
CS-GY 9223 I: Lecture 11
Randomized numerical linear algebra, ϵ-net
arguments.

NYU Tandon School of Engineering, Prof. Christopher Musco
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last class

Represent undirected graph as symmetric matrix: n× n
adjacency matrix A and graph Laplacian L = D− A where D is
the diagonal degree matrix.

L =

BTB where B is the “edge-vertex incidence” matrix.

B =


1 −1 0 0
0 1 −1 0
0 1 0 −1
0 0 1 −1
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the laplacian view

• L is positive semidefinite: xTLx ≥ 0 for all x.

• For any vector x ∈ Rn,

xTLx =
∑
(i,j)∈E

(x(i)− x(j))2.

xTLx is small if x is a “smooth” function with respect to the
graph.
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the laplacian view

Courant–Fischer min-max principle

Let V = [v1, . . . , vn] be the eigenvectors of L.

vn = argmin
∥v∥=1

vTLv

vn−1 = argmin
∥v∥=1,v⊥vn

vTLv

...
v1 = argmin

∥v∥=1,v⊥vn,...,v2
vTLv
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the laplacian view

Eigenvectors of the Laplacian with small eigenvalues
correspond to smooth functions over the graph.

Smoothest function is constant. vn = 1 for any Laplacian L
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the laplacian view

Eigenvectors of the Laplacian with small eigenvalues
correspond to smooth functions over the graph.

Other small eigenvectors are not constant, but change slowly
in well-connected components.
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application of spectral graph theory

Balanced Cut: Partition nodes along a cut that:

• Has few crossing edges: |{(u, v) ∈ E : u ∈ S, v ∈ T}| is small.
• Separates large partitions: |S|, |T| are not too small.
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spectral clustering

Idea: Construct synthetic graph for data that is hard to cluster.

Spectral Clustering, Laplacian Eigenmaps, Locally linear
embedding, Isomap, etc.
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balanced cut

• The balanced cut problem is a combinatorial optimization
problem: difficult to solve in general.

• Obtain a satisfactory approximate solution through a relax
and round approach.

• The problem we relax to is that of computing the second
smallest eigenvector of the Laplacian.

• Can be analyzed rigorously for certain classes of random
graphs.
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second smallest laplacian eigenvector

By Courant-Fischer, vn−1 is given by:

vn−1 = argmin
∥v∥=1, vTnv=0

vTLv

If vn−1 were binary, i.e. ∈ {−1, 1}n, scaled by 1√
n , it would have:

• vTn−1Lvn−1 = 4 · cut(S, T) as small as possible given that
vTn−11 = |T| − |S| = 0.

• vn−1 would indicate the smallest perfectly balanced cut.

In reality, vn−1 ∈ Rn has fractional entries, but we can round
these to obtain a good balanced cut.

10



cutting with the second laplacian eigenvector

• Compute

vn−1 = argmin
v∈Rn with ∥v∥=1, vT1=0

vTLv

• Set S to be all nodes with vn−1(i) < 0, and T to be all with
vn−1(i) ≥ 0.
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stochastic block model

Stochastic Block Model (Planted Partition Model):

Let Gn(p,q) be a distribution over graphs on n nodes, split
equally into two groups B and C, each with n/2 nodes.

• Any two nodes in the same group are connected with
probability p (including self-loops).

• Any two nodes in different groups are connected with
prob. q < p.
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expected adjacency spectrum

E[A] = p · I− E[L], so smallest eigenvectors of E[L] are equal to
largest of E[A].

• v1 = 1 with eigenvalue λ1 =
(p+q)n

2 .
• v2 = χB,C with eigenvalue λ2 =

(p−q)n
2 .

• χB,C(i) = 1 if i ∈ B and χB,C(i) = −1 for i ∈ C.

If we compute v2 then we recover the communities B and C. 13



expected laplacian spectrum

Upshot: The second small eigenvector of E[L] is χB,C – the
indicator vector for the cut between the communities.

• If the random graph G (equivilantly A and L) were exactly
equal to its expectation, partitioning using this
eigenvector would exactly recover communities B and C.

How do we show that a matrix (e.g., A) is close to its
expectation? Matrix concentration inequalities.

• Analogous to scalar concentration inequalities like
Markovs, Chebyshevs, Bernsteins.
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matrix concentration

Matrix Concentration Inequality: If p ≥ O
(
log4 n
n

)
, then

with high probability

∥A− E[A]∥2 ≤ O(
√
pn).

where ∥ · ∥2 is the matrix spectral norm (operator norm).

For X ∈ Rn×d, ∥X∥2 = maxz∈Rd:∥z∥2=1 ∥Xz∥2 = σ1(X).

For the stochastic block model application, we want to show
that the second eigenvectors of A and E[A] are close. How
does this relate to their difference in spectral norm?
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eigenvector perturbation

Davis-Kahan Eigenvector Perturbation Theorem: Sup-
pose A,A ∈ Rd×d are symmetric with ∥A − A∥2 ≤ ϵ

and eigenvectors v1, v2, . . . , vd and v̄1, v̄2, . . . , v̄d. Letting
θ(vi, v̄i) denote the angle between vi and v̄i, for all i:

sin[θ(vi, v̄i)] ≤
ϵ

minj̸=i |λi − λj|

where λ1, . . . , λd are the eigenvalues of A.

The error gets larger if there are eigenvalues with similar
magnitudes.
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eigenvector perturbation
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application to stochastic block model

Claim 1 (Matrix Concentration): For p ≥ O
(
log4 n
n

)
,

∥A− E[A]∥2 ≤ O(
√
pn).

Claim 2 (Davis-Kahan): For p ≥ O
(
log4 n
n

)
,

sin θ(v2, v̄2) ≤
O(√pn)

minj̸=i |λi − λj|
≤ O(√pn)

(p− q)n/2 = O
( √p
(p− q)

√
n

)
Recall: E[A], has eigenvalues λ1 = (p+q)n

2 , λ2 = (p−q)n
2 , λi = 0 for i ≥ 3.

min
j̸=i

|λi − λj| = min
(
qn, (p− q)n

2

)
.

Assume (p−q)n
2 will be the minimum of these two gaps.
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application to stochastic block model

So Far: sin θ(v2, v̄2) ≤ O
( √p

(p−q)
√
n

)
. What does this give us?

• Can show that this implies ∥v2 − v̄2∥22 ≤ O
(

p
(p−q)2n

)
(exercise).

• v̄2 is 1√
nχB,C: the community indicator vector.

• Every i where v2(i), v̄2(i) differ in sign contributes ≥ 1
n to

∥v2 − v̄2∥22.

• So they differ in sign in at most O
(

p
(p−q)2

)
positions.
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application to stochastic block model

Upshot: If G is a stochastic block model graph with adjacency
matrix A, if we compute its second large eigenvector v2 and
assign nodes to communities according to the sign pattern of
this vector, we will correctly assign all but O

(
p

(p−q)2

)
nodes.

• Think of p = c/n for some factor c. Even when
p− q = O(1/n), assign all but an O(n) fraction of nodes
correctly. E.g., assign 99% of nodes correctly.
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randomized numerical linear algebra

Forget about the previous problem, but still consider the
matrix M = E[A].

• Dense n× n matrix.
• Computing top eigenvectors takes ≈ O(n2/

√
ϵ) time.

If someone asked you to speed this up and return
approximate top eigenvectors, what could you do?.
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randomized numerical linear algebra

Main idea: If you want to compute singular vectors or
eigenvectors, multiply two matrices, solve a regression
problem, etc.:

1. Compress your matrices using a randomized method.
2. Solve the problem on the smaller or sparser matrix.

• Ã called a “sketch” or “coreset” for A.
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randomized numerical linear algebra

Approximate matrix multiplication:

Approximate regression:
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sketched regression

Randomized approximate regression using a
Johnson-Lindenstrauss Matrix:

Input: A ∈ Rn×d, b ∈ Rn.

Goal: Let x∗ = argminx ∥Ax−b∥22. Let x̃ = argminx ∥ΠAx−Πb̃∥22

Want: ∥Ax̃− b∥22 ≤ (1+ O(ϵ)) ∥Ax∗ − b∥22

If Π ∈ Rm×n, how large does m need to be? Is it even clear this
should work as m→ ∞? 24



target result

Theorem (Randomized Linear Regression)
Let Π be a properly scaled JL matrix (random Gaussian, sign,
sparse random, etc.) with m = O

(
d
ϵ2

)
rows. Then with

probability 9/10, for any A ∈ Rn×d and b ∈ Rn,

∥Ax̃− b∥22 ≤ (1+ ϵ)∥Ax∗ − b∥22

where x̃ = argminx ∥ΠAx−Πb∥22.
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sketched regression

Claim: Suffices to prove that for all x ∈ Rd,

(1− ϵ)∥Ax− b∥22 ≤ ∥ΠAx−Πb∥22 ≤ (1+ ϵ)∥Ax− b∥22
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distributional johnson-lindenstrauss review

Lemma (Distributional JL)
If Π is chosen to a properly scaled random Gaussian matrix,
sign matrix, sparse random matrix, etc., with O

(
log(1/δ

ϵ2

)
rows

then for any fixed y,

(1− ϵ)∥y∥22 ≤ ∥Πy∥22 ≤ (1+ ϵ)∥y∥22

with probability (1− δ).

Corollary: For any fixed x, with probability (1− δ),

(1− ϵ)∥Ax− b∥22 ≤ ∥ΠAx−Πb∥22 ≤ (1+ ϵ)∥Ax− b∥22.
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for any to for all

How do we go from “for any fixed x” to “for all x ∈ Rd”.

This statement requires establishing a Johnson-Lindenstrauss
type bound for an infinity of possible vectors (Ax− b), which
can’t be tackled directly with a union bound argument.

Note that all vectors of the form (Ax− b) lie in a low
dimensional subspace: spanned by d+ 1 vectors, where d is
the width of A.
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subspace embeddings

Theorem (Subspace Embedding from JL)
Let U ⊂ Rn be a d-dimensional linear subspace in Rn. If
Π ∈ Rm×d is chosen from any distribution D satisfying the
Distributional JL Lemma, then with probability 1− δ,

(1− ϵ)∥v∥22 ≤ ∥Πv∥22 ≤ (1+ ϵ)∥v∥22

for all v ∈ U , as long as m = O
(
d log(1/ϵ)+log(1/δ)

ϵ2

)
1.

1It’s possible to obtain a slightly tighter bound of O
(
d+log(1/δ)

ϵ2

)
. It’s a nice

challenge to try proving this. 29



subspace embedding to approximate regression

Corollary: If we choose Π and properly scale, then with
O
(
d/ϵ2

)
rows,

(1− ϵ)∥Ax− b∥22 ≤ ∥ΠAx−Πb∥22 ≤ (1+ ϵ)∥Ax− b∥22

for all x and thus

∥Ax̃− b∥22 ≤ (1+ O(ϵ))min
x

∥Ax− b∥22.

I.e., our main theorem is proven.

Proof: Apply Subspace Embedding Thm. to the (d+ 1)
dimensional subspace spanned by A’s d columns and b. Every
vector Ax− b lies in this subspace.
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subspace embeddings

Theorem (Subspace Embedding from JL)
Let U ⊂ Rn be a d-dimensional linear subspace in Rn. If
Π ∈ Rm×d is chosen from any distribution D satisfying the
Distributional JL Lemma, then with probability 1− δ,

(1− ϵ)∥v∥22 ≤ ∥Πv∥22 ≤ (1+ ϵ)∥v∥22 (1)

for all v ∈ U , as long as m = O
(
d log(1/ϵ)+log(1/δ)

ϵ2

)
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subspace embedding proof

Observation: The theorem holds as long as (1) holds for all w
on the unit sphere in U . Denote the sphere SU :

SU = {w |w ∈ U and ∥w∥2 = 1}.

Follows from linearity: Any point v ∈ U can be written as cw
for some scalar c and some point w ∈ SU .

• If (1− ϵ)∥w∥2 ≤ ∥Πw∥2 ≤ (1+ ϵ)∥w∥2.
• then c(1− ϵ)∥w∥2 ≤ c∥Πw∥2 ≤ c(1+ ϵ)∥w∥2,
• and thus (1− ϵ)∥cw∥2 ≤ ∥Πcw∥2 ≤ (1+ ϵ)∥cw∥2.
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subspace embedding proof

Intuition: There are not too many “different” points on a
d-dimensional sphere:

Nϵ is called an “ϵ”-net.

If we can prove

(1− ϵ)∥w∥2 ≤ ∥Πw∥2 ≤ (1+ ϵ)∥w∥2
for all points w ∈ Nϵ, we can hopefully extend to all of SU . 33



ϵ-net for the sphere

Lemma (ϵ-net for the sphere)

For any ϵ ≤ 1, there exists a set Nϵ ⊂ SU with |Nϵ| =
(4
ϵ

)d such
that ∀v ∈ SU ,

min
w∈Nϵ

∥v− w∥ ≤ ϵ.
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subspace embedding proof

1. Preserving norms of all points in net Nϵ.

Set δ′ =
(
ϵ
4
)d · δ. By a union bound, with probability 1− δ, for

all w ∈ Nϵ,

(1− ϵ)∥w∥2 ≤ ∥Πw∥2 ≤ (1+ ϵ)∥w∥2.

as long as Π has O
(
log(1/δ′)

ϵ2

)
= O

(
d log(1/ϵ)+log(1/δ)

ϵ2

)
rows.
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subspace embedding proof

2. Writing any point in sphere as linear comb. of points in Nϵ.

For some w0,w1,w2 . . . ∈ Nϵ, any v ∈ SU . can be written:

v = w0 + c1w1 + c2w2 + . . .

for constants c1, c2, . . . where |ci| ≤ ϵi.
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subspace embedding proof

3. Preserving norm of v.

Applying triangle inequality, we have

∥Πv∥2 = ∥Πw0 + c1Πw1 + c2Πw2 + . . . ∥
≤ ∥Πw0∥+ ϵ∥Πw1∥+ ϵ2∥Πw2∥+ . . .

≤ (1+ ϵ) + ϵ(1+ ϵ) + ϵ2(1+ ϵ) + . . .

≤ 1+ O(ϵ).
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subspace embedding proof

3. Preserving norm of v.

Similarly,

∥Πv∥2 = ∥Πw0 + c1Πw1 + c2Πw2 + . . . ∥
≥ ∥Πw0∥ − ϵ∥Πw1∥ − ϵ2∥Πw2∥ − . . .

≥ (1− ϵ)− ϵ(1+ ϵ)− ϵ2(1+ ϵ)− . . .

≥ 1− O(ϵ).
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subspace embedding proof

So we have proven

(1− O(ϵ)) ∥v∥2 ≤ ∥Πv∥2 ≤ (1+ O(ϵ)) ∥v∥2

for all v ∈ SU , which in turn implies,

(1− O(ϵ)) ∥v∥22 ≤ ∥Πv∥22 ≤ (1+ O(ϵ)) ∥v∥22

Adjusting ϵ proves the Subspace Embedding theorem.
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subspace embeddings

Theorem (Subspace Embedding from JL)
Let U ⊂ Rn be a d-dimensional linear subspace in Rn. If
Π ∈ Rm×d is chosen from any distribution D satisfying the
Distributional JL Lemma, then with probability 1− δ,

(1− ϵ)∥v∥22 ≤ ∥Πv∥22 ≤ (1+ ϵ)∥v∥22 (2)

for all v ∈ U , as long as m = O
(
d log(1/ϵ)+log(1/δ)

ϵ2

)

Subspace embeddings have many other applications!

For example, if m = O(k/ϵ), ΠA can be used to compute an
approximate partial SVD, which leads to a (1+ ϵ) approximate
low-rank approximation for A.
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ϵ-net for the sphere

Lemma (ϵ-net for the sphere)

For any ϵ ≤ 1, there exists a set Nϵ ⊂ SU with |Nϵ| =
(4
ϵ

)d such
that ∀v ∈ SU ,

min
w∈Nϵ

∥v− w∥ ≤ ϵ.

Imaginary algorithm for constructing Nϵ:

• Set Nϵ = {}
• While such a point exists, choose an arbitrary point v ∈ SU
where ∄w ∈ Nϵ with ∥v− w∥ ≤ ϵ. Set Nϵ = Nϵ ∪ {w}.

After running this procedure, we have Nϵ = {w1, . . . ,w|Nϵ|} and
minw∈Nϵ ∥v− w∥ ≤ ϵ for all v ∈ SU as desired.
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ϵ-net for the sphere

How many steps does this procedure take?

Can place a ball of radius ϵ/2 around each wi without
intersecting any other balls. All of these balls live in a ball of
radius 1+ ϵ/2.

42



ϵ-net for the sphere

Volume of d dimensional ball of radius r is

vol(d, r) = c · rd,

where c is a constant that depends on d, but not r. From

previous slide we have:

vol(d, ϵ/2) · |Nϵ| ≤ vol(d, 1+ ϵ/2)

|Nϵ| ≤
vol(d, 1+ ϵ/2)
vol(d, ϵ/2)

≤
(
1+ ϵ/2
ϵ/2

)d
≤
(
4
ϵ

)d
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runtime consideration

For ϵ, δ = O(1), we need Π to have m = O(d) rows.

• Cost to solve ∥Ax− b∥22:
• O(nd2) time for direct method. Need to compute
(ATA)−1ATb.

• O(nd) · (# of iterations) time for iterative method (GD, AGD,
conjugate gradient method).

• Cost to solve ∥ΠAx−Πb∥22:
• O(d3) time for direct method.
• O(d2) · (# of iterations) time for iterative method.
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runtime consideration

But time to compute ΠA is an (m× n)× (n× d) matrix
multiply: O(mnd) = O(nd2) time.

Goal: Develop faster Johnson-Lindenstrauss projections.

Typically using sparse and structured matrices.

We will describe a construction where ΠA can be computed in
O(nd logn) time. 45



the fast johnson-lindenstrauss transform

Subsampled Randomized Hadamard Transform (SHRT)
(Ailon-Chazelle, 2006):

Construct Π ∈ Rm×n as follows:

Π =

√
n
m · SHD, where

• S ∈ Rm×n is a row subsampling matrix. Each row has a
single 1 in a random column, all other entries 0.

• D ∈ n× n is a diagonal matrix with each entry uniform ±1.
• H ∈ n× n is a Hadamard matrix.
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hadamard matrices

Assume for now that n is a power of 2. For i = 0, 1, . . . , Hi is a
Hadamard matrix with dimension 2i × 2i.

H0 = 1 H1 =
1√
2

[
1 1
1 −1

]
H2 =

1√
4


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1



Hk =
1√
2

[
Hk−1 Hk−1
Hk−1 −Hk−1

]

How long does it take to compute Hx for a vector x ∈ Rn?

47



hadamard matrices

Property 1: Can compute Πx = SHDx in O(n logn) time.

Compare to O(nm) time for random Gaussian or ±1 Π ∈ Rm×n.
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randomized hadamard transform

Deterministic
Hadamard matrix.

Randomized
Hadamard PHD.

Fully random sign
matrix.
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johnson-lindenstrauss with SHRTs

Theorem (JL from SRHT)
Let Π ∈ Rm×n be a subsampled randomized Hadamard
transform with m = O

(
log(n/δ)2 log(1/δ)

ϵ2

)
rows. Then for any

fixed y,

(1− ϵ)∥y∥22 ≤ ∥Πy∥22 ≤ (1+ ϵ)∥y∥22

with probability (1− δ).
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hadamard matrices are orthogonal

Property 2: For any k = 0, 1, . . ., we have HTkHk = I.
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randomized hadamard analysis

We want to show that ∥
√

1
mSHDy∥22 ≈ ∥y∥22.

Let z ∈ Rn = HDy.

• Claim: ∥z∥22 = ∥y∥22, exactly.
• ∥SHDy∥22 = n

m∥Sz∥22 = subsample of z.
• E

[ n
m∥Sz∥22

]
= ∥z∥22.

What would z have to look like for ∥Sz∥22 to look very different
from ∥z∥22 with high probability? I.e. when does subsampling
fail. When does subsampling work?
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randomized hadamard analysis

Lemma (SHRT mixing lemma)
Let H be an (n× n) Hadamard matrix and D a random ±1
diagonal matrix. Let z = HDy for some y ∈ Rn. With
probability 1− δ,

|zi| ≤ c ·
√
log(n/δ)

n ∥y∥2

for some fixed constant c.

If all entries in z were uniform magnitude, we would have
|zi| = 1√

n∥y∥2. So we are very close to uniform with high
probability.
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randomized hadamard analysis

SHRT mixing lemma proof:

Let hTi be the ith row of H. zi = hTi Dy where:

hTi D =
1√
n

[
1 1 −1 −1

]
R1

R2
R3

R4


where R1, . . . ,Rn are random ±1’s.

This is equivalent to

hTi D =
1√
n

[
R1 R2 R3 R4

]
.
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randomized hadamard analysis

SHRT mixing lemma proof:

So we have, for all i,

zi = hTi Dy =
1√
n

n∑
i=1

Riyi.

•
√
n · zi is a random variable with mean 0 and variance

∥y∥22, which is a sum of independent random variables.
• By Central Limit Theorem, we expect that:

Pr[|
√
n · zi| ≥ t∥y∥2] ≤ e−O(t2).

• Setting t gives Pr
[
|zi| ≥ O

(√
log(n/δ)

n ∥y∥2
)]

≤ δ
n .

• Applying a union bound to all n entries of z gives the SHRT
mixing lemma.
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rademacher concentration

Formally, need to use Bernstein type concentration inequality
to prove the bound:

Lemma (Rademacher Concentration)
Let R1, . . . ,Rn be Rademacher random variables (i.e. uniform
±1’s). Then for any vector a ∈ Rn,

Pr
[ n∑
i=1

Riai ≥ t∥a∥2

]
≤ e−t2/2.
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finishing up

With probability 1− δ, we have that all zi ≤ O
(√

log(n/δ)
n ∥y∥2

)
.

We want to analyze:

L = ∥
√
n
mSHD∥22 =

1
m∥

√
nSz∥22 =

1
m

m∑
i=1

(
√
nzji)

2

where ji is a random index in 1, . . . ,n.

We have that EL = ∥z∥22 = ∥y∥22 and L is a sum of random
variables, each bounded by O (log(n/δ)), which means they
have bounded variance.

Apply a Chernoff/Hoeffding bound to get that∣∣L = ∥y∥22
∣∣ ≤ ϵ∥y∥22 with probability 1− δ as long as:

m ≥ O
(
log2(n/δ) log(1/δ)

ϵ2

)
.
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johnson-lindenstrauss with SHRTs

Theorem (JL from SRHT)
Let Π ∈ Rm×n be a subsampled randomized Hadamard
transform with m = O

(
log(n/δ)2 log(1/δ)

ϵ2

)
rows. Then for any

fixed y,

(1− ϵ)∥y∥22 ≤ ∥Πy∥22 ≤ (1+ ϵ)∥y∥22

with probability (1− δ).

Can be improved to m = O
(
log(n/δ) log(1/δ)

ϵ2

)
.

Upshot for regression: Compute ΠA in O(nd logn) time
instead of O(nd2) time. Compress problem down to Ã with
O(d2) dimensions.
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brief comment on other methods

O(nd logn) is nearly linear in the size of A when A is dense.

Clarkson-Woodruff 2013, STOC Best Paper: Possible to
compute Ã with poly(d) rows in:

O (nnz(A)) time.

Π is chosen to be an ultra-sparse random matrix. Uses totally
different techniques (you can’t do JL + ϵ-net).

Lead to a whole close of matrix algorithms (for regression, SVD,
etc.) which run in time:

O (nnz(A)) + poly(d, ϵ).
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what were ailon and chazelle thinking?

Simple, inspired algorithm that has been used for accelerating:

• Vector dimensionality reduction

• Linear algebra

• Locality sensitive hashing
(SimHash)

• Randomized kernel learning
methods (we will discuss after
Thanksgiving)
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what were ailon and chazelle thinking?

The Hadamard Transform is closely related to the Discrete
Fourier Transform.

Fj,k = e−2πi
j·k
n , F∗F = I.

Real part of Fj,k.

Fy computes the Fourier-transform of the vector y. Can be
computed in O(n logn) time using a divide and conquer
algorithm (the Fast Fourier Transform). 61



the uncertainty principal

The Uncertainty Principal (informal): A function and it’s
Fourier transform cannot both be concentrated.

Vector y. Fourier transform Fy.

62



the uncertainty principal

Sampling does not preserve norms, i.e. ∥Sy∥2 ̸≈ ∥y∥2 when y
has a few large entries.

Taking a Fourier transform exactly eliminates this hard case,
without changing y’s norm.
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