CS-GY 9223 I: Lecture 11
Randomized numerical linear algebra, e-net
arguments.

NYU Tandon School of Engineering, Prof. Christopher Musco



LAST CLASS

Represent undirected graph as symmetric matrix: n x n
adjacency matrix A and graph Laplacian L=D — Awhere D is

the diagonal degree matrix.
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Bjj,vvhere B is the “edge-vertex incidence” matrix.
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THE LAPLACIAN VIEW

- L is positive semidefinite: x'Lx > 0 for all x.

- For any vector x

x"Lx is small if x is a “smooth” function with respect to the
graph.



THE LAPLACIAN VIEW

Courant-Fischer min-max principle
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LetV = [vq,...,Vp] be the eigenvectors of L.
‘W.vk\*yu/‘75

/7

(o3 argminv'L

[IviI=1

Vp_1 = argmin v'Lv
[[v][=1,vLvy

vi= argmin V/Lv
IV|[=1,vLVn,...,v5 4



THE LAPLACIAN VIEW

Eigenvectors of the Laplacian with small eigenvalues
correspond to smooth functions over the graph.

Smoothest function is constant. v, = 1for any Laplacian L



THE LAPLACIAN VIEW

Eigenvectors of the Laplacian with small eigenvalues
correspond to smooth functions over the graph.

1 R4

Other small eigenvectors are not constant, but change slowly
in well-connected components.



APPLICATION OF SPECTRAL GRAPH THEORY

Balanced Cut: Partition nodes along a cut that:

- Has few crossing edges: |{(u,v) € E: u € S,v e T} is small.
- Separates large partitions: |S|, |T| are not too small.

ary Karate Club Graph



SPECTRAL CLUSTERING

Idea: Construct synthetic graph for data that is hard to cluster.

Spectral Clustering, Laplacian Eigenmaps, Locally linear
embedding, Isomap, etc.



BALANCED CUT

- The balanced cut problem is a combinatorial optimization
problem: difficult to solve in general.

- Obtain a satisfactory approximate solution through a relax
and round approach.

- The problem we relax to is that of computing the second
smallest eigenvector of the Laplacian.

- Can be analyzed rigorously for certain classes of random
graphs.



SECOND SMALLEST LAPLACIAN EIGENVECTOR

By Courant-Fischer, v, is given by: o

T 1
Vi1 argmin{ v'Lv D
— oy e— “ - 2 o
V=1, vpy=0 = Vo (1)

If vo_q were binary, i.e. € {—1,1}", scaled by ﬁ it would have:

- vl . Lvy_q = 4_cut(S.T) as small as possible given that

vi_1=T-|s|=0.
- Vp_1 would indicate the smallest perfectly balanced cut.

In reality, vp,_1 € R" has fractional entries, but we can round
—_— .
these to obtain a good balanced cut.



CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

) NAA

- Compute /
V1= argmin viLv

= VveR" with |lv||=1, vW\jJ (o ks
- Set S to be all nodes with v,_1(i) < 0, and T to be all with

V(i) > 0.
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Stochastic Block Model (Planted Partition Model): W =

Let Gn(p, g) be a distribution over graphs on n nodes, split
equally into two groups B and C, each with n/2 nodes.

- Any two nodes in the same group are connected with
probability p (including self-loops).
- Any two nodes in different groups are connected with

prob. g <P [ Vf"v - M%
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STOCHASTIC BLOCK MODEL
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EXPECTED ADJACENCY SPECTRUM

c
E[A] = # - | — E[L], so smallest eigenvectors of E[L] are equal to
" - largest of E[A].

B C
(n/2 nodes)  (n/2 nodes)
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- v; = 1 with eigenvalue A\ = M.
* Vp = xpc With eigenvalue A; = (D;q)n'

- xs.c() =1ifi € Band yg (i) = —1forieC.

If we compute v, then we recover the communities B and C.

13



EXPECTED LAPLACIAN SPECTRUM

Upshot: The second small eigenvector of E[L] is xp,c — the
indicator vector for the cut between the communities.

- If the random graph G (equivilantly A and L) were exactly
equal to its expectation, partitioning using this
eigenvector would exactly recover communities B and C.

How do we show that a matrix (e.g., A) is close to its
expectation? Matrix concentration inequalities.

- Analogous to scalar concentration inequalities like
Markovs, Chebyshevs, Bernsteins.

14



MATRIX CONCENTRATION

Matrix Concentration Inequality: If p > O (IO%”), then
with high probability -

IA—E[A]ll2 < O(v/pn).

—_—
where || - || is the matrix spectral norm (operator norm).

\.

ForX e Rnxd’ 1X][2 = MaXzeRrd: ||z)|,=1 1Xz]|2 = a1(X).

—_—

For the stochastic block model application, we want to show
that the second eigenvectors of A and E[A] are close. How
does this relate to their difference in spectral norm?
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EIGENVECTOR PERTURBATION

Davis-Kahan Eigenvector Perturbation Theorem: Sup-
pose A,A € RY%d are symmetric with
and eigenvectors vq,Va,...,Vy and Vq,Vs, ..., V4. LELING
6(vj, v;) denote the angle between v; and v;, for all i:

sin[0(v;, V)] S

where A1, ..., \q are the eigenvalues of A.

The error gets larger if there are eigenvalues with similar
magnitudes.
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EIGENVECTOR PERTURBATION
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APPLICATION TO STOCHASTIC BLOCK MODEL

Claim 1 (Matrix Concentration): For p > O (log ”)l V:& ‘X‘"‘é e d
IA- Bl QAT 1 e
Claim 2 (Davis-Kahan): Forp > O ( O% ”), Eom
ot o(om) 5
i) = A — A S o-anz <(p f\a

Recall: E[A], has eigenvalues A = (p*'z‘””, A = (p_z‘””, A\ =0fori>3.

e x| = mi (p—q)n
rgl,_np\, )\,|m|n<qn,( > .

Assume (=91 q will be the minimum of these two gaps.
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APPLICATION TO STOCHASTIC BLOCK MODEL

So Far: sinf(v,,v,) < O ( VP ) What does this give us?

—_ (p—a)vn

- Can show that this implies @g 0 (ﬁ) exercise).

- s %XB,C: the community indicator vector.
(n/2 nodes) (n/2 nodes)

1 1 1 1 1 1 1 1
R R R R R
ol 4] oL
Fhere vy (i), V(i) contributes > 1 to

=

- So they differ in sign in at most O <(pfq)z) positions.
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APPLICATION TO STOCHASTIC BLOCK MODEL

Upshot: If G is a stochastic block model graph with adjacency
matrix A, if we compute its second large eigenvector v, and
assign nodes to communities according to the sign pai}’g‘ern of
this vector, we will correctly assign all but O (ﬁ nodes.
- /w)

B C B C z _L.a A
(/2 nlodes) (/2 nlodes) (/2 ﬂlodeS) (n/2 n‘odes) @ c‘)’
r Y 1 r i 1
.03 .—.01.02 .01 —.04 —.03 —.01 —.03 - % — % % —in _\/ii —\/iﬁ —in
U2 ~ XB,C
% - '/

- Think of p = ¢/n for some factor c. Even when
p —qg = 0(1/n), assign all but an O(n) fraction of nodes
correctly. E.g, assign 99% of nodes correctly.
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RANDOMIZED NUMERICAL LINEAR ALGEBRA

Forget about the previous problem, but still consider the
matrix M = E[A].

- Dense n x n matrix.

- Computing top eigenvectors takes ~ O(n?//€) time.

If someone asked you to speed this up and return

approximate top eigenvectors, what could you do?.

Lo |
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RANDOMIZED NUMERICAL LINEAR ALGEBRA

Main idea: If you want to compute singular vectors or
eigenvectors, multiply two matrices, solve a regression
problem, etc.

1. Compress your matrices using a randomized method.
2. Solve the problem on the smaller or sparser matrix.
* A called a “sketch” or “coreset” for A.
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RANDOMIZED NUMERICAL LINEAR ALGEBRA

Approximate matrix multiplication:

A x B m) | A
Approximate regression: woy
PUEMIELSS MEIEIol

& \

H R - mxin“
A){n = ” :

O A]‘) 1
n
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SKETCHED REGRESSION

Randomized approximate regression using a
Johnson-Lindenstrauss Matrix:

-l

o
\*“)\

}/:\/ o

\7
Input: A € R"™4 b e R". /7
/w /\""

Goal: Let x* = argmin, ||[Ax — b|3. Let X = arg min, ||[MAX — I'IbH%

—_—

Want: A% — b5 < (1+ O(e)) [|AX" — bll3

If M e R how large does m need to be? Is it even clear this

should work as m — oo? 2



TARGET RESULT

Theorem (Randomized Linear Regression)

Let M be a properly scaled JL
sparse random, etc.) with m

p——

random Gaussian, sign,
ows. Then with

“and b € R",

=

probability 9/10, for any A € R"

1A% = b||3 < (1+ €)[|Ax* — b3

where X = argmin, ||[lMAx — Mb]3.
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SKETCHED REGRESSION

Claim: Suffices to prove that for al@ R,

(1— )[|Ax — b]2 < ||MAX — nby\@ +e)lAx — b3 S

o | 2
= N < - TAx*— \\,,
A \o\\7 < > WAL=y \ 2 o) T Ax*-Tb

< (19 Yt -yls
(1-¢)

> (\+o()Ax L\
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DISTRIBUTIONAL JOHNSON-LINDENSTRAUSS REVIEW

Lemma (Distributional JL)
If N is chosen to a properly scaled random Gaussian matrix,
sign matrix, sparse random matrix, etc., with O (loiﬂ) rows

with probability (1 — 8). ‘9~ % =Y

Corollary: For any fixed x, with probability (1 — ¢),
(1— O)lIAX — b|j3 < [[MAX — FIb|3 < (1+€)[[Ax — b]3.

Ny (S EODLISPIR O 11 e
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FOR ANY TO FOR ALL

How do we go from “for any fixed x” to “for all x € R?".

This statement requires establishing a Johnson-Lindenstrauss
type bound for an infinity of possible vectors (Ax — b), which
can't be tackled directly with a union bound argument.

Note that all vectors of the forme ina low

dimensional subspace: spanned by d 11 vectors, where d is
the width of A — QL*»

28



SUBSPACE EMBEDDINGS

Theorem (Subspace Embedding from JL)
LetU C R” be a d-dimensional linear subspace in R". If

ne Rmx‘ﬁchosen from any distribution D satisfying the

Distributional JL Lemma, then with probability 1 — 4,
/) A

(1= a)lvliz < INvliz < (1 + €)lIvli3

for allv € U, as long asm:O(ﬂ&“@M MO(U>

R"

"It's possible to obtain a slightly tighter bound of O (M) It's a nice
challenge to try proving this. 29



SUBSPACE EMBEDDING TO APPROXIMATE REGRESSION

Corollary: If we choose M and properly scale, then with
O (d/€®) rows,

(1— €)||Ax — b|[3 < ||[MAX — b5 < (1+ €)||Ax — b]|3
for all x and thus

1A% — b||3 < (1+ O(e)) min [|Ax — bll3.
l.e., our main theorem is proven.

Proof: Apply Subspace Embedding Thm. to the (d + 1)
dimensional subspace spanned by A’s d columns and b. Every
vector Ax — b lies in this subspace.
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SUBSPACE EMBEDDINGS

Theorem (Subspace Embedding from JL)

LetU c R" be a d-dimensional linear subspace in R". If
N e R™*4 js chosen from any distribution D satisfying the
Distributional JL Lemma, then with probability 1 — 6,

(1= elvIZ <INVl < (1+ €)lIvliz (1)

forallv € U, as long asmzo<w)

€

d _w =

——

4/‘)«

g e v
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SUBSPACE EMBEDDING PROOF

Observation: The theorem holds as long as (1) holds for all w
on the unit sphere in U. Denote the sphere Sy:

Su={w|w et and ||w|, =1}.

Follows from linearity: Any point v € U can be written as w

for some scalar c and some point w € Sy,.
_— \I-»: C\")

~IF (1= e)llwlla < [Nwllz < (14 €)flwl]>.
- then c(1—é€)||w|, < c||Mwlj; < c(1+€)
- and thus (1 —¢)|lcwl|; < [[Acw|, < (1+ e)|]cw||2
d

Dvla Ve ), Wi,

32



SUBSPACE EMBEDDING PROOF

Intuition: There are not too many “different” points on a
d-dimensional sphere: H’L Sy
N,

€

for o\ vV e5u
Har oast & et

6’ Nq_, 5‘%'
fw-v i« @

u_n

N, is called an “€"-net.
-
If we can prove
(1=e)llwlz < [[Mwllz < (1+ €)[lwl]

for all points w € N, we can hopefully extend to all of S,. 33



€-NET FOR THE SPHERE

Lemma (e-net for the sphere)

For any e <1, there exists a set Ne C Sy with |N| @ uch
that Wv € Sy,

min [lv—wl <e.
WeN.
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SUBSPACE EMBEDDING PROOF

P

We 1. Preserving norms of all points in net N..

Set({y’ = (%)dy a union bound, with probability 1— 4, for
alWeE NG ik P> LS we  prewur uefa foc all

we H 2
(1= e)llwll> < [[Mwllz < (1+ €)|lwl]2.

as long as M has O (log(g#')) =0 (w rows.

105 (C%>¢ j;/)_ al ]obcﬂ/Q*l?CVg( CU\%(_‘_MD

€7— 6’1
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SUBSPACE EMBEDDING PROOF

2. Writing any point in sphere as linear comb. of points in N..

For some wqg, Wy, W5 ... € N, any v € Sy can be written:
V =Wqg + CiWq + CoWp + ...
for constants ¢y, ¢y, .. where |¢j| < e

N Lek = arguv lw-w et (o= T -Ps

. wENg
For =V, L,.-- N
s O e - W
B k"_:-/‘ - W.)
Ny .
\1\:*‘40—* Vi, Do L, MR, B e {E‘ um\).»a; T,

M ouwm  gahshes P dovw.



SUBSPACE EMBEDDING PROOF

| v:ll =4 & g
3. Preserving norm of v. g
[ ) < (14e) - 1
Applying triangle inequality, we have G M_)
Hﬂ\ﬁjz = |[Mwo + ¢1Mw; + o Mw; +.
<(wY + Qow) + € +.
< (1+6)—|—6(1£)+e (T+e)+.

<140(e) = (e I l\,}

> (1e) (] K42 » )>

Tl -[ed



SUBSPACE EMBEDDING PROOF

7w, 1,2 (1) gt

'!'b(‘ Q\\\
(-1
=l

3. Preserving norm of v.

Similarly,

HMQ = HHWO + ciMwy + oMwy + ... H
> |[Mwo|| — €| Mwy|| — €*|[Awy|| — ...
> ( (e = (=

T—e€)—c¢
—_——

>1—0(e).

= C]'-%) "[ﬁ Y ILg -—->(1+ i’)
- -
< 2%

> (1-2a)
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SUBSPACE EMBEDDING PROOF

So we have proven

(1=0(e)) lIvllz < [[Av]}z < (14 O(e)) [IvIl2

for all v e Sy, which in turn implies,

(1= 0(e)) IVIIz < IAv]3 < (14 0(e)) [IvIl3

Adjusting e proves the Subspace Embedding theorem.

39



SUBSPACE EMBEDDINGS

Theorem (Subspace Embedding from JL)

LetUd C R" be a d-dimensional linear subspace in R". If
N e R™*9 js chosen from any distribution D satisfying the
Distributional JL Lemma, then with probability 1 — 9,

(1= alvliz < INvliz < (1 + €)lIvli3 (2)

forallv e U, as long asm:O(W)

For example, if m = O(R/e¢), MA can be used to compute an
approximate partial SVD, which leads to a (1+ €) approximate

low-rank approximation for A.
40



€-NET FOR THE SPHERE

Lemma (e-net for the sphere)
For any e < 1, there exists a set N. C Sy with |[N¢| = (g)d such
that Wv € Sy,

min v —wl| <e.
WEN

Imaginary algorithm for constructing N.:

- Set N ={}
- While such a point exists, choose an arbitrary pointv € Sy
where 3w € N, with |[v — w| < e Set N. = N U {w}.

After running this procedure, we have N = {ws,..., W} and

Minwen, ||V —w|| < e forall v € Sy as desired.
41



€-NET FOR THE SPHERE

Y
O(JZD How many steps does this procedure take?

® > @)
SR

Can place a ball of radius €/2 around each w; without
intersecting any other balls. All of these balls live in a ball of

radius 1+ ¢/2.
42



€-NET FOR THE SPHERE

Volume of d dimensional ball of radius ris

vol(d, r) {ar",

where c is a constant that depends on d, but not r. From

previous slide we have:

vol(d,e/2) - |N¢| < vol(d, 14 €/2)
vol(d, 1+ ¢€/2)
vol(d, e/2)
e d
<
- €/2

d (H‘L/z) +
0 L e/2) S

INe| <

< 7
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RUNTIME CONSIDERATION

Fore,d = O(1), we need N to have m = O(d) rows.

+ Cost ta sglve [|Ax — b|3:

conjugate gradient method).

- Cost to solv — Nb|3:
ime or direct method.

" (# of iterations) time for iterative method.
d

TT A 0@‘ )i - % d Z)

- 44



RUNTIME CONSIDERATION

But time to compute MA is an (m x n) x (n x d) matrix
multiply: O(mnd) = O(nd?) time.

Goal: Develop faster Johnson-Lindenstrauss projections.

&l EA | +1 1 +1
£ &l +1 ~
+1 EI | 1 - A
+1 +1 +1
+ 1 *

1 A

Typically using sparse and structured matrices.

We will describe a construction where IMA can be computed in
O(nd logn) time. 45



THE FAST JOHNSON-LINDENSTRAUSS TRANSFORM

Subsampled Randomized Hadamard Transform (SHRT)
(Ailon-Chazelle, 2006):

Construct M € RM*" 3s follows:
n
M= ,/— -SHD, where
m

- S e R™" is arow subsampling matrix. Each row has a
single 1in a random column, all other entries 0.

- D € n xnisadiagonal matrix with each entry uniform +1.

- HenxnisaHadamard matrix.

46



HADAMARD MATRICES

Assume for now that n is a power of 2. Fori=0,1,..., H;isa
Hadamard matrix with dimension 2/ x 2'.

Hy = 1 |He—1 Hpe
V2 |Heor —Hra
How long does it take to compute Hx for a vector x € R"?

47



HADAMARD MATRICES

Property 1: Can compute Mx = SHDx in O(n logn) time.

Compare to O(nm) time for random Gaussian or +1 M € R™*",
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RANDOMIZED HADAMARD TRANSFORM

Deterministic Randomized Fully random sign
Hadamard matrix. Hadamard PHD. matrix.

49



JOHNSON-LINDENSTRAUSS WITH SHRTS

Theorem (JL from SRHT)

Let M € R™*" be a subsampled randomized Hadamard
transform with m = O (WM) rows. Then for any
fixedy,

(1= a)llyl3 < IAyl3 < (1 +€)lli3

with probability (1 — 6).
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HADAMARD MATRICES ARE ORTHOGONAL

Property 2: For any k= 0,1,..., we have H'Hy, = I.
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RANDOMIZED HADAMARD ANALYSIS

We want to show that H\/%SHDyH% ~ |lylI3-

Letz € R" = HDy.

- Claim: ||z||3 = |ly||3, exactly.
- ||SHDy||3 = £||Sz||3 = subsample of z.

- E [Flszl3] = izl

What would z have to look like for ||Sz||5 to look very different
from ||z||5 with high probability? I.e. when does subsampling
fail. When does subsampling work?
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RANDOMIZED HADAMARD ANALYSIS

Lemma (SHRT mixing lemma)

Let H be an (n x n) Hadamard matrix and D a random =+1
diagonal matrix. Let z = HDy for somey € R". With
probability 1 — 4,

for some fixed constant c.

If all entries in z were uniform magnitude, we would have

20 = 1Yl

53



RANDOMIZED HADAMARD ANALYSIS

SHRT mixing lemma proof:

Let h! be the i row of H. z; = h]Dy where:

R
1 R
ho=—7[1 1 -1 -1 ’
vn R3
R,
where Ry,..., R, are random =£1's.
This is equivalent to
hWo=—_[r R, Ry R
I _ \/ﬁ 1 2 3 4] -
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RANDOMIZED HADAMARD ANALYSIS

SHRT mixing lemma proof:

So we have, for all j,
,I n
Zj= h,'TDy = ﬁ ;J Riy;.

- v/n-z;is a random variable with mean 0 and variance
lyll3, which is a sum of independent random variables.
- By Central Limit Theorem, we expect that:

Prllv/n - ;| > tlly|2] < e O,

- Setting t gives Pr [|z,»| >0 ( Log(0/3) )y, ﬂ <3
- Applying a union bound to all n entries of z gives the SHRT

mixing lemma.
55



RADEMACHER CONCENTRATION

Formally, need to use Bernstein type concentration inequality
to prove the bound:

Lemma (Rademacher Concentration)

Let Ry,...,Rn, be Rademacher random variables (i.e. uniform
+1’s). Then for any vector a € R",

n
P [Z Ria; > t\lallz] <e /2

=1
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FINISHING UP

With probability 1 — &, we have that all z; < O < Lg(/2) y i, )

We want to analyze:

L= SHDH2 = *H\fSZHz = Z(\FZ/,)

=1
where j; is a random indexin1,...,n

We have that EL = ||z||2 = ||ly||? and L is a sum of random
variables, each bounded by O (log(n/4)), which means they
have bounded variance.

Apply a Chernoff/Hoeffding bound to get that
L= [lyll3| < ellyll3 with probability 1— 4 as long as:

o (togz(n/é)zlogm/a)) |

€
57



JOHNSON-LINDENSTRAUSS WITH SHRTS

Theorem (JL from SRHT)
Let M € R™*" be a subsampled randomized Hadamard

transform with m = O (WM) rows. Then for any
fixedy,
(1 =alyl3 < Myl < (1 +€)lyli3

with probability (1 — 6).

Can be improved to m = O <w).

Upshot for regression: Compute MA in

instead of O(nd?) time. Compress problem down to A with
0(d?) dimensions.
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BRIEF COMMENT ON OTHER METHODS

O(ndlogn) is nearly linear in the size of A when A is dense.
Clarkson-Woodruff 2013, STOC Best Paper: Possible to
compute A with poly(d) rows in:

O (nnz(A)) time.

M is chosen to be an ultra-sparse random matrix. Uses totally
different techniques (you can't do JL + e-net).

Lead to a whole close of matrix algorithms (for regression, SVD,
etc.) which run in time:

O (nnz(A)) + poly(d, e).
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WHAT WERE AILON AND CHAZELLE THINKING?

Simple, inspired algorithm that has been used for accelerating:

- Vector dimensionality reduction

- Linear algebra m = 20|;
- Locality sensitive hashing cl = (2xrandi(2,1,n)-3).x*y;
(SimHash) c2 = sqrt(n)xfwht(dy);
c3 = c2(randperm(n));
- Randomized kernel learning z = sqrt(n/m)*c3(1:m);

methods (we will discuss after
Thanksgiving)
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WHAT WERE AILON AND CHAZELLE THINKING?

The Hadamard Transform is closely related to the Discrete
Fourier Transform.

—omilk
Fip=e?"n FF=1.

Real part of Fj

Fy computes the Fourier-transform of the vectory. Can be
computed in O(nlogn) time using a divide and conquer
algorithm (the Fast Fourier Transform). 61



THE UNCERTAINTY PRINCIPAL

The Uncertainty Principal (informal): A function and it’s
Fourier transform cannot both be concentrated.

0

) I II II

. . | .
e s e s e 7

Vectory. Fourier transform Fy.
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THE UNCERTAINTY PRINCIPAL

Sampling does not preserve norms, i.e. ||Sy|l2 # |ly|l. when'y
has a few large entries.

Taking a Fourier transform exactly eliminates this hard case,
without changing y's norm.
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