
CS-GY 9223 D: Lecture 12
Fast Johnson-Lindenstrauss Transform, Start
on Sparse Recovery and Compressed Sensing

NYU Tandon School of Engineering, Prof. Christopher Musco
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randomized numerical linear algebra

Main idea: If you want to compute singular vectors or
eigenvectors, multiply two matrices, solve a regression
problem, etc.:

1. Compress your matrices using a randomized method.
2. Solve the problem on the smaller or sparser matrix.

• Ã called a “sketch” or “coreset” for A.
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sketched regression

Randomized approximate regression using a
Johnson-Lindenstrauss Matrix:

Input: A ∈ Rn×d, b ∈ Rn.

Algorithm: Let x̃∗ = argminx ∥ΠAx−Πb∥22.

Goal: Want ∥Ax̃∗ − b∥22 ≤ (1+ ϵ)minx ∥Ax− b∥22
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target result

Theorem (Randomized Linear Regression)
Let Π be a properly scaled JL matrix (random Gaussian, sign,
sparse random, etc.) with m = Õ

(
d
ϵ2

)
rows. Then with

probability (1− δ), for any A ∈ Rn×d and b ∈ Rn,

∥Ax̃∗ − b∥22 ≤ (1+ ϵ)min
x

∥Ax− b∥22

where x̃∗ = argminx ∥ΠAx−Πb∥22.
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subspace embeddings

Theorem (Subspace Embedding)
Let U ⊂ Rn be a d-dimensional linear subspace in Rn. If
Π ∈ Rm×n is chosen from any distribution D satisfying the
Distributional JL Lemma, then with probability 1− δ,

(1− ϵ)∥v∥22 ≤ ∥Πv∥22 ≤ (1+ ϵ)∥v∥22

for all v ∈ U , as long as m = O
(
d+log(1/δ)

ϵ2

)
.
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subspace embeddings reworded

Theorem (Subspace Embedding)
Let A ∈ Rn×d be a matrix. If Π ∈ Rm×n is chosen from any
distribution D satisfying the Distributional JL Lemma, then
with probability 1− δ,

(1− ϵ)∥Ax∥22 ≤ ∥ΠAx∥22 ≤ (1+ ϵ)∥Ax∥22

for all x ∈ Rd, as long as m = O
(
d+log(1/δ)

ϵ2

)
.

Implies regression result, and more.

Example: The top singular value σ̃21 of ΠA is a (1± ϵ)

approximation to the true top singular value σ21 . Do you see
why?
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runtime consideration

For ϵ, δ = O(1), we need Π to have m = O(d) rows.

• Cost to solve ∥Ax− b∥22:
• O(nd2) time for direct method. Need to compute
(ATA)−1ATb.

• O(nd) · (# of iterations) time for iterative method (GD, AGD,
conjugate gradient method).

• Cost to solve ∥ΠAx−Πb∥22:
• O(d3) time for direct method.
• O(d2) · (# of iterations) time for iterative method.
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runtime consideration

But time to compute ΠA is an (m× n)× (n× d) matrix
multiply: O(mnd) = O(nd2) time.

Goal: Develop faster Johnson-Lindenstrauss projections.

Typically using sparse or structured matrices instead of fully
random JL matrices.
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return to single vector problem

Goal: Develop methods that reduce a vector x ∈ Rn down to
m ≈ log(1/δ)

ϵ2
dimensions in o(mn) time and guarantee:

(1− ϵ)∥x∥22 ≤ ∥Πx∥22 ≤ (1+ ϵ)∥x∥22

We will learn about a truly brilliant method that runs in
O(n logn) time. Preview: Will involve Fast Fourier Transform in
disguise. 9



first attempt

Let Π be a random sampling matrix. Every row contains a
value of s =

√
n/m in a single location, and is zero elsewhere.

What’s the running time
tp compute Πx?

∥Πx∥22 =

E[∥Πx∥22] =

10



first attempt

So E∥Πx∥22 = ∥x∥22 in expectation. To show it is close with high
probability we would need to apply a concentration inequality.
How do you think this will work out?
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variance analysis

∥Πx∥22 =

σ2 = Var[∥Πx∥22] =

Recall Chebyshev’s Inequality:

Pr[
∣∣∥Πx∥22 − ∥x∥22

∣∣ ≤ 1
10 · σ] ≤ 1

100

We want additive error
∣∣∥Πx∥22 − ∥x∥22

∣∣ ≤ ϵ∥x∥22
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variance analysis

We need to choose m so that:
1
10

√
n
m∥x∥24 ≤ ϵ∥x∥22.

How do these two two norms compare?

∥x∥24 =
( n∑
i=1

x4i

)1/2
∥x∥22 =

n∑
i=1

x2i

Consider 2 extreme cases:

x =


1
0
...
0

 x =


1
1
...
1

 .
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variance for smoooth functions

We need to choose m so that:

1
10

√
n
m∥x∥24 ≤ ϵ∥x∥22.

Suppose x is very evenly distributed. I.e., for all i ∈ 1, . . . ,n,

x2i ≤
c
n

n∑
i=1

x2i =
c
n∥x∥

2
2

Claim: ∥x∥24 ≤
√

c
n∥x∥22. So m = O(c/ϵ2) samples suffices.1

1Using the right Bernstein bound we can prove m = O(c log(1/δ)/ϵ2)
suffices for failure probability δ.
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vector sampling

So sampling does work to preserve the norm of x, but only
when the vector is relatively “smooth” (not concentrated). Do
we expect to see such vectors in the wild?
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the fast johnson-lindenstrauss transform

Subsampled Randomized Hadamard Transform (SHRT)
(Ailon-Chazelle, 2006)

Key idea: First multiply x by a “mixing matrix” M which ensures
it cannot be too concentrated in one place.

M should have the property that ∥Mx∥22 = ∥x∥22 exactly, or is
very close. Then we will multiply by a subsampling matrix S to
do the actual dimensionality reduction:

Πx = SMx
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the fast johnson-lindenstrauss transform

Good mixing matrices should look random:

For this approach to work, we need to be able to compute Mx
very quickly. So we will use a pseudorandom matrix instead.
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the fast johnson-lindenstrauss transform

Subsampled Randomized Hadamard Transform (SHRT)
(Ailon-Chazelle, 2006)

Π = SM where M = HD:

• D ∈ n× n is a diagonal matrix with each entry uniform ±1.
• H ∈ n× n is a Hadamard matrix.

The Hadarmard matrix is an othogonal matrix closely related
to the discrete Fourier matrix. It has two critical properties:

1. ∥Hv∥22 = ∥v∥22 exactly. Thus ∥HDx∥22 = ∥x∥22
2. ∥Hv∥22 can be computed in O(n logn) time.
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hadamard matrices recursive definition

Assume that n is a power of 2. For k = 0, 1, . . . , the kth

Hadamard matrix Hk is a 2k × 2k matrix defined by:

H0 = 1 H1 =
1√
2

[
1 1
1 −1

]
H2 =

1√
4


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1



Hk =
1√
2

[
Hk−1 Hk−1
Hk−1 −Hk−1

]

The n× n Hadamard matrix has all entries as ± 1√
n .
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hadamard matrices are orthogonal

Property 1: For any k = 0, 1, . . ., we have ∥Hkv∥22 = ∥v∥22 for all v.
I.e., Hk is orthogonal.
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hadamard matrices

Property 2: Can compute Πx = SHDx in O(n logn) time.
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randomized hadamard transform

Property 3: The randomized Hadamard matrix is a good
“mixing matrix” for smoothing out vectors.

Deterministic
Hadamard matrix.

Randomized
Hadamard PHD.

Fully random sign
matrix.

Blue squares are 1/
√
n’s, white squares are −1/

√
n’s.
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randomized hadamard analysis

Lemma (SHRT mixing lemma)
Let H be an (n× n) Hadamard matrix and D a random ±1
diagonal matrix. Let z = HDx for x ∈ Rn. With probability
1− δ,

(zi)2 ≤
c log(n/δ)

n ∥z∥22

for some fixed constant c.

The vector is very close to uniform with high probability. As
we saw earlier, we can thus argue that ∥Sz∥22 ≈ ∥z∥22. I.e. that:

∥Πx∥22 = ∥SHDx∥22 ≈ ∥x∥22
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johnson-lindenstrauss with shrts

Theorem (The Fast JL Lemma)
Let Π = SHD ∈ Rm×n be a subsampled randomized
Hadamard transform with m = O

(
log(n/δ) log(1/δ)

ϵ2

)
rows. Then

for any fixed x,

(1− ϵ)∥x∥22 ≤ ∥Πx∥22 ≤ (1+ ϵ)∥x∥22

with probability (1− δ).

Very little loss in embedding dimension compared to full
random matrix, and Π can be multiplied by x in O(n logn)

(nearly linear) time.
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randomized hadamard analysis

SHRT mixing lemma proof: Need to prove (zi)2 ≤ c log(n/δ)
n ∥z∥22.

Let hTi be the ith row of H. zi = hTi Dx where:

hTi D =
1√
n

[
1 1 . . . −1 −1

]

D1

D2
. . .

Dn


where D1, . . . ,Dn are random ±1’s.

This is equivalent to

hTi D =
1√
n

[
R1 R2 . . . Rn

]
,

where R1, . . . ,Rn are random ±1’s.
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randomized hadamard analysis

So we have, for all i, zi = hTi Dx =
1√
n
∑n

i=1 Rixi.

• zi is a random variable with mean 0 and variance 1
n∥x∥22,

which is a sum of independent random variables.
• By Central Limit Theorem, we expect that:

Pr[|zi| ≥ t · ∥x∥2√
n
] ≤ e−O(t2).

• Setting t =
√
log(n/δ), we have for constant c,

Pr
[
|zi| ≥ c

√
log(n/δ)

n ∥y∥2

]
≤ δ

n
.

• Applying a union bound to all n entries of z gives the SHRT
mixing lemma.
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rademacher concentration

Formally, need to use Bernstein type concentration inequality
to prove the bound:

Lemma (Rademacher Concentration)
Let R1, . . . ,Rn be Rademacher random variables (i.e. uniform
±1’s). Then for any vector a ∈ Rn,

Pr
[ n∑
i=1

Riai ≥ t∥a∥2

]
≤ e−t2/2.

This is call the Khintchine Inequality. It is specialized to sums
of scaled ±1’s, and is a bit tighter and easier to apply than
using a generic Bernstein bound.
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finishing up

With probability 1− δ, we have that all zi ≤
√

c log(n/δ)
n ∥c∥2.

As shown earlier, we can thus guarantee that:

(1− ϵ)∥z∥22 ≤ ∥Sz∥22 ≤ (1+ ϵ)∥z∥22

as long as S ∈ Rm×n is a random sampling matrix with

m = O
(
log(n/δ) log(1/δ)

ϵ2

)
rows.

∥Sz∥22 = ∥SHDx∥22 = ∥Πx∥22 and ∥z∥22 = ∥x∥22, so we are done.
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johnson-lindenstrauss with SHRTs

Theorem (The Fast JL Lemma)
Let Π = SHD ∈ Rm×n be a subsampled randomized
Hadamard transform with m = O

(
log(n/δ) log(1/δ)

ϵ2

)
rows. Then

for any fixed x,

(1− ϵ)∥x∥22 ≤ ∥Πx∥22 ≤ (1+ ϵ)∥x∥22

with probability (1− δ).

Upshot for regression: Compute ΠA in O(nd logn) time
instead of O(nd2) time. Compress problem down to Ã with
O(d2) dimensions.
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brief comment on other methods

O(nd logn) is nearly linear in the size of A when A is dense.

Clarkson-Woodruff 2013, STOC Best Paper: Possible to
compute Ã with poly(d) rows in:

O (nnz(A)) time.

Π is chosen to be an ultra-sparse random matrix. Uses totally
different techniques (you can’t do JL + ϵ-net).

Lead to a whole close of matrix algorithms (for regression, SVD,
etc.) which run in time:

O (nnz(A)) + poly(d, ϵ).
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what were ailon and chazelle thinking?

Simple, inspired algorithm that has been used for accelerating:

• Vector dimensionality reduction

• Linear algebra

• Locality sensitive hashing
(SimHash)

• Randomized kernel learning
methods (we will discuss after
Thanksgiving)
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what were ailon and chazelle thinking?

The Hadamard Transform is closely related to the Discrete
Fourier Transform.

Fj,k = e−2πi
j·k
n , F∗F = I.

Real part of Fj,k.

Fy computes the Discrete Fourier Transform of the vector y.
Can be computed in O(n logn) time using a divide and
conquer algorithm (the Fast Fourier Transform). 32



the uncertainty principal

The Uncertainty Principal (informal): A function and it’s
Fourier transform cannot both be concentrated.

Vector y. Fourier transform Fy.
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sparse recovery/compressed sensing

What do we know?
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the uncertainty principal

Sampling does not preserve norms, i.e. ∥Sy∥2 ̸≈ ∥y∥2 when y
has a few large entries.

Taking a Fourier transform exactly eliminates this hard case,
without changing y’s norm.

One of the central tools in the field of sparse recovery aka
compressed sensing.
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sparse recovery/compressed sensing problem setup

Underdetermined linear regression: Given A ∈ Rm×n with
m < n, b ∈ Rm. Assume b = Ax for some x ∈ Rn.

• Infinite possible solutions y to Ay = b, so in general, it is
impossible to recover parameter vector x from the data
A,b.
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sparsity recovery/compressed sensing

Underdetermined linear regression: Given A ∈ Rm×n with
m < n, b ∈ Rm. Solve Ax = b for x.

• Assume x is k-sparse for small k. ∥x∥0 = k.

• In many cases can recover x with≪ n rows. In fact, often
∼ O(k) suffice.

• Need additional assumptions about A!
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quick aside

• In statistics and machine learning, we often think about
A’s rows as data drawn from some universe/distribution:

• In many othersettings, we will get to choose A’s rows. I.e.
each bi = xTai for some vector ai that we select.

• In this setting, we often call bi a linear measurement of x
and we call A a measurement matrix.
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assumptions on measurement matrix

When should this problem be difficult?
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assumptions on measurement matrix

Many ways to formalize our intuition

• A has Kruskal rank r. All sets of r columns in A are linearly
independent.

• Recover vectors x with sparsity k = r/2.

• A is µ-incoherent. |ATi Aj| ≤ µ∥Ai∥2∥Aj∥2 for all columns
Ai,Aj.

• Recover vectors x with sparsity k = 1/µ.

• Focus today: A obeys the Restricted Isometry Property.
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restricted isometry property

Definition ((q, ϵ)-Restricted Isometry Property)
A matrix A satisfies (q, ϵ)-RIP if, for all x with ∥x∥0 ≤ q,

(1− ϵ)∥x∥22 ≤ ∥Ax∥22 ≤ (1+ ϵ)∥x∥22.

• Johnson-Lindenstrauss type condition.
• A preserves the norm of all q sparse vectors, instead of
the norms of a fixed discrete set of vectors, or all vectors
in a subspace (as in subspace embeddings).
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restricted isometry property

Definition ((q, ϵ)-Restricted Isometry Property)
A matrix A satisfies (q, ϵ)-RIP if, for all x with ∥x∥0 ≤ q,

(1− ϵ)∥x∥22 ≤ ∥Ax∥22 ≤ (1+ ϵ)∥x∥22.

The vectors that can be written as Ax for k sparse x lie in a
union of k dimensional linear subspaces:
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restricted isometry property

Any ideas for how you might prove a random JL matrix with
O(k logn/ϵ2) rows satisfies (q, ϵ)-RIP?

I.e. prove that that random matrix preserves the norm of every
x in this union of subspaces?
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restricted isometry property

Definition ((q, ϵ)-Restricted Isometry Property)
A matrix A satisfies (q, ϵ)-RIP if, for all x with ∥x∥0 ≤ q,

(1− ϵ)∥x∥22 ≤ ∥Ax∥22 ≤ (1+ ϵ)∥x∥22.

The vectors that can be written as Ax for k sparse x lie in a
union of k dimensional linear subspaces:
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first sparse recovery result

Theorem (ℓ0-minimization)
Suppose we are given A ∈ Rm×n and b = Ax for an unknown
k-sparse x ∈ Rn. If A is (2k, ϵ)-RIP for any ϵ < 1 then x is the
unique minimizer of:

min∥z∥0 subject to Az = b.

• Establishes that information theoretically we can recover
x. Solving the ℓ0-minimization problem is computationally
difficult, requiring O(nk) time. We will address faster
recovery next lecture.
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first sparse recovery result

Proof:
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robustness

Important note: Robust versions of this theorem and the
others we will discuss exist. These are much more important
practically. Here’s a flavor of a robust result:

• Suppose b = A(x+ e) where x is k-sparse and e is dense
but has bounded norm.

• Recover some k-sparse x̃ such that:

∥x̃− x∥2 ≤ ∥e∥1

or even

∥x̃− x∥2 ≤ O
(
1√
k

)
∥e∥1.
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robustness

We will not discuss robustness in detail, but it is a big part of
what has made compressed sensing such an active research
area in the last 20 years. Non-robust compressed sensing
results have been known for a long time:

Gaspard Riche de Prony, Essay experimental et analytique: sur
les lois de la dilatabilite de fluides elastique et sur celles de la

force expansive de la vapeur de l’alcool, a differentes
temperatures. Journal de l’Ecole Polytechnique, 24–76. 1795.
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restricted isometry property

What matrices satisfy this property?

• Random Johnson-Lindenstrauss matrices (Gaussian, sign,
etc.) with m = O(k log(n/k)

ϵ2
) rows are (O(k), ϵ)-RIP.

Some real world data may look random, but this is also a
useful observation algorithmically when we want to design A.
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application: heavy hitters in data streams

Suppose you view a stream of numbers in 1, . . . ,n:

4, 18, 4, 1, 2, 24, 6, 4, 3, 18, 18, . . .

After some time, you want to report which k items appeared
most frequently in the stream.

E.g. Amazon is monitoring web-logs to see which product
pages people view. They want to figure out which products are
viewed most frequently. n ≈ 500 million.

How can you do this quickly in small space?
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application: heavy hitters in data streams

• Every time we receive a number i in the stream, add
column Ai to b.
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application: heavy hitters in data streams

• At the end b = Ax for an approximately sparse x if there
were only a few “heavy hitters”. Recover x from b using a
sparse recovery method (like ℓ0 minimization).
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application: single pixel camera

Typical acquisition of image by camera:

Requires one image sensor per pixel captured.
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application: single pixel camera

Compressed acquisition of image:

p =
∑
i=1

xi =
[
1 1 . . . 1

]

x1
x2
...
xn


Does not provide very much information about the image.
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application: single pixel camera

But several random linear measurements do!

p =
∑
i=1

Rixi =
[
0 1 0 0 . . . 1

]

x1
x2
...
xn


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application: single pixel camera

Applications in:

• Imaging outside of the visible spectrum (more expensive
sensors).

• Microscopy.
• Other scientific imaging.

Compressed sensing theory does not exactly describe the
problem, but has been very valuable in modeling it.
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the discrete fourier matrix

The n× n discrete Fourier matrix F is defined:

Fj,k = e
−2πi
n j·k

Recall that e−2πi
n j·k = cos(2πjk/n)− i sin(2πjk/n).

Set A to contain a random ≈ Õ(k logn) random rows of this
matrix. 57



restricted isometry property

Definition ((q, ϵ)-Restricted Isometry Property)
A matrix A satisfies (q, ϵ)-RIP if, for all x with ∥x∥0 ≤ q,

(1− ϵ)∥x∥22 ≤ ∥Ax∥22 ≤ (1+ ϵ)∥x∥22.

Uniformly subsampled Discrete Fourier matrices with
m ∼ O

(
k log2 k log n

ϵ2

)
rows (O(k), ϵ)-RIP. [Haviv, Regev, 2016].

Improves on a long line of work: Candès, Tao, Rudelson,
Vershynin, Cheraghchi, Guruswami, Velingker, Bourgain.

Might be believable based on our analysis of the subsampled
Hadamard matrix, which is closely related ot the Discrete
Fourier matrix.
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the discrete fourier matrix

Fx is the Discrete Fourier Transform of the vector x (what an
FFT computes).

Decomposes x into different frequencies: [Fx]j is the
component with frequency j/n.

Because F∗F = I, F∗Fx = x, so we can recover x if we have
access to its DFT, Fx.
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the discrete fourier matrix

If A is a subset of q rows from F, then Ax is a subset of random
frequency components from x’s discrete Fourier transform.

In many scientific applications, we can collect entries of Fx one
at a time for some unobserved data vector x.
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application: geophysics

Warning: very cartoonish explanation of very complex problem.

Understanding what material is beneath the crust:

Think of vector x as scalar values of the density/reflectivity in
a single vertical core of the earth.

How do we measure entries of Fourier transform Fx?
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application: geophysics

Vibrate the earth at different frequencies! And measure the
response.

Vibroseis Truck

Can also use airguns, controlled explorations, vibrations from
drilling, etc. The fewer measurements we need from Fx, the
cheaper and faster our data acquisition process becomes.

Killer app: Oil Exploration. 62



application: geophysics

Warning: very cartoonish explanation of very complex problem.

Medical Imaging (MRI)

Vector x here is a 2D image. Everything works with 2D Fourier
transforms.

How do we measure entries of Fourier transform Fx?
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application: geophysics

Blast body with sounds waves waves of varying frequencies.

The fewer measurements we need from Fx, the faster we can
acquire and image.

• Especially important when trying to capture something
moving (e.g. lungs, baby, child who can’t sit still).

• Can also cut down on power requirements (which for MRI
machines are huge). 64



restricted isometry property

Definition ((q, ϵ)-Restricted Isometry Property)
A matrix A satisfies (q, ϵ)-RIP if, for all x with ∥x∥0 ≤ q,

(1− ϵ)∥x∥22 ≤ ∥Ax∥22 ≤ (1+ ϵ)∥x∥22.

Lots of other random matrices satisfy RIP as well.

One major theoretical question is if we can deterministically
construct good RIP matrices. Interestingly, if we want
(O(k),O(1)) RIP, we can only do so with O(k2) rows (now very
slightly better – thanks to Bourgain et al.).

Whether or not a linear dependence on k is possible with a
deterministic construction is unknown.
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faster sparse recovery

Theorem (ℓ0-minimization)
Suppose we are given A ∈ Rm×n and b = Ax for an unknown
k-sparse x. If A is (2k, ϵ)-RIP for any ϵ < 1 then x is the unique
minimizer of:

min∥z∥0 subject to Az = b.

Algorithm question: Can we recover x using a faster method?
Ideally in polynomial time.
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basis pursuit

Convex relaxation of the ℓ0 minimization problem:

Problem (Basis Pursuit, i.e. ℓ1 minimization.)

min
z

∥z∥1 subject to Az = b.

• Objective is convex:

• Optimizing over convex set:

What is one method we know for solving this problem?
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basis pursuit linear program

Equivalent formulation:

Problem (Basis Pursuit Linear Program.)

min
w,z

1Tw subject to Az = b,−w ≤ z ≤ w.

Can be solved using any algorithm for linear programming. An
Interior Point Method will run in at worst ∼ O(n3.5) time.
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basis pursuit intuition

Suppose A is 2× 1, so b is just a scalar and x is a
2-dimensional vector.

Vertices of level sets of ℓ1 norm
correspond to sparse solutions.

This is not the case e.g. for the ℓ2
norm.
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basis pursuit analysis

Theorem
If A is (3k, ϵ)-RIP for ϵ < .17 and ∥x∥0 = k, then z⋆ = x is the
unique optimal solution of the Basis Pursuit LP).

Similar proof to ℓ0 minimization:

• By way of contradiction, assume x is not the optimal
solution. Then there exists some non-zero ∆ such that:

• ∥x+∆∥1 ≤ ∥x∥1
• A(x+∆) = Ax. I.e. A∆ = 0.

Difference is that we can no longer assume that ∆ is sparse.

Only one tool needed:

For any q-sparse vector w, ∥w∥2 ≤ ∥w∥1 ≤
√
q∥w∥2
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basis pursuit analysis

Some definitions:
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basis pursuit analysis

Claim 1: ∥∆S∥1 ≥ ∥∆S̄∥1
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basis pursuit analysis

Claim 2: ∥∆S∥2 ≥
√
2
∑

j≥2 ∥Tj∥2:
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basis pursuit analysis

Finish up proof by contradiction:
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faster methods

A lot lot of interest in developing even faster algorithms that
avoid using the “heavy hammer” of linear programming and
run in even faster than O(n3.5) time.

• Iterative Hard Thresholding: Looks a lot like projected
gradient descent. Solve minz ∥Az− b∥ while continually
projecting z back to the set of k-sparse vectors. Runs in
time ∼ O(nk logn) for Gaussian measurement matrices
and O(n logn) for subsampled Fourer matrices.

• Other “first order” type methods: Orthogonal Matching
Pursuit, CoSaMP, Subspace Pursuit, etc.
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faster methods

When A is a subsampled Fourier matrix, there are now
methods that run in O(k logc n) time [Hassanieh, Indyk,
Kapralov, Katabi, Price, Shi, etc. 2012+].

Hold up...
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sparse fourier transform

Corollary: When x is k-sparse, we can compute the inverse
Fourier transform F∗Fx of Fx in O(k logc n) time!

• Randomly subsample Fx.
• Feed that input into our sparse recovery algorithm to
extract x.

Fourier and inverse Fourier transforms in sublinear time when
the output is sparse.

Applications in: Wireless communications, GPS, protein
imaging, radio astronomy, etc. etc.

77


