CS-GY 9223 I: Lecture 11 Randomized numerical linear algebra, ϵ -net arguments.

NYU Tandon School of Engineering, Prof. Christopher Musco

LAST CLASS

Represent undirected graph as symmetric matrix: $n \times n$ adjacency matrix **A** and graph Laplacian $\mathbf{L} = \mathbf{D} - \mathbf{A}$ where **D** is the diagonal degree matrix.

BTB where B is the "edge-vertex incidence" matrix.

$$B = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \begin{cases} y & row, \\ for each edge \end{cases}$$

2

- L is positive semidefinite: $\mathbf{x}^T \mathbf{L} \mathbf{x} \ge 0$ for all \mathbf{x} .
- For any vector $\mathbf{x} \in \mathbb{R}^n$, $\underline{\mathbf{x}^T L \mathbf{x}} = \sum_{(i,j) \in \mathcal{E}} (\mathbf{x}(i) \mathbf{x}(j))^2.$

 $\mathbf{x}^T L \mathbf{x}$ is small if \mathbf{x} is a "smooth" function with respect to the graph.

Courant-Fischer min-max principle

Let $V = [v_1, \dots, v_n]$ be the eigenvectors of L.

$$\mathbf{v}_{n} = \underset{\|\mathbf{v}\|=1}{\operatorname{arg \, min}} \mathbf{v}^{T} \mathbf{L} \mathbf{v}$$

$$\mathbf{v}_{n-1} = \underset{\|\mathbf{v}\|=1, \mathbf{v} \perp \mathbf{v}_{n}}{\operatorname{arg \, min}} \mathbf{v}^{T} \mathbf{L} \mathbf{v}$$

$$\vdots$$

$$\mathbf{v}_{1} = \underset{\|\mathbf{v}\|=1, \mathbf{v} \perp \mathbf{v}_{n}, \dots, \mathbf{v}_{2}}{\operatorname{arg \, min}} \mathbf{v}^{T} \mathbf{L} \mathbf{v}$$

Eigenvectors of the Laplacian with <u>small eigenvalues</u> correspond to <u>smooth functions</u> over the graph.

Smoothest function is constant. $\underline{v_n=1}$ for any Laplacian L

Eigenvectors of the Laplacian with <u>small eigenvalues</u> correspond to <u>smooth functions</u> over the graph.

Other small eigenvectors are not constant, but change slowly in well-connected components.

APPLICATION OF SPECTRAL GRAPH THEORY

Balanced Cut: Partition nodes along a cut that:

- Has few crossing edges: $|\{(u, v) \in E : u \in S, v \in T\}|$ is small.
- Separates large partitions: |S|, |T| are not too small.

SPECTRAL CLUSTERING

Idea: Construct synthetic graph for data that is hard to cluster.

Spectral Clustering, Laplacian Eigenmaps, Locally linear embedding, Isomap, etc.

BALANCED CUT

- The balanced cut problem is a <u>combinatorial</u> optimization problem: difficult to solve in general.
- Obtain a satisfactory approximate solution through a <u>relax</u> and <u>round</u> approach.
- The problem we relax to is that of computing the second smallest eigenvector of the Laplacian.
- Can be analyzed rigorously for certain classes of <u>random</u> <u>graphs.</u>

SECOND SMALLEST LAPLACIAN EIGENVECTOR

By Courant-Fischer, \mathbf{v}_{n-1} is given by:

If \mathbf{v}_{n-1} were <u>binary</u>, i.e. $\in \{-1,1\}^n$, scaled by $\frac{1}{\sqrt{n}}$, it would have:

- $\mathbf{v}_{n-1}^T L \mathbf{v}_{n-1} = 4 \cdot \underline{cut(S, T)}$ as small as possible given that $\mathbf{v}_{n-1}^T \mathbf{1} = |T| |S| = 0$.
- · \mathbf{v}_{n-1} would indicate the smallest <u>perfectly balanced</u> cut.

In reality, $v_{n-1} \in \mathbb{R}^n$ has <u>fractional</u> entries, but we can round these to obtain a good balanced cut.

CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

• Set S to be all nodes with $\mathbf{v}_{n-1}(i) < 0$, and T to be all with $\mathbf{v}_{n-1}(i) \ge 0$.

STOCHASTIC BLOCK MODEL

Stochastic Block Model (Planted Partition Model):

4= 42

Let $G_n(p,q)$ be a distribution over graphs on n nodes, split equally into two groups B and C, each with n/2 nodes.

 Any two nodes in the same group are connected with probability p (including self-loops).

• Any two nodes in different groups are connected with

prob. q < p.

EXPECTED ADJACENCY SPECTRUM

$$\underline{\mathbb{E}[A]} = \cancel{n} \cdot I - \underline{\mathbb{E}[L]}, \text{ so smallest eigenvectors of } \underline{\mathbb{E}[L]} \text{ are equal to largest of } \underline{\mathbb{E}[A]}.$$

- $\mathbf{v}_1 = \mathbf{1}$ with eigenvalue $\lambda_1 = \frac{(p+q)n}{2}$.
- $\mathbf{v}_2 = \underline{\boldsymbol{\chi}_{B,\underline{C}}}$ with eigenvalue $\lambda_2 = \frac{(p-q)n}{2}$.
- $\chi_{B,C}(i) = 1$ if $i \in B$ and $\chi_{B,C}(i) = -1$ for $i \in C$.

If we compute \mathbf{v}_2 then we recover the communities B and C.

EXPECTED LAPLACIAN SPECTRUM

Upshot: The second small eigenvector of $\mathbb{E}[L]$ is $\chi_{B,C}$ – the indicator vector for the cut between the communities.

• If the random graph *G* (equivilantly **A** and **L**) were exactly equal to its expectation, partitioning using this eigenvector would exactly recover communities *B* and *C*.

How do we show that a matrix (e.g., A) is close to its expectation? Matrix concentration inequalities.

 Analogous to scalar concentration inequalities like Markovs, Chebyshevs, Bernsteins. Matrix Concentration Inequality: If $p \ge O\left(\frac{\log^4 n}{n}\right)$, then with high probability

$$\|\mathbf{A} - \mathbb{E}[\mathbf{A}]\|_2 \leq O(\sqrt{pn}).$$

where $\|\cdot\|_2$ is the matrix spectral norm (operator norm).

For
$$\mathbf{X} \in \mathbb{R}^{n \times d}$$
, $\|\mathbf{X}\|_2 = \max_{\mathbf{z} \in \mathbb{R}^d: \|\mathbf{z}\|_2 = 1} \|\mathbf{X}\mathbf{z}\|_2 = \underline{\sigma_1(\mathbf{X})}$.

For the stochastic block model application, we want to show that the second <u>eigenvectors</u> of **A** and $\mathbb{E}[A]$ are close. How does this relate to their difference in spectral norm?

Davis-Kahan Eigenvector Perturbation Theorem: Suppose $A, \overline{A} \in \mathbb{R}^{d \times d}$ are symmetric with $(|A - \overline{A}||_2 \leq \underline{e})$ and eigenvectors v_1, v_2, \dots, v_d and $\overline{v}_1, \overline{v}_2, \dots, \overline{v}_d$. Letting $\theta(v_i, \overline{v}_i)$ denote the angle between v_i and \overline{v}_i , for all i:

$$\sin[\theta(v_i, \bar{v}_i)] \leq \underbrace{\min_{j \neq i} |\lambda_i - \lambda_j|}$$

where $\lambda_1, \ldots, \lambda_d$ are the eigenvalues of $\overline{\mathbf{A}}$.

The error gets larger if there are eigenvalues with similar magnitudes.

EIGENVECTOR PERTURBATION

APPLICATION TO STOCHASTIC BLOCK MODEL

Claim 1 (Matrix Concentration): For
$$p \geq O\left(\frac{\log^4 n}{n}\right)$$
, V_1 second ensurable A
$$\|A - \mathbb{E}[A]\|_2 \leq O(\sqrt{pn})$$
 V_2 (3) circulator of Claim 2 (Davis-Kahan): For $p \geq O\left(\frac{\log^4 n}{n}\right)$,
$$\sin \theta(v_2, \bar{v}_2) \leq O(\sqrt{pn}) \leq O(\sqrt{pn}) \leq O(\sqrt{pn}) \leq O(\sqrt{pn})$$
 Recall: $\mathbb{E}[A]$, has eigenvalues $\lambda_1 = \frac{(p+q)n}{2}$, $\lambda_2 = \frac{(p-q)n}{2}$, $\lambda_i = 0$ for $i \geq 3$.
$$\min_{i \neq i} |\lambda_i - \lambda_j| = \min\left(qn, \frac{(p-q)n}{2}\right)$$
.

Assume $\frac{(p-q)n}{2}$ will be the minimum of these two gaps.

APPLICATION TO STOCHASTIC BLOCK MODEL

So Far: $\sin \theta(v_2, \overline{v}_2) \leq O\left(\frac{\sqrt{p}}{(p-q)\sqrt{n}}\right)$. What does this give us?

- Can show that this implies $(v_2 \bar{v}_2|_2^2) = O(\frac{p}{(p-q)^2n})$ exercise).
- \bar{V}_2 is $\frac{1}{\sqrt{n}}\chi_{B,C}$: the community indicator vector.

- Every *i* where $v_2(i)$, $\bar{v}_2(i)$ differ in sign contributes $\geq \frac{1}{n}$ to $||v_2 \bar{v}_2||_2^2$.
- · So they differ in sign in at most $O\left(\frac{p}{(p-q)^2}\right)$ positions.

APPLICATION TO STOCHASTIC BLOCK MODEL

Upshot: If *G* is a stochastic block model graph with adjacency matrix **A**, if we compute its second large eigenvector v_2 and assign nodes to communities according to the sign pattern of this vector, we will correctly assign all but $O\left(\frac{p}{(p-q)^2}\right)$ nodes.

• Think of p = c/n for some factor c. Even when p - q = O(1/n), assign all but an O(n) fraction of nodes correctly. E.g., assign 99% of nodes correctly.

RANDOMIZED NUMERICAL LINEAR ALGEBRA

Forget about the previous problem, but still consider the matrix $\mathbf{M} = \mathbb{E}[\mathbf{A}].$

- Dense $n \times n$ matrix.
- Computing top eigenvectors takes $\approx O(n^2/\sqrt{\epsilon})$ time.

If someone asked you to speed this up and return approximate top eigenvectors, what could you do?.

RANDOMIZED NUMERICAL LINEAR ALGEBRA

Main idea: If you want to compute singular vectors or eigenvectors, multiply two matrices, solve a regression problem, etc.:

- 1. Compress your matrices using a randomized method.
- 2. Solve the problem on the smaller or sparser matrix.
 - \cdot $\tilde{\textbf{A}}$ called a "sketch" or "coreset" for A.

RANDOMIZED NUMERICAL LINEAR ALGEBRA

Approximate matrix multiplication:

SKETCHED REGRESSION

Randomized approximate regression using a Johnson-Lindenstrauss Matrix:

If $\Pi \in \mathbb{R}^{m \times n}$, how large does m need to be? Is it even clear this should work as $m \to \infty$?

TARGET RESULT

Theorem (Randomized Linear Regression)

Let Π be a properly scaled JL matrix (random Gaussian, sign, sparse random, etc.) with $\underline{m} = O\left(\frac{d}{\epsilon^2}\right)$ ows. Then with probability 9/10, for any $\mathbf{A} \in \mathbb{R}^{n \times d}$ and $\mathbf{b} \in \mathbb{R}^n$,

$$\|\mathbf{A}\tilde{\mathbf{x}} - \mathbf{b}\|_{2}^{2} \le (1 + \epsilon)\|\mathbf{A}\mathbf{x}^{*} - \mathbf{b}\|_{2}^{2}$$

where $\tilde{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{\Pi} \mathbf{A} \mathbf{x} - \mathbf{\Pi} \mathbf{b}\|_{2}^{2}$.

SKETCHED REGRESSION

Claim: Suffices to prove that for all
$$\mathbb{R}^d$$
,
$$(1-\epsilon)\|\mathbf{A}\mathbf{x}-\mathbf{b}\|_2^2 \leq \|\mathbf{\Pi}\mathbf{A}\mathbf{x}-\mathbf{\Pi}\mathbf{b}\|_2^2 \leq \|\mathbf{\Pi}\mathbf{A}\mathbf{x}-\mathbf{B}\mathbf{b}\|_2^2 \leq \frac{1}{(1-\epsilon)}\|\mathbf{M}\mathbf{A}\mathbf{x}-\mathbf{B}\|_2^2 \leq \frac{1}{(1-\epsilon)}\|\mathbf{M}\mathbf{A}\mathbf{x}^4-\mathbf{B}\mathbf{b}\|_2^2 \leq \frac{1}{(1-\epsilon)}\|\mathbf{M}\mathbf{A}\mathbf{x}^4-\mathbf{B}\mathbf{b}\|_2^2 \leq \frac{1}{(1-\epsilon)}\|\mathbf{M}\mathbf{A}\mathbf{x}^4-\mathbf{B}\mathbf{b}\|_2^2 \leq \frac{1}{(1-\epsilon)}\|\mathbf{A}\mathbf{x}^4-\mathbf{B}\mathbf{b}\|_2^2 \leq \frac{1}{(1-\epsilon)}\|\mathbf{A}\mathbf{b}\|_2^2 \leq \frac{1}{(1-\epsilon)}\|\mathbf{A}\mathbf{b}\|_2$$

DISTRIBUTIONAL JOHNSON-LINDENSTRAUSS REVIEW

Lemma (Distributional JL)

If Π is chosen to a properly scaled random Gaussian matrix, sign matrix, sparse random matrix, etc., with $O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$ rows then for any fixed \mathbf{v}

$$(1-\epsilon)\|\mathbf{y}\|_2^2 \le \|\mathbf{\Pi}\mathbf{y}\|_2^2 \le (1+\epsilon)\|\mathbf{y}\|_2^2$$

with probability $(1 - \delta)$. $\forall - Ax - b$

Corollary: For any fixed **x**, with probability $(1 - \delta)$,

FOR ANY TO FOR ALL

How do we go from "for any fixed x" to "for all $x \in \mathbb{R}^d$ ".

This statement requires establishing a Johnson-Lindenstrauss type bound for an <u>infinity</u> of possible vectors (Ax - b), which can't be tackled directly with a union bound argument.

Note that all vectors of the form (Ax - b) ie in a low dimensional subspace: spanned by d + 1 vectors, where d is the width of A.

SUBSPACE EMBEDDINGS

Theorem (Subspace Embedding from JL)

Let $\underline{\mathcal{U}} \subset \mathbb{R}^n$ be a <u>d-dimensional</u> linear subspace in \mathbb{R}^n . If $\mathbf{\Pi} \in \mathbb{R}^{m \times n}$ is chosen from any distribution \mathcal{D} satisfying the Distributional JL Lemma, then with probability $1 - \delta$,

$$(1 - \epsilon) \|\mathbf{v}\|_{2}^{2} \le \|\Pi\mathbf{v}\|_{2}^{2} \le (1 + \epsilon) \|\mathbf{v}\|_{2}^{2}$$

for all
$$\mathbf{v} \in \mathcal{U}$$
, as long as $m = O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon^2}\right)^1$.

¹It's possible to obtain a slightly tighter bound of $O\left(\frac{d + \log(1/\delta)}{\epsilon^2}\right)$. It's a nice challenge to try proving this.

SUBSPACE EMBEDDING TO APPROXIMATE REGRESSION

Corollary: If we choose Π and properly scale, then with $O\left(d/\epsilon^2\right)$ rows,

$$(1 - \epsilon) \|Ax - b\|_2^2 \le \|\Pi Ax - \Pi b\|_2^2 \le (1 + \epsilon) \|Ax - b\|_2^2$$

for all x and thus

$$\|\mathbf{A}\tilde{\mathbf{x}} - \mathbf{b}\|_{2}^{2} \le (1 + O(\epsilon)) \min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2}.$$

I.e., our main theorem is proven.

Proof: Apply Subspace Embedding Thm. to the (d + 1) dimensional subspace spanned by **A**'s d columns and **b**. Every vector $\mathbf{A}\mathbf{x} - \mathbf{b}$ lies in this subspace.

SUBSPACE EMBEDDINGS

Theorem (Subspace Embedding from JL)

Let $\mathcal{U} \subset \mathbb{R}^n$ be a d-dimensional linear subspace in \mathbb{R}^n . If $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ is chosen from any distribution \mathcal{D} satisfying the Distributional JL Lemma, then with probability $1 - \delta$,

$$(1 - \epsilon) \|\mathbf{v}\|_{2}^{2} \le \|\Pi\mathbf{v}\|_{2}^{2} \le (1 + \epsilon) \|\mathbf{v}\|_{2}^{2} \tag{1}$$

for all $\mathbf{v} \in \mathcal{U}$, as long as $m = O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon^2}\right)$

SUBSPACE EMBEDDING PROOF

Observation: The theorem holds as long as (1) holds for all \mathbf{w} on the unit sphere in \mathcal{U} . Denote the sphere $S_{\mathcal{U}}$:

$$S_{\mathcal{U}} = \{ \mathbf{w} \, | \, \mathbf{w} \in \mathcal{U} \text{ and } \| \mathbf{w} \|_2 = 1 \}.$$

Follows from linearity: Any point $\underline{\mathbf{v}} \in \mathcal{U}$ can be written as $\underline{c}\underline{\mathbf{w}}$ for some scalar c and some point $\underline{\mathbf{w}} \in S_{\mathcal{U}}$.

- If $(1 \epsilon) \|\mathbf{w}\|_2 \le \|\mathbf{\Pi}\mathbf{w}\|_2 \le (1 + \epsilon) \|\mathbf{w}\|_2$.
- then $c(1-\epsilon)\|\mathbf{w}\|_2 \le c\|\mathbf{\Pi}\mathbf{w}\|_2 \le c(1+\epsilon)\|\mathbf{w}\|_2$,
- and thus $(1-\epsilon)\|c\mathbf{w}\|_2 \le \|\mathbf{\Pi}c\mathbf{w}\|_2 \le (1+\epsilon)\|c\mathbf{w}\|_2$.

SUBSPACE EMBEDDING PROOF

Intuition: There are not too many "different" points on a d-dimensional sphere:

 N_{ϵ} is called an " ϵ "-net.

If we can prove

$$(1 - \epsilon) \|\mathbf{w}\|_2 \le \|\Pi \mathbf{w}\|_2 \le (1 + \epsilon) \|\mathbf{w}\|_2$$

for all points $\mathbf{w} \in N_{\epsilon}$, we can hopefully extend to all of $S_{\mathcal{U}}$.

ϵ -NET FOR THE SPHERE

Lemma (ϵ -net for the sphere)

For any $\epsilon \leq 1$, there exists a set $N_{\epsilon} \subset S_{\mathcal{U}}$ with $|N_{\epsilon}| = \left(\frac{4}{\epsilon}\right)^{d}$ such that $\forall \mathbf{v} \in S_{\mathcal{U}}$,

$$\min_{\mathbf{W} \in \mathcal{N}_{\epsilon}} \|\mathbf{V} - \mathbf{W}\| \leq \epsilon.$$

SUBSPACE EMBEDDING PROOF

1. Preserving norms of all points in net N_{ϵ} .

Set
$$\underbrace{\delta' = \left(\frac{\epsilon}{4}\right)^d \cdot \delta}$$
. By a union bound, with probability $1 - \delta$, for all $\underline{\underline{w}} \in N_{\epsilon}$, with probability $1 - \delta$, for $\underline{\|\mathbf{w}\|_2} \in \mathbb{N}_{\epsilon}$, we preserve use $\underline{\|\mathbf{w}\|_2} \in \mathbb{N}_{\epsilon}$.

as long as
$$\Pi$$
 has $O\left(\frac{\log(1/\delta')}{\epsilon^2}\right) = O\left(\frac{d\log(1/\epsilon) + \log(1/\delta)}{\epsilon^2}\right)$ rows.

$$O\left(\frac{4}{\epsilon}\right) d \cdot \frac{1}{\delta} = d \cdot \frac{1}{\delta} \left(\frac{4}{\delta}\right) + \log(\frac{1/\delta}{\delta}) + \log(\frac{1/\delta}{\delta}) = O\left(\frac{1}{\delta}\right) \left(\frac{1}{\delta}\right) d \cdot \frac{1}{\delta} = O\left(\frac{1}{\delta}\right) d \cdot \frac{1}{\delta}$$

SUBSPACE EMBEDDING PROOF

2. Writing any point in sphere as linear comb. of points in N_{ϵ} .

For some $\mathbf{w}_0, \mathbf{w}_1, \mathbf{w}_2 \dots \in N_{\epsilon}$, any $\mathbf{v} \in S_{\mathcal{U}}$. can be written:

$$V = W_0 + C_1W_1 + C_2W_2 + \dots$$

for constants c_1, c_2, \ldots where $|c_i| \leq \epsilon^l$.

SUBSPACE EMBEDDING PROOF

Applying triangle inequality, we have

1 w; 1 = 1 for all

$$\| \Pi \mathbf{v} \|_{2} = \| \Pi \mathbf{w}_{0} + c_{1} \Pi \mathbf{w}_{1} + c_{2} \Pi \mathbf{w}_{2} + \dots \|$$

$$\leq (\Pi \mathbf{w}_{0}) + \epsilon (\Pi \mathbf{w}_{1}) + \epsilon^{2} (\Pi \mathbf{w}_{2}) + \dots$$

$$\leq (1 + \epsilon) + \epsilon (1 + \epsilon) + \epsilon^{2} (1 + \epsilon) + \dots$$

$$\leq 1 + O(\epsilon) \cdot = (1 + \delta(\epsilon)) \| \mathbf{v} \cdot \mathbf{v} \|_{2}$$

$$= (1 + \epsilon) \cdot (1 + \epsilon) \cdot (\epsilon^{2} + \dots)$$

$$\leq (1 + \epsilon) \cdot (1 + \epsilon) \cdot (1 + \epsilon) \cdot (1 + \epsilon) \cdot (1 + \epsilon)$$

SUBSPACE EMBEDDING PROOF

3. Preserving norm of v.

Similarly,

$$\| \underline{\Pi} \mathbf{v} \|_{2} = \| \underline{\Pi} \mathbf{w}_{0} + c_{1} \underline{\Pi} \mathbf{w}_{1} + c_{2} \underline{\Pi} \mathbf{w}_{2} + \dots \|$$

$$\geq \| \underline{\Pi} \mathbf{w}_{0} \| - \epsilon \| \underline{\Pi} \mathbf{w}_{1} \| - \epsilon^{2} \| \underline{\Pi} \mathbf{w}_{2} \| - \dots$$

$$\geq (1 - \epsilon) - \epsilon (1 + \epsilon) - \epsilon^{2} (1 + \epsilon) - \dots$$

$$\geq 1 - O(\epsilon).$$

$$= (1 - \epsilon) - (\epsilon + \epsilon^{2} + \dots) (1 + \epsilon)$$

$$\leq 2 \epsilon$$

$$\geq (1 - 3\epsilon)$$

SUBSPACE EMBEDDING PROOF

So we have proven

$$(1 - O(\epsilon)) \|\mathbf{v}\|_2 \le \|\mathbf{\Pi}\mathbf{v}\|_2 \le (1 + O(\epsilon)) \|\mathbf{v}\|_2$$

for all $\mathbf{v} \in S_{\mathcal{U}}$, which in turn implies,

$$(1 - O(\epsilon)) \|\mathbf{v}\|_{2}^{2} \le \|\mathbf{\Pi}\mathbf{v}\|_{2}^{2} \le (1 + O(\epsilon)) \|\mathbf{v}\|_{2}^{2}$$

Adjusting ϵ proves the Subspace Embedding theorem.

SUBSPACE EMBEDDINGS

Theorem (Subspace Embedding from JL)

Let $\mathcal{U} \subset \mathbb{R}^n$ be a d-dimensional linear subspace in \mathbb{R}^n . If $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ is chosen from any distribution \mathcal{D} satisfying the Distributional JL Lemma, then with probability $1 - \delta$,

$$(1 - \epsilon) \|\mathbf{v}\|_2^2 \le \|\mathbf{\Pi}\mathbf{v}\|_2^2 \le (1 + \epsilon) \|\mathbf{v}\|_2^2 \tag{2}$$

for all
$$\mathbf{v} \in \mathcal{U}$$
, as long as $m = O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon^2}\right)$

Subspace embeddings have many other applications!

For example, if $m = O(k/\epsilon)$, ΠA can be used to compute an approximate partial SVD, which leads to a $(1 + \epsilon)$ approximate low-rank approximation for A.

ϵ -NET FOR THE SPHERE

Lemma (ϵ -net for the sphere)

For any $\epsilon \leq 1$, there exists a set $N_{\epsilon} \subset S_{\mathcal{U}}$ with $|N_{\epsilon}| = \left(\frac{4}{\epsilon}\right)^d$ such that $\forall \mathbf{v} \in S_{\mathcal{U}}$,

$$\min_{\mathbf{w} \in N_{\epsilon}} \|\mathbf{v} - \mathbf{w}\| \le \epsilon.$$

Imaginary algorithm for constructing N_{ϵ} :

- Set $N_{\epsilon} = \{\}$
- While such a point exists, choose an arbitrary point $\mathbf{v} \in S_{\mathcal{U}}$ where $\nexists \mathbf{w} \in N_{\epsilon}$ with $\|\mathbf{v} \mathbf{w}\| \le \epsilon$. Set $N_{\epsilon} = N_{\epsilon} \cup \{\mathbf{w}\}$.

After running this procedure, we have $N_{\epsilon} = \{\mathbf{w}_1, \dots, \mathbf{w}_{|N_{\epsilon}|}\}$ and $\min_{\mathbf{w} \in N_{\epsilon}} \|\mathbf{v} - \mathbf{w}\| \le \epsilon$ for all $\mathbf{v} \in S_{\mathcal{U}}$ as desired.

ϵ -NET FOR THE SPHERE

How many steps does this procedure take?

Can place a ball of radius $\epsilon/2$ around each \mathbf{w}_i without intersecting any other balls. All of these balls live in a ball of radius $1 + \epsilon/2$.

ϵ -NET FOR THE SPHERE

Volume of d dimensional ball of radius r is

$$\operatorname{vol}(d,r) \neq c r^d,$$

where *c* is a constant that depends on *d*, but not *r*. From previous slide we have:

$$|N_{\epsilon}| \leq \frac{\text{vol}(d, 1 + \epsilon/2)}{\text{vol}(d, \epsilon/2)} \left(\frac{(1 + \epsilon/2)}{(\epsilon/2)}\right)^{d} \leq \left(\frac{4}{\epsilon}\right)^{d}$$

$$\leq 2 \qquad \leq \left(\frac{4}{\epsilon/2}\right)^{d} \leq \left(\frac{4}{\epsilon}\right)^{d}$$

RUNTIME CONSIDERATION

For $\epsilon, \delta = O(1)$, we need Π to have m = O(d) rows.

- Cost to solve $\|\mathbf{A}\mathbf{x} \mathbf{b}\|_2^2$:
 - $O(nd^2)$ time for direct method. Need to compute $A^TA A^Tb$
 - (O(nd)) (# of iterations) time for iterative method (GD, AGD, conjugate gradient method).
- Cost to solve $\| \Pi A \| \Pi b \|_2^2$:
 - \cdot (d³) time for direct method.
 - $O(d^2)$. (# of iterations) time for iterative method.

RUNTIME CONSIDERATION

But time to compute ΠA is an $(m \times n) \times (n \times d)$ matrix multiply: $O(mnd) = O(nd^2)$ time.

Goal: Develop faster Johnson-Lindenstrauss projections.

Typically using <u>sparse</u> and <u>structured</u> matrices.

We will describe a construction where ΠA can be computed in $O(nd \log n)$ time.

THE FAST JOHNSON-LINDENSTRAUSS TRANSFORM

Subsampled Randomized Hadamard Transform (SHRT) (Ailon-Chazelle, 2006):

Construct $\Pi \in \mathbb{R}^{m \times n}$ as follows:

$$\Pi = \sqrt{\frac{n}{m}} \cdot SHD$$
, where

- $S \in \mathbb{R}^{m \times n}$ is a <u>row subsampling matrix</u>. Each row has a single 1 in a random column, all other entries 0.
- $D \in n \times n$ is a diagonal matrix with each entry uniform ± 1 .
- $H \in n \times n$ is a Hadamard matrix.

HADAMARD MATRICES

Assume for now that n is a power of 2. For $i = 0, 1, ..., H_i$ is a Hadamard matrix with dimension $2^i \times 2^i$.

$$H_k = \frac{1}{\sqrt{2}} \begin{bmatrix} H_{k-1} & H_{k-1} \\ H_{k-1} & -H_{k-1} \end{bmatrix}$$

How long does it take to compute $\mathbf{H}\mathbf{x}$ for a vector $\mathbf{x} \in \mathbb{R}^n$?

HADAMARD MATRICES

Property 1: Can compute $\Pi x = SHDx$ in $O(n \log n)$ time.

Compare to O(nm) time for random Gaussian or $\pm 1 \Pi \in \mathbb{R}^{m \times n}$.

RANDOMIZED HADAMARD TRANSFORM

Deterministic Hadamard matrix. Hadamard PHD.

Randomized

Fully random sign matrix.

JOHNSON-LINDENSTRAUSS WITH SHRTS

Theorem (JL from SRHT)

Let $\Pi \in \mathbb{R}^{m \times n}$ be a subsampled randomized Hadamard transform with $m = O\left(\frac{\log(n/\delta)^2\log(1/\delta)}{\epsilon^2}\right)$ rows. Then for any fixed \mathbf{y} ,

$$(1 - \epsilon) \|y\|_2^2 \le \|\Pi y\|_2^2 \le (1 + \epsilon) \|y\|_2^2$$

with probability $(1 - \delta)$.

HADAMARD MATRICES ARE ORTHOGONAL

Property 2: For any k = 0, 1, ..., we have $\mathbf{H}_k^T \mathbf{H}_k = \mathbf{I}$.

We want to show that
$$\|\sqrt{\frac{1}{m}}SHDy\|_2^2 \approx \|y\|_2^2$$
.

Let $\mathbf{z} \in \mathbb{R}^n = \mathsf{HDy}$.

- Claim: $\|\mathbf{z}\|_{2}^{2} = \|\mathbf{y}\|_{2}^{2}$, exactly.
- $\|SHDy\|_2^2 = \frac{n}{m}\|Sz\|_2^2 = \text{subsample of } z$.
- $\mathbb{E}\left[\frac{n}{m}\|\mathbf{S}\mathbf{z}\|_{2}^{2}\right] = \|\mathbf{z}\|_{2}^{2}$.

What would z have to look like for $\|Sz\|_2^2$ to look very different from $\|z\|_2^2$ with high probability? I.e. when does subsampling fail. When does subsampling work?

Lemma (SHRT mixing lemma)

Let **H** be an $(n \times n)$ Hadamard matrix and **D** a random ± 1 diagonal matrix. Let $\mathbf{z} = \mathbf{HDy}$ for some $\mathbf{y} \in \mathbb{R}^n$. With probability $1 - \delta$,

$$|\mathbf{z}_i| \le c \cdot \sqrt{\frac{\log(n/\delta)}{n}} \|\mathbf{y}\|_2$$

for some fixed constant c.

If all entries in **z** were uniform magnitude, we would have $|\mathbf{z}_i| = \frac{1}{\sqrt{n}} \|\mathbf{y}\|_2$. So we are very close to uniform with high probability.

SHRT mixing lemma proof:

Let \mathbf{h}_i^T be the i^{th} row of \mathbf{H} . $\mathbf{z}_i = \mathbf{h}_i^T \mathbf{D} \mathbf{y}$ where:

$$\mathbf{h}_{i}^{\mathsf{T}}\mathbf{D} = \frac{1}{\sqrt{n}} \begin{bmatrix} 1 & 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} R_{1} & & & \\ & R_{2} & & \\ & & R_{3} & \\ & & & R_{4} \end{bmatrix}$$

where R_1, \ldots, R_n are random ± 1 's.

This is equivalent to

$$\mathbf{h}_{i}^{\mathsf{T}}\mathbf{D} = \frac{1}{\sqrt{n}} \begin{bmatrix} R_{1} & R_{2} & R_{3} & R_{4} \end{bmatrix}.$$

SHRT mixing lemma proof:

So we have, for all i,

$$\mathbf{z}_i = \mathbf{h}_i^\mathsf{T} \mathbf{D} \mathbf{y} = \frac{1}{\sqrt{n}} \sum_{i=1}^n R_i y_i.$$

- $\sqrt{n} \cdot \mathbf{z}_i$ is a random variable with mean 0 and variance $\|\mathbf{y}\|_2^2$, which is a sum of independent random variables.
- · By Central Limit Theorem, we expect that:

$$\Pr[|\sqrt{n} \cdot \mathbf{z}_i| \ge t \|\mathbf{y}\|_2] \le e^{-O(t^2)}.$$

- Setting t gives $\Pr\left[|\mathbf{z}_i| \geq O\left(\sqrt{\frac{\log(n/\delta)}{n}}\|\mathbf{y}\|_2\right)\right] \leq \frac{\delta}{n}$.
- Applying a union bound to all n entries of z gives the SHRT mixing lemma.

RADEMACHER CONCENTRATION

Formally, need to use Bernstein type concentration inequality to prove the bound:

Lemma (Rademacher Concentration)

Let $R_1, ..., R_n$ be Rademacher random variables (i.e. uniform ± 1 's). Then for any vector $\mathbf{a} \in \mathbb{R}^n$,

$$\Pr\left[\sum_{i=1}^n R_i a_i \ge t \|\mathbf{a}\|_2\right] \le e^{-t^2/2}.$$

FINISHING UP

With probability $1 - \delta$, we have that all $\mathbf{z}_i \leq O\left(\sqrt{\frac{\log(n/\delta)}{n}}\|\mathbf{y}\|_2\right)$.

We want to analyze:

$$L = \|\sqrt{\frac{n}{m}}SHD\|_{2}^{2} = \frac{1}{m}\|\sqrt{n}Sz\|_{2}^{2} = \frac{1}{m}\sum_{i=1}^{m}(\sqrt{n}z_{j_{i}})^{2}$$

where j_i is a random index in $1, \ldots, n$.

We have that $\mathbb{E}L = \|\mathbf{z}\|_2^2 = \|\mathbf{y}\|_2^2$ and L is a sum of random variables, each bounded by $O(\log(n/\delta))$, which means they have bounded variance.

Apply a Chernoff/Hoeffding bound to get that $|L = \|\mathbf{y}\|_2^2 | \le \epsilon \|\mathbf{y}\|_2^2$ with probability $1 - \delta$ as long as:

$$m \ge O\left(\frac{\log^2(n/\delta)\log(1/\delta)}{\epsilon^2}\right).$$

JOHNSON-LINDENSTRAUSS WITH SHRTS

Theorem (JL from SRHT)

Let $\Pi \in \mathbb{R}^{m \times n}$ be a subsampled randomized Hadamard transform with $m = O\left(\frac{\log(n/\delta)^2\log(1/\delta)}{\epsilon^2}\right)$ rows. Then for any fixed \mathbf{y} ,

$$(1 - \epsilon) \|\mathbf{y}\|_2^2 \le \|\mathbf{\Pi}\mathbf{y}\|_2^2 \le (1 + \epsilon) \|\mathbf{y}\|_2^2$$

with probability $(1 - \delta)$.

Can be improved to $m = O\left(\frac{\log(n/\delta)\log(1/\delta)}{\epsilon^2}\right)$.

Upshot for regression: Compute ΠA in $O(nd \log n)$ time instead of $O(nd^2)$ time. Compress problem down to \tilde{A} with $O(d^2)$ dimensions.

BRIEF COMMENT ON OTHER METHODS

 $O(nd \log n)$ is nearly linear in the size of A when A is dense.

Clarkson-Woodruff 2013, STOC Best Paper: Possible to compute \tilde{A} with poly(d) rows in:

 Π is chosen to be an ultra-sparse random matrix. Uses totally different techniques (you can't do JL + ϵ -net).

Lead to a whole close of matrix algorithms (for regression, SVD, etc.) which run in time:

$$O(\operatorname{nnz}(\mathbf{A})) + \operatorname{poly}(d, \epsilon).$$

WHAT WERE AILON AND CHAZELLE THINKING?

Simple, inspired algorithm that has been used for accelerating:

- Vector dimensionality reduction
- Linear algebra
- Locality sensitive hashing (SimHash)
- Randomized kernel learning methods (we will discuss after Thanksgiving)

```
m = 20|;
c1 = (2*randi(2,1,n)-3).*y;
c2 = sqrt(n)*fwht(dy);
c3 = c2(randperm(n));
z = sqrt(n/m)*c3(1:m);
```

WHAT WERE AILON AND CHAZELLE THINKING?

The <u>Hadamard Transform</u> is closely related to the <u>Discrete</u> <u>Fourier Transform</u>.

$$\mathsf{F}_{j,k}=e^{-2\pi i\frac{j\cdot k}{n}},$$

$$F^*F = I$$
.

Real part of $\mathbf{F}_{j,k}$.

Fy computes the Fourier-transform of the vector y. Can be computed in $O(n \log n)$ time using a divide and conquer algorithm (the Fast Fourier Transform).

THE UNCERTAINTY PRINCIPAL

The Uncertainty Principal (informal): A function and it's Fourier transform cannot both be concentrated.

Fourier transform Fy.

THE UNCERTAINTY PRINCIPAL

Sampling does not preserve norms, i.e. $\|\mathbf{S}\mathbf{y}\|_2 \not\approx \|\mathbf{y}\|_2$ when \mathbf{y} has a few large entries.

Taking a Fourier transform exactly eliminates this hard case, without changing \mathbf{y} 's norm.