a Johnson-Lindenstrauss Matrix:



Input: $\mathbf{A} \in \mathbb{R}^{n \times d}$, $\mathbf{b} \in \mathbb{R}^{n}$.

Algorithm: Let $\tilde{\mathbf{x}}^* = \arg \min_{\mathbf{x}} \|\mathbf{\Pi} \mathbf{A} \mathbf{x} - \mathbf{\Pi} \mathbf{b}\|_2^2$.

Goal: Want $\|\mathbf{A}\tilde{\mathbf{x}}^* - \mathbf{b}\|_2^2 \le (1 + \epsilon) \min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$

TARGET RESULT

Theorem (Randomized Linear Regression)

Let Π be a properly scaled JL matrix (random Gaussian, sign, sparse random, etc.) with $m = \tilde{O}\left(\frac{d}{\epsilon^2}\right)$ rows. Then with probability $(1 - \delta)$, for any $\mathbf{A} \in \mathbb{R}^{n \times d}$ and $\mathbf{b} \in \mathbb{R}^n$,

$$\|\mathbf{A}\mathbf{\tilde{x}}^* - \mathbf{b}\|_2^2 \le (1 + \epsilon) \min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$

where $\tilde{\mathbf{x}}^* = \arg \min_{\mathbf{x}} \|\mathbf{\Pi} \mathbf{A} \mathbf{x} - \mathbf{\Pi} \mathbf{b}\|_2^2$.

Theorem (Subspace Embedding)

Let $\mathbf{A} \in \mathbb{R}^{n \times d}$ be a matrix. If $\mathbf{\Pi} \in \mathbb{R}^{m \times n}$ is chosen from any distribution \mathcal{D} satisfying the Distributional JL Lemma, then with probability $1 - \delta$,

$$(1 - \epsilon) \|\mathbf{A}\mathbf{x}\|_2^2 \le \|\mathbf{\Pi}\mathbf{A}\mathbf{x}\|_2^2 \le (1 + \epsilon) \|\mathbf{A}\mathbf{x}\|_2^2$$

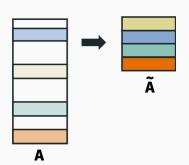
for all $\mathbf{x} \in \mathbb{R}^d$, as long as $m = O\left(\frac{d + \log(1/\delta)}{\epsilon^2}\right)$.

Implies regression result, and more.

Example: The any singular value $\tilde{\sigma}_i$ of **IA** is a $(1 \pm \epsilon)$ approximation to the true singular value σ_i of **B**.

Recurring research interest: Replace random projection methods with <u>random sampling methods</u>. Prove that for essentially all problems of interest, can obtain same asymptotic runtimes.

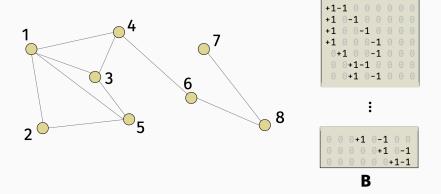
Sampling has the added benefit of <u>preserving matrix sparsity</u> or structure, and can be applied in a <u>wider variety of settings</u> where random projections are too expensive. **First goal:** Can we use sampling to obtain subspace embeddings? I.e. for a given **A** find **Ã** whose rows are a (weighted) subset of rows in **A** and:



 $(1-\epsilon) \|\mathbf{A}\mathbf{x}\|_2^2 \le \|\mathbf{\tilde{A}}\mathbf{x}\|_2^2 \le (1+\epsilon) \|\mathbf{A}\mathbf{x}\|_2^2.$

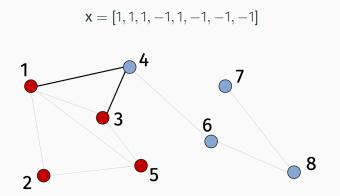
EXAMPLE WHERE STRUCTURE MATTERS

Let **B** be the edge-vertex incidence matrix of a graph *G* with vertex set *V*, |V| = d. Recall that $\mathbf{B}^T \mathbf{B} = \mathbf{L}$.

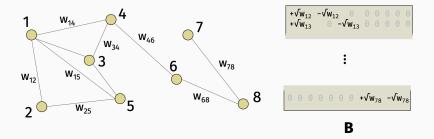


Recall that if $\mathbf{x} \in \{-1, 1\}^n$ is the <u>cut indicator vector</u> for a cut *S* in the graph, then $\frac{1}{4} \|\mathbf{B}\mathbf{x}\|_2^2 = \operatorname{cut}(S, V \setminus S)$.

LINEAR ALGEBRAIC VIEW OF CUTS

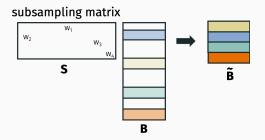


 $\mathbf{x} \in \{-1, 1\}^d$ is the <u>cut indicator vector</u> for a cut *S* in the graph, then $\frac{1}{4} \|\mathbf{Bx}\|_2^2 = \operatorname{cut}(S, V \setminus S)$ Extends to weighted graphs, as long as square root of weights is included in **B**. Still have the $\mathbf{B}^T \mathbf{B} = \mathbf{L}$.



And still have that if $\mathbf{x} \in \{-1, 1\}^d$ is the <u>cut indicator vector</u> for a cut S in the graph, then $\frac{1}{4} \|\mathbf{B}\mathbf{x}\|_2^2 = \text{cut}(S, V \setminus S)$.

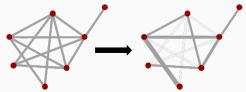
Goal: Approximate **B** by a weighted subsample. I.e. by \tilde{B} with $m \ll |E|$ rows, each of which is a scaled copy of a row from **B**.



Natural goal: \tilde{B} is a subspace embedding for **B**. In other words, \tilde{B} has $\approx O(d)$ rows and for all **x**,

$$(1-\epsilon) \|\mathbf{B}\mathbf{x}\|_2^2 \le \|\mathbf{\tilde{B}}\mathbf{x}\|_2^2 \le (1+\epsilon) \|\mathbf{B}\mathbf{x}\|_2^2.$$

B is itself an edge-vertex incidence matrix for some <u>sparser</u> graph *G*, which preserves many properties about *G*! *G* is called a <u>spectral sparsifier</u> for *G*.



For example, we have that for any set S,

 $(1 - \epsilon) \operatorname{cut}_G(S, V \setminus S) \le \operatorname{cut}_{\widetilde{G}}(S, V \setminus S) \le (1 + \epsilon) \operatorname{cut}_G(S, V \setminus S).$

So \tilde{G} can be used in place of G in solving e.g. max/min cut problems, balanced cut problems, etc.

In contrast **ΠB** would look nothing like an edge-vertex incidence matrix if **Π** is a JL matrix.

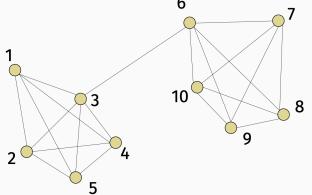
Spectral sparsifiers were introduced in 2004 by Spielman and Teng in an influential paper on faster algorithms for solving Laplacian linear systems.

- Generalize the cut sparsifiers of Benczur, Karger '96.
- Further developed in work by Spielman, Srivastava + Batson, '08.
- Have had huge influence in algorithms, and other areas of mathematics – this line of work lead to the 2013 resolution of the Kadison-Singer problem in functional analysis by Marcus, Spielman, Srivastava.

This class: Learn about an important random sampling algorithm for constructing spectral sparsifiers, and subspace embeddings for matrices more generally.

Goal: Find \tilde{A} such that $\|\tilde{A}\mathbf{x}\|_2^2 = (1 \pm \epsilon) \|\mathbf{A}\mathbf{x}\|_2^2$ for all \mathbf{x} .

Possible Approach: Construct à by <u>uniformly sampling</u> rows from A. 6



Can check that this approach fails even for the special case of a graph vertex-edge incidence matrix.

Key idea: <u>Importance sampling</u>. Select some rows with higher probability.

Suppose A has *n* rows $\mathbf{a}_1 \dots, \mathbf{a}_n$. Let $p_1, \dots, p_n \in [0, 1]$ be sampling probabilities. Construct $\tilde{\mathbf{A}}$ as follows:

- For i = 1, ..., n
 - Select \mathbf{a}_i with probability p_i .
 - If \mathbf{a}_i is selected, add the scaled row $\frac{1}{\sqrt{p_i}}\mathbf{a}_i$ to \tilde{A} .

Remember, ultimately want that $\|\tilde{\mathbf{A}}\mathbf{x}\|_2^2 = (1 \pm \epsilon)\|\mathbf{A}\mathbf{x}\|_2^2$ for all \mathbf{x} . Claim 1: $\mathbb{E}[\|\tilde{\mathbf{A}}\mathbf{x}\|_2^2] = \|\mathbf{A}\mathbf{x}\|_2^2$.

Claim 2: Expected number of rows in \tilde{A} is $\sum_{i=1}^{n} p_i$.

How should we choose the probabilities p_1, \ldots, p_n ?

- 1. Introduce the idea of row leverage scores.
- 2. Motivate why these scores make for good sampling probabilities.
- Prove (at least mostly) that sampling with probabilities proportional to these scores yields a subspace embedding (or a spectral sparsifier) with a near optimal number of rows.

Let $\mathbf{a}_1, \ldots, \mathbf{a}_n$ be **A**'s rows. We define the **statistical leverage** score τ_i of row \mathbf{a}_i as:

$$\tau_i = \mathbf{a}_i^T (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{a}_i.$$

We will show that τ_i is a natural <u>importance measure</u> for each row in **A**.

We have that $\tau_i \in [0, 1]$ and $\sum_{i=1}^n \tau_i = d$ if **A** has d columns.

MAIN RESULT

For i = 1, ..., n,

$$\tau_i = \mathbf{a}_i^T (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{a}_i.$$

Theorem (Subspace Embedding from Subsampling)

For each *i*, and fixed constant *c*, let $p_i = \min\left(1, \frac{c\log d}{\epsilon^2} \cdot \tau_i\right)$. Let \tilde{A} have rows sampled from A with probabilities p_1, \ldots, p_n . With probability 9/10,

$$(1-\epsilon) \|\mathbf{A}\mathbf{x}\|_2^2 \le \|\mathbf{\tilde{A}}\mathbf{x}\|_2^2 \le (1+\epsilon) \|\mathbf{A}\mathbf{x}\|_2^2$$

and \tilde{A} has $O(d \log d/\epsilon^2)$ rows in expectation.

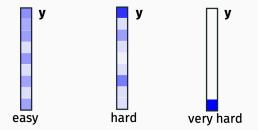
How should we choose the probabilities p_1, \ldots, p_n ?

As usual, consider a single vector \mathbf{x} and understand how to sample to preserve norm of $\mathbf{y} = \mathbf{A}\mathbf{x}$:

$$\|\mathbf{\tilde{A}}\mathbf{x}\|_{2}^{2} = \|\mathbf{S}\mathbf{A}\mathbf{x}\|_{2}^{2} = \|\mathbf{S}\mathbf{y}\|_{2}^{2} \approx \|\mathbf{y}\|_{2}^{2} = \|\mathbf{A}\mathbf{x}\|_{2}^{2}.$$

Then we can union bound over an ϵ -net to extend to all **x**.

As discussed a few lectures ago, uniform sampling only works well if $\mathbf{y} = \mathbf{A}\mathbf{x}$ is "flat".



Instead consider sampling with probabilities at least proportional to the magnitude of **y**'s entries:

$$p_i > c \cdot \frac{y_i^2}{\|y\|_2^2}$$
 for constant *c* to be determined.

Let $\tilde{\mathbf{y}}$ be the subsampled \mathbf{y} . Recall that, when sampling with probabilities p_1, \ldots, p_n , for $i = 1, \ldots, n$ we add y_i to $\tilde{\mathbf{y}}$ with probability p_i and reweight by $\frac{1}{\sqrt{p_i}}$.

 $\|\tilde{\mathbf{y}}\|_{2}^{2} =$

 $\sigma^2 = \mathrm{Var}[\|\tilde{\mathbf{y}}\|_2^2] =$

Recall Chebyshev's Inequality:

$$\Pr[\left|\|\mathbf{\tilde{y}}\|_{2}^{2} - \|\mathbf{y}\|_{2}^{2}\right| \le \frac{1}{\sqrt{\delta}} \cdot \sigma] \le \delta$$

We want error $|\|\tilde{\mathbf{y}}\|_2^2 - \|\mathbf{y}\|_2^2| \le \epsilon \|\mathbf{y}\|_2^2$. Need set $c = \frac{1}{\delta \epsilon^2}$.¹ If we knew y_1, \ldots, y_n , the number of samples we take in expectation is:

$$\sum_{i=1}^{n} p_i = \sum_{i=1}^{n} c \cdot \frac{y_i^2}{\|y_i\|_2^2} = \frac{1}{\delta \epsilon^2}.$$

¹Using the right Bernstein bound we can improve to $c = O(\log(1/\delta)/\epsilon^2)$.

But we of course don't know y_1, \ldots, y_n , and even so these values aren't fixed. We wanted to prove a bound for $\mathbf{y} = \mathbf{A}\mathbf{x}$ for any \mathbf{x} .

Idea behind leverage scores: Sample row *i* from **A** using the worst case (largest necessary) sampling probability:

$$au_i = \max_{\mathbf{x}} \frac{y_i^2}{\|\mathbf{y}\|_2^2}$$
 where $\mathbf{y} = \mathbf{A}\mathbf{x}$.

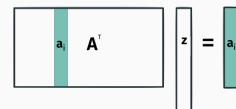
If we sample with probability $p_i = \frac{1}{\epsilon^2} \cdot \tau_i$, then we will be sampling by at least $\frac{1}{\epsilon^2} \cdot \frac{y_i^2}{\|y\|_2^2}$, <u>no matter what **y** is</u>.

Two major concerns: 1) How to compute τ_1, \ldots, τ_n , and 2) the number of samples we take will be roughly $\sum_{i=1}^{n} \tau_i$. How do we bound this?

$$au_i = \max_{\mathbf{x}} \frac{y_i^2}{\|\mathbf{y}\|_2^2}$$
 where $\mathbf{y} = \mathbf{A}\mathbf{x}.$

Recall Cauchy-Schwarz inequality: $(w^T z)^2 \le w^T w \cdot z^T z$

$$\tau_i = \min_{\mathbf{z} \text{ such that } \mathbf{A}^T \mathbf{z} = \mathbf{a}_i} \|\mathbf{z}\|_2^2.$$



EQUIVALENT MINIMIZATION CHARACTERIZATION

|| - || 2

Gives clearer picture of leverage score τ_i as a measure of "uniqueness" for row a_i .

Leverage score sampling:

• For $i = 1, ..., n_i$

• Compute
$$\tau_i = \mathbf{a}_i^T (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{a}_i$$
.

• Set
$$p_i = \frac{c \log(1/\delta)}{\epsilon^2} \cdot \tau_i$$
.

• Add row \mathbf{a}_i to $\tilde{\mathbf{A}}$ with probability p_i and reweight by $\frac{1}{\sqrt{p_i}}$.

For any fixed **x**, we will have that $(1 - \epsilon) \|\mathbf{A}\mathbf{x}\|_2^2 \le \|\mathbf{\tilde{A}}\mathbf{x}\|_2^2 \le (1 + \epsilon) \|\mathbf{A}\mathbf{x}\|_2^2$ with probability $(1 - \delta)$.

How many rows do we sample in expectation?

Claim: No matter how large *n* is, $\sum_{i=1}^{n} \tau_i = d$ a matrix $\mathbf{A} \in \mathbb{R}^d$.

"Zero-sum" law for the importance of matrix rows.

Leverage score sampling:

- For $i = 1, ..., n_i$
 - Compute $\tau_i = \mathbf{a}_i^T (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{a}_i$.

• Set
$$p_i = \frac{c \log(1/\delta)}{\epsilon^2} \cdot \tau_i$$
.

• Add row \mathbf{a}_i to $\tilde{\mathbf{A}}$ with probability p_i and reweight by $\frac{1}{\sqrt{p_i}}$.

For any fixed **x**, we will have that $(1 - \epsilon) \|\mathbf{A}\mathbf{x}\|_2^2 \le \|\mathbf{\tilde{A}}\mathbf{x}\|_2^2 \le (1 + \epsilon) \|\mathbf{A}\mathbf{x}\|_2^2$ with high probability. And since $\sum_{i=1}^n p_i = \frac{c \log(1/\delta)}{\epsilon^2} \cdot \sum_{i=1}^n \tau_i$, $\mathbf{\tilde{A}}$ contains $O\left(\frac{d \log(1/\delta)}{\epsilon^2}\right)$ rows in expectation.

Last step: need to extend to all **x**.

MAIN RESULT

Naive ϵ -net argument leads to d^2 dependence since we need to set $\delta = c^d$. Getting the right $d \log d$ dependence below requires a standard "matrix Chernoff bound" (see e.g. Tropp 2015).

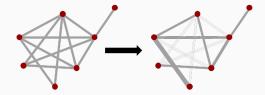
Theorem (Subspace Embedding from Subsampling)

For each *i*, and fixed constant *c*, let $p_i = \min\left(1, \frac{c\log d}{\epsilon^2} \cdot \tau_i\right)$. Let \tilde{A} have rows sampled from A with probabilities p_1, \ldots, p_n . With probability 9/10,

$$(1-\epsilon) \|\mathbf{A}\mathbf{x}\|_2^2 \le \|\mathbf{\tilde{A}}\mathbf{x}\|_2^2 \le (1+\epsilon) \|\mathbf{A}\mathbf{x}\|_2^2,$$

and \tilde{A} has $O(d \log d/\epsilon^2)$ rows in expectation.

For any graph G with d nodes, there exists a graph \tilde{G} with $O(d \log d/\epsilon^2)$ edges such that, for all \mathbf{x} , $\|\tilde{\mathbf{B}}\mathbf{x}\|_2^2 = (1 \pm \epsilon) \|\mathbf{B}\mathbf{x}\|_2^2$.

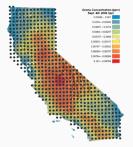


As a result, the value of any cut in \tilde{G} is within a $(1 \pm \epsilon)$ factor of the value in *G*, the Laplacian eigenvalues are with a $(1 \pm \epsilon)$ factors, etc.

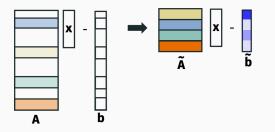
In many applications, computational costs are second order to data collection costs. We have a huge range of possible data points $\mathbf{a}_1, \ldots, \mathbf{a}_n$ that we can collect labels/values b_1, \ldots, b_n for. Goal is to learn \mathbf{x} such that:

 $\mathbf{a}_i^T \mathbf{x} \approx b_i$.

Want to do so after observing as few b_1, \ldots, b_n as possible. Applications include healthcare, environmental science, etc.



Can be solved via random sampling for linear models.



Claim: Let \tilde{A} is an O(1)-factor subspace embedding for A (obtained via leverage score sampling). Then $\tilde{x} = \arg \min \|\tilde{A}x - \tilde{b}\|_2^2$ satisfies:

$$\|A\tilde{x} - b\|_2^2 \le \mathit{O}(1) \|Ax^* - b\|_2^2,$$

where $\mathbf{x}^* = \arg \min \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$. Computing $\tilde{\mathbf{x}}$ only requires collecting $O(d \log d)$ labels (independent of n).

Lots of applications:

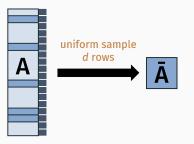
- Robust bandlimited, multiband, and polynomial interpolation [STOC 2019].
- Robust active learning for Gaussian process regression [NeurIPS 2020].

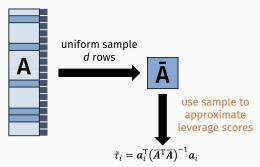
Claim: $\tilde{x} = \text{arg}\min \|\tilde{A}x - \tilde{b}\|_2^2$ satisfies:

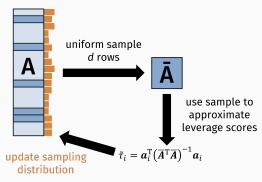
$$\|\mathbf{A}\mathbf{\tilde{x}} - \mathbf{b}\|_2^2 \le O(1)\|\mathbf{A}\mathbf{x}^* - \mathbf{b}\|_2^2,$$

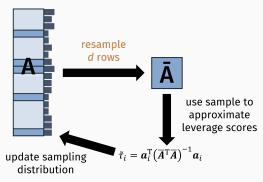
where $\mathbf{x}^* = \arg \min \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$. Computing $\tilde{\mathbf{x}}$ only requires collecting $O(d \log d)$ labels (independent of n).

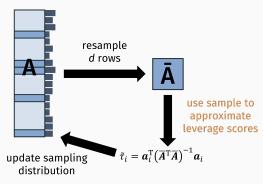
Proof:

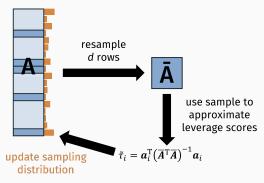


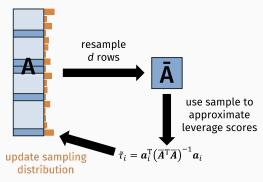










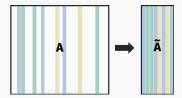


After $O(\log n)$ rounds, $\tilde{\tau}_i \approx \tau_i$ for all *i*.

Problem: Sometimes we want to compress down to $\ll d$ rows or columns. E.g. we don't need a full subspace embedding, but just want to find a near optimal rank *k* approximation.

Approach: Use "regularized" version of the leverage scores:

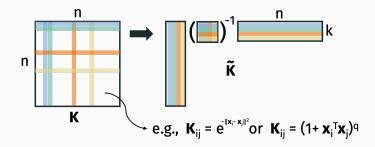
$$\bar{\tau}_i = \mathbf{a}_i^T (\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{a}_i$$



Result: Sample $O(k \log k/\epsilon)$ columns whose span contains a near-optimal low-approximation to **A** (SODA 2017).

EXAMPLE RESULT: SUBLINEAR TIME KERNEL APPROXIMATION

The first $O(nk^2/\epsilon^2)$ time algorithm² for near optimal rank-*k* approximation of any $n \times n$ positive semidefinite kernel matrix:



Based on the classic Nyström method. Importantly, does not even require constructing **K** explicitly, which takes $O(n^2)$ time.

²NeurIPS 2017.