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administrative info

• Final project needs to be submitted by 12/18 on NYU
Classes. 6 page writeup minimum. I am still available for
last minute meetings if needed.

• Please fill out course feedback!
• I desperately need graders to help next year – if you will
be around in the Fall 2021 semester, let me know.
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randomized numerical linear algebra

Main idea: If you want to compute singular vectors or
eigenvectors, multiply two matrices, solve a regression
problem, etc.:

1. Compress your matrices using a randomized method.
2. Solve the problem on the smaller or sparser matrix.

• Ã called a “sketch” or “coreset” for A.
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sketched regression

Randomized approximate regression using a
Johnson-Lindenstrauss Matrix:

Input: A ∈ Rn×d, b ∈ Rn.

Algorithm: Let x̃∗ = argminx ∥ΠAx−Πb∥22.

Goal: Want ∥Ax̃∗ − b∥22 ≤ (1+ ϵ)minx ∥Ax− b∥22
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target result

Theorem (Randomized Linear Regression)
Let Π be a properly scaled JL matrix (random Gaussian, sign,
sparse random, etc.) with m = Õ

(
d
ϵ2

)
rows. Then with

probability (1− δ), for any A ∈ Rn×d and b ∈ Rn,

∥Ax̃∗ − b∥22 ≤ (1+ ϵ)min
x

∥Ax− b∥22

where x̃∗ = argminx ∥ΠAx−Πb∥22.
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subspace embeddings reworded

Theorem (Subspace Embedding)
Let A ∈ Rn×d be a matrix. If Π ∈ Rm×n is chosen from any
distribution D satisfying the Distributional JL Lemma, then
with probability 1− δ,

(1− ϵ)∥Ax∥22 ≤ ∥ΠAx∥22 ≤ (1+ ϵ)∥Ax∥22

for all x ∈ Rd, as long as m = O
(
d+log(1/δ)

ϵ2

)
.

Implies regression result, and more.

Example: The any singular value σ̃i of ΠA is a (1± ϵ)

approximation to the true singular value σi of B.
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subsampling methods

Recurring research interest: Replace random projection
methods with random sampling methods. Prove that for
essentially all problems of interest, can obtain same

asymptotic runtimes.

Sampling has the added benefit of preserving matrix sparsity
or structure, and can be applied in a wider variety of settings

where random projections are too expensive.
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subsampling methods

First goal: Can we use sampling to obtain subspace
embeddings? I.e. for a given A find Ã whose rows are a
(weighted) subset of rows in A and:

(1− ϵ)∥Ax∥22 ≤ ∥Ãx∥22 ≤ (1+ ϵ)∥Ax∥22.
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example where structure matters

Let B be the edge-vertex incidence matrix of a graph G with
vertex set V, |V| = d. Recall that BTB = L.

Recall that if x ∈ {−1, 1}n is the cut indicator vector for a cut S
in the graph, then 1

4∥Bx∥22 = cut(S, V \ S). 9



linear algebraic view of cuts

x = [1, 1, 1,−1, 1,−1,−1,−1]

x ∈ {−1, 1}d is the cut indicator vector for a cut S in the graph,
then 1

4∥Bx∥22 = cut(S, V \ S)
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weighted cuts

Extends to weighted graphs, as long as square root of weights
is included in B. Still have the BTB = L.

And still have that if x ∈ {−1, 1}d is the cut indicator vector for
a cut S in the graph, then 1

4∥Bx∥22 = cut(S, V \ S).
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spectral sparsification

Goal: Approximate B by a weighted subsample. I.e. by B̃ with
m≪ |E| rows, each of which is a scaled copy of a row from B.

Natural goal: B̃ is a subspace embedding for B. In other words,
B̃ has ≈ O(d) rows and for all x,

(1− ϵ)∥Bx∥22 ≤ ∥B̃x∥22 ≤ (1+ ϵ)∥Bx∥22.
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history spectral sparsification

B̃ is itself an edge-vertex incidence matrix for some sparser
graph G̃, which preserves many properties about G! G̃ is called
a spectral sparsifier for G.

For example, we have that for any set S,

(1− ϵ) cutG(S, V \ S) ≤ cutG̃(S, V \ S) ≤ (1+ ϵ) cutG(S, V \ S).

So G̃ can be used in place of G in solving e.g. max/min cut
problems, balanced cut problems, etc.

In contrast ΠB would look nothing like an edge-vertex
incidence matrix if Π is a JL matrix. 13



history of spectral sparsification

Spectral sparsifiers were introduced in 2004 by Spielman and
Teng in an influential paper on faster algorithms for solving
Laplacian linear systems.

• Generalize the cut sparsifiers of Benczur, Karger ‘96.
• Further developed in work by Spielman, Srivastava +
Batson, ‘08.

• Have had huge influence in algorithms, and other areas of
mathematics – this line of work lead to the 2013
resolution of the Kadison-Singer problem in functional
analysis by Marcus, Spielman, Srivastava.

This class: Learn about an important random sampling
algorithm for constructing spectral sparsifiers, and subspace
embeddings for matrices more generally.
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natural first attempt

Goal: Find Ã such that ∥Ãx∥22 = (1± ϵ)∥Ax∥22 for all x.

Possible Approach: Construct Ã by uniformly sampling rows
from A.

Can check that this approach fails even for the special case of
a graph vertex-edge incidence matrix. 15



importance sampling framework

Key idea: Importance sampling. Select some rows with higher
probability.

Suppose A has n rows a1 . . . , an. Let p1, . . . ,pn ∈ [0, 1] be
sampling probabilities. Construct Ã as follows:
• For i = 1, . . . ,n

• Select ai with probability pi.
• If ai is selected, add the scaled row 1√pi ai to Ã.

Remember, ultimately want that ∥Ãx∥22 = (1± ϵ)∥Ax∥22 for all x.

Claim 1: E[∥Ãx∥22] = ∥Ax∥22.

Claim 2: Expected number of rows in Ã is
∑n

i=1 pi.
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lecture outline

How should we choose the probabilities p1, . . . ,pn?

1. Introduce the idea of row leverage scores.
2. Motivate why these scores make for good sampling
probabilities.

3. Prove (at least mostly) that sampling with probabilities
proportional to these scores yields a subspace
embedding (or a spectral sparsifier) with a near optimal
number of rows.
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main result

Let a1, . . . , an be A’s rows. We define the statistical leverage
score τi of row ai as:

τi = aTi (ATA)−1ai.

We will show that τi is a natural importance measure for each
row in A.

We have that τi ∈ [0, 1] and
∑n

i=1 τi = d if A has d columns.
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main result

For i = 1, . . . ,n,

τi = aTi (ATA)−1ai.

Theorem (Subspace Embedding from Subsampling)

For each i, and fixed constant c, let pi = min
(
1, c log d

ϵ2
· τi

)
. Let

Ã have rows sampled from A with probabilities p1, . . . ,pn.
With probability 9/10,

(1− ϵ)∥Ax∥22 ≤ ∥Ãx∥22 ≤ (1+ ϵ)∥Ax∥22,

and Ã has O(d logd/ϵ2) rows in expectation.
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vector sampling

How should we choose the probabilities p1, . . . ,pn?

As usual, consider a single vector x and understand how to
sample to preserve norm of y = Ax:

∥Ãx∥22 = ∥SAx∥22 = ∥Sy∥22 ≈ ∥y∥22 = ∥Ax∥22.

Then we can union bound over an ϵ-net to extend to all x.
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vector sampling

As discussed a few lectures ago, uniform sampling only works
well if y = Ax is “flat”.

Instead consider sampling with probabilities at least
proportional to the magnitude of y’s entries:

pi > c ·
y2i

∥y∥22
for constant c to be determined.
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variance analysis

Let ỹ be the subsampled y. Recall that, when sampling with
probabilities p1, . . . ,pn, for i = 1, . . . ,n we add yi to ỹ with
probability pi and reweight by 1√pi

.

∥ỹ∥22 =

σ2 = Var[∥ỹ∥22] =
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variance analysis

Recall Chebyshev’s Inequality:

Pr[
∣∣∥ỹ∥22 − ∥y∥22

∣∣ ≤ 1√
δ
· σ] ≤ δ

We want error
∣∣∥ỹ∥22 − ∥y∥22

∣∣ ≤ ϵ∥y∥22.

Need set c = 1
δϵ2
.1

If we knew y1, . . . , yn, the number of samples we take in
expectation is:

n∑
i=1

pi =
n∑
i=1

c ·
y2i

∥yi∥22
=

1
δϵ2

.

1Using the right Bernstein bound we can improve to c = O(log(1/δ)/ϵ2).
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maximization characterization

But we of course don’t know y1, . . . , yn, and even so these
values aren’t fixed. We wanted to prove a bound for y = Ax for
any x.

Idea behind leverage scores: Sample row i from A using the
worst case (largest necessary) sampling probability:

τi = max
x

y2i
∥y∥22

where y = Ax.

If we sample with probability pi = 1
ϵ2
· τi, then we will be

sampling by at least 1
ϵ2
· y2i
∥y∥22

, no matter what y is.

Two major concerns: 1) How to compute τ1, . . . , τn, and 2) the
number of samples we take will be roughly

∑n
i=1 τi. How do we

bound this?
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maximization characterization

τi = max
x

y2i
∥y∥22

where y = Ax.

Recall Cauchy-Schwarz inequality: (wTz)2 ≤ wTw · zTz
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equivalent minimization characterization

τi = min
z such that ATz=ai

∥z∥22.
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equivalent minimization characterization

τi = min
z such that ATz=ai

∥z∥22.

Gives clearer picture of leverage score τi as a measure of
“uniqueness” for row ai.
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leverage score sampling

Leverage score sampling:

• For i = 1, . . . ,n,
• Compute τi = aTi (ATA)−1ai.
• Set pi = c log(1/δ)

ϵ2 · τi.
• Add row ai to Ã with probability pi and reweight by 1√pi .

For any fixed x, we will have that
(1− ϵ)∥Ax∥22 ≤ ∥Ãx∥22 ≤ (1+ ϵ)∥Ax∥22 with probability (1− δ).

How many rows do we sample in expectation?
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sum of leverage scores

Claim: No matter how large n is,
∑n

i=1 τi = d a matrix A ∈ Rd.

“Zero-sum” law for the importance of matrix rows.
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leverage score sampling

Leverage score sampling:

• For i = 1, . . . ,n,
• Compute τi = aTi (ATA)−1ai.
• Set pi = c log(1/δ

ϵ2 · τi.
• Add row ai to Ã with probability pi and reweight by 1√pi .

For any fixed x, we will have that
(1− ϵ)∥Ax∥22 ≤ ∥Ãx∥22 ≤ (1+ ϵ)∥Ax∥22 with high probability.

And since
∑n

i=1 pi =
c log(1/δ

ϵ2
·
∑n

i=1 τi, Ã contains O
(
d log(1/δ)

ϵ2

)
rows in expectation.

Last step: need to extend to all x.
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main result

Naive ϵ-net argument leads to d2 dependence since we need to
set δ = cd. Getting the right d logd dependence below requires
a standard “matrix Chernoff bound” (see e.g. Tropp 2015).

Theorem (Subspace Embedding from Subsampling)

For each i, and fixed constant c, let pi = min
(
1, c log d

ϵ2
· τi

)
. Let

Ã have rows sampled from A with probabilities p1, . . . ,pn.
With probability 9/10,

(1− ϵ)∥Ax∥22 ≤ ∥Ãx∥22 ≤ (1+ ϵ)∥Ax∥22,

and Ã has O(d logd/ϵ2) rows in expectation.
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spectral sparsification corollary

For any graph G with d nodes, there exists a graph G̃ with
O(d logd/ϵ2) edges such that, for all x, ∥B̃x∥22 = (1± ϵ)∥Bx∥22.

As a result, the value of any cut in G̃ is within a (1± ϵ) factor of
the value in G, the Laplacian eigenvalues are with a (1± ϵ)

factors, etc.
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another application: active regression

In many applications, computational costs are second order to
data collection costs. We have a huge range of possible data
points a1, . . . , an that we can collect labels/values b1, . . . ,bn
for. Goal is to learn x such that:

aTi x ≈ bi.

Want to do so after observing as few b1, . . . ,bn as possible.
Applications include healthcare, environmental science, etc.
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another application: active regression

Can be solved via random sampling for linear models.
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another application: active regression

Claim: Let Ã is an O(1)-factor subspace embedding for A
(obtained via leverage score sampling). Then
x̃ = argmin ∥Ãx− b̃∥22 satisfies:

∥Ax̃− b∥22 ≤ O(1)∥Ax∗ − b∥22,

where x∗ = argmin ∥Ax− b∥22. Computing x̃ only requires
collecting O(d logd) labels (independent of n).

Lots of applications:

• Robust bandlimited, multiband, and polynomial
interpolation [STOC 2019].

• Robust active learning for Gaussian process regression
[NeurIPS 2020].
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another application: active regression

Claim: x̃ = argmin ∥Ãx− b̃∥22 satisfies:

∥Ax̃− b∥22 ≤ O(1)∥Ax∗ − b∥22,

where x∗ = argmin ∥Ax− b∥22. Computing x̃ only requires
collecting O(d logd) labels (independent of n).

Proof:
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some other things i have worked on

Problem: Computing leverage scores τi = aTi (ATA)−1ai is
expensive.

After O(logn) rounds, τ̃i ≈ τi for all i.

Main algorithmic idea: Bootstrap leverage score sampling
from uniform sampling (ITCS 2015). 37
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some things i have worked on

Problem: Sometimes we want to compress down to≪ d rows
or columns. E.g. we don’t need a full subspace embedding, but
just want to find a near optimal rank k approximation.

Approach: Use “regularized” version of the leverage scores:

τ̄i = aTi (ATA+ λI)−1ai

Result: Sample O(k log k/ϵ) columns whose span contains a
near-optimal low-approximation to A (SODA 2017).
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example result: sublinear time kernel approximation

The first O(nk2/ϵ2) time algorithm2 for near optimal rank-k
approximation of any n× n positive semidefinite kernel matrix:

Based on the classic Nyström method. Importantly, does not
even require constructing K explicitly, which takes O(n2) time.
2NeurIPS 2017.
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