
CS-GY 9223 D: Lecture 13
Compressed Sensing + Sparse Recovery

NYU Tandon School of Engineering, Prof. Christopher Musco
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sparse recovery/compressed sensing

What do we know?
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basic problem setup

Underdetermined linear regression: Given A ∈ Rm×n with
m < n, b ∈ Rm. Solve Ax = b for x.

• Infinite possible solutions x. In general, impossible to
recover parameter vector.
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sparsity recovery/compressed sensing

Underdetermined linear regression: Given A ∈ Rm×n with
m < n, b ∈ Rm. Solve Ax = b for x.

• Assume x is k-sparse for small k. ∥x∥0 = k.

• In many cases can recover x with m≪ n rows. In fact,
often m =∼ O(k) suffice.

• Need additional (strong) assumptions about A!
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quick aside

• In machine learning, we typically think about A’s rows as
data drawn from some universe/distribution:

• In many settings, we will get to choose A’s rows a1, . . . , am.
I.e. each bi = aTi x for some vector ai that we select.

• In this setting, we often call bi a linear measurement of x
and we call A a measurement matrix.
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assumptions on measurement matrix

When should this problem be difficult?
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assumptions on measurement matrix

Many ways to formalize our intuition

• A has Kruskal rank r. All sets of r columns in A are linearly
independent.

• Recover vectors x with sparsity k = r/2.

• A is µ-incoherent. |ATi Aj| ≤ µ∥Ai∥2∥Aj∥2 for all columns
Ai,Aj, i ̸= j.

• Recover vectors x with sparsity k = 1/µ.

• Focus today: A obeys the Restricted Isometry Property.
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restricted isometry property

Definition ((q, ϵ)-Restricted Isometry Property)
A matrix A satisfies (q, ϵ)-RIP if, for all x with ∥x∥0 ≤ q,

(1− ϵ)∥x∥22 ≤ ∥Ax∥22 ≤ (1+ ϵ)∥x∥22.

• Johnson-Lindenstrauss type condition.
• A preserves the norm of all q sparse vectors, instead of
the norms of a fixed discrete set of vectors, or all vectors
in a subspace (as in subspace embeddings).
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first sparse recovery result

Theorem (ℓ0-minimization)
Suppose we are given A ∈ Rm×n and b = Ax for an unknown
k-sparse x ∈ Rn. If A is (2k, ϵ)-RIP for any ϵ < 1 then x is the
unique minimizer of:

min∥z∥0 subject to Az = b.

• Establishes that information theoretically we can recover
x. Solving the ℓ0-minimization problem is computationally
difficult, requiring O(nk) time. We will address faster
recovery shortly.

9



first sparse recovery result

Claim: If A is (2k, ϵ)-RIP for any ϵ < 1 then x is the unique
minimizer of minAz=b ∥z∥0.

Proof: By contradiction, assume there is some y ̸= x such that
Ay = b, ∥y∥0 ≤ ∥x∥0.
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robustness

Important note: Robust versions of this theorem and the
others we will discuss exist. These are much more important
practically. Here’s a flavor of a robust result:

• Suppose b = A(x+ e) where x is k-sparse and e is dense
but has bounded norm.

• Recover some k-sparse x̃ such that:

∥x̃− x∥2 ≤ ∥e∥1

or even

∥x̃− x∥2 ≤ O
(
1√
k

)
∥e∥1.
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robustness

We will not discuss robustness in detail, but along with
computational considerations, it is a big part of what has
made compressed sensing such an active research area in the
last 20 years. Non-robust compressed sensing results have
been known for a long time:

Gaspard Riche de Prony, Essay experimental et analytique: sur
les lois de la dilatabilite de fluides elastique et sur celles de la

force expansive de la vapeur de l’alcool, a differentes
temperatures. Journal de l’Ecole Polytechnique, 24–76. 1795.
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restricted isometry property

What matrices satisfy this property?

• Random Johnson-Lindenstrauss matrices (Gaussian, sign,
etc.) with m = O(k log(n/k)

ϵ2
) rows are (k, ϵ)-RIP.

Some real world data may look random, but this is also a
useful observation algorithmically when we want to design A.
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restricted isometry property

Definition ((q, ϵ)-Restricted Isometry Property – Candes, Tao
’05)
A matrix A satisfies (q, ϵ)-RIP if, for all x with ∥x∥0 ≤ q,

(1− ϵ)∥x∥22 ≤ ∥Ax∥22 ≤ (1+ ϵ)∥x∥22.

The vectors that can be written as Ax for k sparse x lie in a
union of q dimensional linear subspaces:
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restricted isometry property

Candes, Tao 2005: A random JL matrix with O(q log(n/q)/ϵ2)
rows satisfies (q, ϵ)-RIP.

Any ideas for how you might prove this? I.e. prove that a
random matrix preserves the norm of every x in this union of

subspaces?
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restricted isometry property from jl

Theorem (Subspace Embedding from JL)
Let U ⊂ Rn be a q-dimensional linear subspace in Rn. If
Π ∈ Rm×n is chosen from any distribution D satisfying the
Distributional JL Lemma, then with probability 1− δ,

(1− ϵ)∥v∥22 ≤ ∥Πv∥22 ≤ (1+ ϵ)∥v∥22

for all v ∈ U , as long as m = O
(
q+log(1/δ)

ϵ2

)
.

Quick argument:

16



application: heavy hitters in data streams

Suppose you view a stream of numbers in 1, . . . ,n:

4, 18, 4, 1, 2, 24, 6, 4, 3, 18, 18, . . .

After some time, you want to report which k items appeared
most frequently in the stream.

E.g. Amazon is monitoring web-logs to see which product
pages people view. They want to figure out which products are
viewed most frequently. n ≈ 500 million.

How can you do this quickly in small space?
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application: heavy hitters in data streams

• Every time we receive a number i in the stream, add
column Ai to b.
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application: heavy hitters in data streams

• At the end b = Ax for an approximately sparse x if there
were only a few “heavy hitters”. Recover x from b using a
sparse recovery method (like ℓ0 minimization).
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application: heavy hitters in data streams

Naturally handles both insertions or deletions.

insert(4), insert(18), remove(4), insert(1), insert(2), remove(2) . . .

E.g. Amazon is monitoring what products people add to their
“wishlist” and wants a list of most tagged products. Wishlists
can be changed over time, including by removing items.
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application: single pixel camera

Typical acquisition of image by camera:

Requires one image sensor per pixel captured.
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application: single pixel camera

Compressed acquisition of image:

p =
∑
i=1

xi =
[
1 1 . . . 1

]

x1
x2
...
xn


Does not provide very much information about the image.
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application: single pixel camera

But several random linear measurements do!

p =
∑
i=1

Rixi =
[
0 1 0 0 . . . 1

]

x1
x2
...
xn
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application: single pixel camera

Applications in:

• Imaging outside of the visible spectrum (more expensive
sensors).

• Microscopy.
• Other scientific imaging.

Compressed sensing theory does not exactly describe these
problems, but has been very valuable in modeling them.
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the discrete fourier matrix

The n× n discrete Fourier matrix F is defined:

Fj,k = e
−2πi
n j·k,

where i =
√
−1. Recall e−2πi

n j·k = cos(2πjk/n)− i sin(2πjk/n).
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the discrete fourier matrix

Fx is the Discrete Fourier Transform of the vector x (what an
FFT computes).

Decomposes x into different frequencies: [Fx]j is the
component with frequency j/n.

Because F∗F = I, F∗Fx = x, so we can recover x if we have
access to its DFT. Fx.
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restricted isometry property

Setting A to contain a random m ∼ O
(
k log2 k log n

ϵ2

)
rows of the

discrete Fourier matrix F yields a matrix that with high
probability satisfies (k, ϵ)-RIP. [Haviv, Regev, 2016].

Improves on a long line of work: Candès, Tao, Rudelson,
Vershynin, Cheraghchi, Guruswami, Velingker, Bourgain.

You have seen some of the tools used prove this when we
proved that a subsampled Hadamard matrix, which is a type of
Fourier matrix, can be used to give a JL guarantee.
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the discrete fourier matrix

If A is a subset of q rows from F, then Ax is a subset of random
frequency components from x’s discrete Fourier transform.

In many scientific applications, we can collect entries of Fx one
at a time for some unobserved data vector x.
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application: geophysics

Warning: very cartoonish explanation of very complex problem.

Understanding what material is beneath the crust:

Think of vector x as scalar values of the density/reflectivity in
a single vertical core of the earth.

How do we measure entries of Fourier transform Fx?
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application: geophysics

Vibrate the earth at different frequencies! And measure the
response.

Vibroseis Truck

Can also use airguns, controlled explorations, vibrations from
drilling, etc. The fewer measurements we need from Fx, the
cheaper and faster our data acquisition process becomes.

Killer app: Oil Exploration. 30



application: geophysics

Warning: very cartoonish explanation of very complex problem.

Medical Imaging (MRI)

Vector x here is a 2D image. Everything works with 2D Fourier
transforms.

How do we measure entries of Fourier transform Fx?
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application: geophysics

Blast the body with sounds waves of varying frequency.

The fewer measurements we need from Fx, the faster we can
acquire an image.

• Especially important when trying to capture something
moving (e.g. lungs, baby, child who can’t sit still).

• Can also cut down on power requirements (which for MRI
machines are huge). 32



restricted isometry property

Definition ((q, ϵ)-Restricted Isometry Property)
A matrix A satisfies (q, ϵ)-RIP if, for all x with ∥x∥0 ≤ q,

(1− ϵ)∥x∥22 ≤ ∥Ax∥22 ≤ (1+ ϵ)∥x∥22.

Lots of other random matrices satisfy RIP as well.

One major theoretical question is if we can deterministically
construct good RIP matrices. Interestingly, if we want
(O(k),O(1)) RIP, we can only do so with O(k2) rows (now very
slightly better – thanks to Bourgain et al.).

Whether or not a linear dependence on k is possible with a
deterministic construction is unknown.
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faster sparse recovery

Theorem (ℓ0-minimization)
Suppose we are given A ∈ Rm×n and b = Ax for an unknown
k-sparse x. If A is (2k, ϵ)-RIP for any ϵ < 1 then x is the unique
minimizer of:

min∥z∥0 subject to Az = b.

Algorithm question: Can we recover x using a faster method?
Ideally in polynomial time.
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basis pursuit

Convex relaxation of the ℓ0 minimization problem:

Problem (Basis Pursuit, i.e. ℓ1 minimization.)

min
z

∥z∥1 subject to Az = b.

• Objective is convex.

• Optimizing over convex set.

What is one method we know for solving this problem?
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basis pursuit linear program

Equivalent formulation:

Problem (Basis Pursuit Linear Program.)

min
w,z

1Tw subject to Az = b,w ≥ 0,−w ≤ z ≤ w.

Can be solved using any algorithm for linear programming. An
Interior Point Method will run in at worst ∼ O(n3.5) time.
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basis pursuit intuition

Suppose A is 2× 1, so b is just a scalar and x is a
2-dimensional vector.

Vertices of level sets of ℓ1 norm
correspond to sparse solutions.

This is not the case e.g. for the ℓ2
norm.
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basis pursuit analysis

Theorem
If A is (3k, ϵ)-RIP for ϵ < .17 and ∥x∥0 = k, then z⋆ = x is the
unique optimal solution of the Basis Pursuit LP).

Similar proof to ℓ0 minimization:

• By way of contradiction, assume x is not the optimal
solution. Then there exists some non-zero ∆ such that:

• ∥x+∆∥1 ≤ ∥x∥1
• A(x+∆) = Ax. I.e. A∆ = 0.

Difference is that we can no longer assume that ∆ is sparse.

We will argue that ∆ is approximately sparse.
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tools needed

First tool:

For any q-sparse vector w, ∥w∥2 ≤ ∥w∥1 ≤
√
q∥w∥2

Second tool:

For any norm and vectors a,b, ∥a+ b∥ ≥ ∥a∥ − ∥b∥
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basis pursuit analysis

Some definitions:
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basis pursuit analysis

Claim 1: ∥∆S∥1 ≥ ∥∆S̄∥1
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basis pursuit analysis

Claim 2: ∥∆S∥2 ≥
√
2
∑

j≥2 ∥Tj∥2:
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basis pursuit analysis

Finish up proof by contradiction:
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faster methods

A lot of interest in developing even faster algorithms that
avoid using the “heavy hammer” of linear programming and
run in even faster than O(n3.5) time.

• Iterative Hard Thresholding: Looks a lot like projected
gradient descent. Solve minz ∥Az− b∥ with gradient
descent while continually projecting z back to the set of
k-sparse vectors. Runs in time ∼ O(nk logn) for Gaussian
measurement matrices and O(n logn) for subsampled
Fourer matrices.

• Other “first order” type methods: Orthogonal Matching
Pursuit, CoSaMP, Subspace Pursuit, etc.
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faster methods

When A is a subsampled Fourier matrix, there are now
methods that run in O(k logc n) time [Hassanieh, Indyk,
Kapralov, Katabi, Price, Shi, etc. 2012+].

Hold up...
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sparse fourier transform

Corollary: When x is k-sparse, we can compute the inverse
Fourier transform F∗Fx of Fx in O(k logc n) time!

• Randomly subsample Fx.
• Feed that input into our sparse recovery algorithm to
extract x.

Fourier and inverse Fourier transforms in sublinear time when
the output is sparse.

Applications in: Wireless communications, GPS, protein
imaging, radio astronomy, etc. etc.
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