
CS-GY 9223 I: Lecture 10
Spectral clustering, spectral graph theory.

NYU Tandon School of Engineering, Prof. Christopher Musco
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• Project proposal feedback.
• Problem set.
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low-rank approximation

Write X as a rank k factorization by projecting onto the
subspace spanned by an orthonormal matrix V ∈ Rd×k
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singular value decomposition

One-stop shop for computing optimal low-rank
approximations.

Any matrix X can be written:

Where UTU = I, VTV = I, and σ1 ≥ σ2 ≥ . . . σd ≥ 0.
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singular value decomposition

Can read off optimal low-rank approximations from the SVD:

Xk = UkUTkX = XVkVTk.

Vk = argmin
orthonormal V∈Rd×k

∥X− XVVT∥2F = argmax
orthonormal V∈Rd×k

∥XVVT∥2F
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power method convergence

Theorem (Power Method Convergence)
Let γ = σ1−σ2

σ1
be parameter capturing the “gap” between the

first and second largest singular values. If Power Method is
initialized with a random Gaussian vector then, with high
probability, after T = O

(
log d/ϵ

γ

)
steps, we have:

∥v1 − z(T)∥2 ≤ ϵ.

Total runtime: O(T · nnz(X)) ≤ O(T · nd)
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block power method for larger k

Block power method:

• Choose G ∈ Rd×k be a random Gaussian matrix.
• Z0 = orth(G).
• For i = 1, . . . , T

• Z(i) = XT · (XZ(i−1))
• Z(i) = orth(Z(i))

Return Z(T)

Convergence Guarantee: T = O
(
log d/ϵ

ϵ

)
iterations to obtain a

nearly optimal low-rank approximation:

∥A− AZZT∥2F ≤ (1+ ϵ)∥A− AVkVkT∥2F.

Runtime: O(nnz(X) · k · T) ≤ O(ndk · T).
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krylov methods

Possible to “accelerate” these methods.

Convergence Guarantee: T = O
(
log d/ϵ√

ϵ

)
iterations to obtain a

nearly optimal low-rank approximation:

∥A− AZZT∥2F ≤ (1+ ϵ)∥A− AVkVkT∥2F.

Runtime: O(nnz(X) · k · T) ≤ O(ndk · T).
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application of partial svd: entity embeddings
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example: latent semantic analysis

• ⟨⃗yi, z⃗a⟩ ≈ 1 when doci contains worda.
• If doci and doci both contain worda, ⟨⃗yi, z⃗a⟩ ≈ ⟨⃗yj, z⃗a⟩ = 1.
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example: latent semantic analysis

• The columns z⃗1, z⃗2, . . . give representations of words, with
z⃗i and z⃗j tending to have high dot product if wordi and
wordj appear in many of the same documents.

• Z corresponds to the top k right singular vectors: the
eigenvectors of XXT. Intuitively, what is XXT?

• (XXT)i,j =
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example: word embeddings

Not obvious how to convert a word into a feature vector that
captures the meaning of that word. Approach suggested by
LSA: build a d× d symmetric “similarity matrix” M between
words, and factorize: M ≈ FFT for rank k F.

• Similarity measures: How often do wordi,wordj appear in
the same sentence, in the same window of w words, in
similar positions of documents in different languages?

• Replacing XXT with these different metrics (sometimes
appropriately transformed) leads to popular word
embedding algorithms: word2vec, GloVe, etc.
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example: word embeddings

word2vec was originally described as a neural-network
method, but Levy and Goldberg show that it is simply low-rank
approximation of a specific similarity matrix. Neural word

embedding as implicit matrix factorization.
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spectral graph theory

Main idea: Understand graph data by constructing natural
matrix representations, and studying that matrix’s spectrum
(eigenvalues/eigenvectors).

For now assume G = (V, E) is an undirected, unweighted graph
with n nodes.
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matrix representations of graphs

Two most common representations: n× n adjacency matrix A
and graph Laplacian L = D− A where D is the diagonal degree
matrix.

Also common to look at normalized versions of both of these:
Ā = D−1/2AD−1/2 and L̄ = I− D−1/2AD−1/2.
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spectral graph theory tidbits

• If L have k eigenvalues equal to 0, then G has k connected
components.

• Sum of cubes of A’s eigenvalues is equal to number of
triangles in the graph.

• Sum of eigenvalues to the power q is the number of q
cycles.
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the laplacian view

L = BTB where B is the signed “edge-vertex incidence” matrix.

B =
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the laplacian view

BTB = b1bT1 + b2bT2 + . . .+ bmbTm,

where bi is the ith row of B (each row corresponds to a single
edge).
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the laplacian view

Conclusions from L = BTB

• L is positive semidefinite: xTLx ≥ 0 for all x.

• L = VΣ2VT where UΣ2VT is B’s SVD. Columns of V are
eigenvectors of L.

• For any vector x ∈ Rn,

xTLx =
∑
(i,j)∈E

(x(i)− x(j))2.
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the laplacian view

xTLx is small if x is a “smooth” function with respect to the
graph.

Eigenvectors of the Laplacian with small eigenvalues
correspond to smooth functions over the graph.
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smallest laplacian eigenvector

Courant–Fischer min-max principle

Let V = [v1, . . . , vn] be the eigenvectors of L.

vn = argmin
∥v∥=1

vTLv

vn−1 = argmin
∥v∥=1,v⊥vn

vTLv

vn−2 = argmin
∥v∥=1,v⊥vn,vn−1

vTLv

...
v1 = argmin

∥v∥=1,v⊥vn,...,v2
vTLv
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largest laplacian eigenvector

Courant–Fischer min-max principle

Let V = [v1, . . . , vn] be the eigenvectors of L.

v1 = argmax
∥v∥=1

vTLv

v2 = argmax
∥v∥=1,v⊥v1

vTLv

v3 = argmax
∥v∥=1,v⊥v1,v2

vTLv

...
vn = argmax

∥v∥=1,v⊥v1,...,vn−1

vTLv
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example application of spectral graph theory

• Study graph partitioning problem important in 1)
understanding social networks 2) nonlinear clustering in
unsupervised machine learning (spectral clustering).

• See how this problem can be solved approximately using
Laplacian eigenvectors.

• Give a full analysis of the method for a common random
graph model.

• Use two tools: matrix concentration and eigenvector
perturbation bounds.
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balanced cut

Common goal: Given a graph G = (V, E), partition nodes along
a cut that:

• Has few crossing edges: |{(u, v) ∈ E : u ∈ S, v ∈ T}| is small.
• Separates large partitions: |S|, |T| are not too small.

Important in understanding community structure in social
networks. 24



social networks in the 1970s

Wayne W. Zachary (1977). An Information Flow Model for
Conflict and Fission in Small Groups.

“The network captures 34 members of a karate club, documenting
links between pairs of members who interacted outside the club.
During the study a conflict arose between the administrator ”John A”
and instructor ”Mr. Hi” (pseudonyms), which led to the split of the
club into two. Half of the members formed a new club around Mr. Hi;
members from the other part found a new instructor or gave up
karate. Based on collected data Zachary correctly assigned all but
one member of the club to the groups they actually joined after the
split.” – Wikipedia

Beautiful paper – definitely worth checking out!
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balanced cut

Common goal: Given a graph G = (V, E), partition nodes along
a cut that:

• Has few crossing edges: |{(u, v) ∈ E : u ∈ S, v ∈ T}| is small.
• Separates large partitions: |S|, |T| are not too small.

Important in understanding community structure in social
networks. 26



spectral clustering

Idea: Construct synthetic graph for data that is hard to cluster.

Spectral Clustering, Laplacian Eigenmaps, Locally linear
embedding, Isomap, etc.
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spectral graph theory

There are many way’s to formalize Zachary’s problem:

Sparsest Cut:

min
S

cut(S, V \ S)
min (|S|, |V \ S|)

β-Balanced Cut:

min
S
cut(S, V \ S) such that min (|S|, |V \ S|) ≥ βn

Most formalizations lead to computationally hard problems.
Lots of interest in designing polynomial time approximation
algorithms, but tend to be slow. In practice, much simpler
methods based on the graph spectrum are used.
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the laplacian view

Another conclusion from L = BTB:

For a cut indicator vector c ∈ {−1, 1}n with c(i) = −1 for i ∈ S
and c(i) = 1 for i ∈ T = V \ S:

cTLc =
∑
(i,j)∈E

(c(i)− c(j))2 = 4 · cut(S, T). (1)
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the laplacian view

For a cut indicator vector c ∈ {−1, 1}n with c(i) = −1 for i ∈ S
and c(i) = 1 for i ∈ T:

• cTLc = 4 · cut(S, T).
• cT1 = |T| − |S|.

Want to minimize both cTLc (cut size) and cT1 (imbalance).
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the laplacian view

Equivalent formulation if we divide everything by
√
n so that c

has norm 1. Then c ∈ {− 1√
n

1√
n}

n and:

• cTLc = 4
n · cut(S, T).

• cT1 = 1√
n(|T| − |S|).

Want to minimize both cTLc (cut size) and cT1 (imbalance).
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smallest laplacian eigenvector

The smallest eigenvector/singular vector vn satisfies:

vn =
1√
n
· 1 = argmin

v∈Rn with ∥v∥=1
vTLv

with vTnLvn = 0.
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second smallest laplacian eigenvector

By Courant-Fischer, vn−1 is given by:

vn−1 = argmin
∥v∥=1, vTnv=0

vTLv

If vn−1 were binary {− 1√
n ,

1√
n}

n it would have:

• vTn−1Lvn−1 = 1
n cut(S, T) as small as possible given that

vTn−11 = |T| − |S| = 0.
• vn−1 would indicate the smallest perfectly balanced cut.

vn−1 ∈ Rn is not generally binary, but a natural approach is to
‘round’ the vector to obtain a cut.
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cutting with the second laplacian eigenvector

Find a good partition of the graph by computing

vn−1 = argmin
v∈Rn with ∥v∥=1, vT1=0

vTLv

Set S to be all nodes with vn−1(i) < 0, and T to be all with
vn−1(i) ≥ 0.
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cutting with the second laplacian eigenvector

Find a good partition of the graph by computing

vn−1 = argmin
v∈Rn with ∥v∥=1, vT1=0

vTLv

Set S to be all nodes with vn−1(i) < 0, and T to be all with
vn−1(i) ≥ 0.
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spectral partitioning in practice

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the
normalized Laplacian L = D−1/2LD−1/2.

Important consideration: What to do when we want to split
the graph into more than two parts?
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spectral partitioning in practice

Spectral Clustering:

• Compute smallest k eigenvectors vn−1, . . . , vn−k of L.
• Represent each node by its corresponding row in V ∈ Rn×k

whose rows are vn−1, . . . vn−k.
• Cluster these rows using k-means clustering (or really any
clustering method).
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laplacian embedding

Original Data: (not linearly separable)
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laplacian embedding

k-Nearest Neighbors Graph:
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laplacian embedding

Embedding with eigenvectors vn−1, vn−2: (linearly separable)
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why does this work?

Intuitively, since v ∈ v1, . . . vk are smooth over the graph,∑
i,j∈E

(v[i]− v[j])2

is small for each coordinate. I.e. this embedding explicitly
encourages nodes connected by an edge to be placed in
nearby locations in the embedding.

Also useful e.g., in graph drawing.
40



generative models

So far: Showed that spectral clustering partitions a graph
along a small cut between large pieces.

• No formal guarantee on the ‘quality’ of the partitioning.
• Would be difficult to analyze for general input graphs.

Common approach: Design a natural generative model that
produces random but realistic inputs and analyze how the
algorithm performs on inputs drawn from this model.

• Very common in algorithm design and analysis. Great way
to start approaching a problem.

• This is also the whole idea behind Bayesian Machine
Learning (can be used to justify ℓ2 linear regression,
k-means clustering, PCA, etc.)
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stochastic block model

Ideas for a generative model for social network graphs that
would allow us to understand partitioning?
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stochastic block model

Stochastic Block Model (Planted Partition Model):

Let Gn(p,q) be a distribution over graphs on n nodes, split
equally into two groups B and C, each with n/2 nodes.

• Any two nodes in the same group are connected with
probability p (including self-loops).

• Any two nodes in different groups are connected with
prob. q < p.
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linear algebraic view

Let G be a stochastic block model graph drawn from Gn(p,q).

• Let A ∈ Rn×n be the adjacency matrix of G. What is E[A]?

Note that we are arbitrarily ordering the nodes in A by group.
In reality A would look “scrambled” as on the right.
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expected adjacency spectrum

Letting G be a stochastic block model graph drawn from
Gn(p,q) and A ∈ Rn×n be its adjacency matrix. (E[A])i,j = p for
i, j in same group, (E[A])i,j = q otherwise.

What are the
eigenvectors and
eigenvalues of E[A]?
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expected laplacian

What is the expected Laplacian Gn(p,q)?

A and L have the same eigenvectors and eigenvalue are equal
up to a shift.
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expected adjacency spectrum

Letting G be a stochastic block model graph drawn from
Gn(p,q) and A ∈ Rn×n be its adjacency matrix, what are the
eigenvectors and eigenvalues of E[A]?
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expected adjacency spectrum

• v1 ∼ 1 with eigenvalue λ1 =
(p+q)n

2 .
• v2 ∼ χB,C with eigenvalue λ2 =

(p−q)n
2 .

• χB,C(i) = 1 if i ∈ B and χB,C(i) = −1 for i ∈ C.

If we compute v2 then we recover the communities B and C!
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expected laplacian spectrum

Upshot: The second smallest eigenvector of E[L], equivalently
the second largest of E[A], is χB,C – the indicator vector for the
cut between the communities.

• If the random graph G (equivilantly A and L) were exactly
equal to its expectation, partitioning using this
eigenvector would exactly recover communities B and C.

How do we show that a matrix (e.g., A) is close to its
expectation? Matrix concentration inequalities.

• Analogous to scalar concentration inequalities like
Markovs, Chebyshevs, Bernsteins.
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matrix concentration

Matrix Concentration Inequality: If p ≥ O
(
log4 n
n

)
, then

with high probability

∥A− E[A]∥2 ≤ O(
√
pn).

where ∥ · ∥2 is the matrix spectral norm (operator norm).

For X ∈ Rn×d, ∥X∥2 = maxz∈Rd:∥z∥2=1 ∥Xz∥2.

Exercise: Show that ∥X∥2 is equal to the largest singular value
of X. For symmetric X (like A− E[A]) show that it is equal to the
magnitude of the largest magnitude eigenvalue.

For the stochastic block model application, we want to show
that the second eigenvectors of A and E[A] are close. How
does this relate to their difference in spectral norm? 50



Eigenvector Perturbation

Davis-Kahan Eigenvector Perturbation Theorem: Sup-
pose A,A ∈ Rd×d are symmetric with ∥A − A∥2 ≤ ϵ

and eigenvectors v1, v2, . . . , vd and v̄1, v̄2, . . . , v̄d. Letting
θ(vi, v̄i) denote the angle between vi and v̄i, for all i:

sin[θ(vi, v̄i)] ≤
ϵ

minj̸=i |λi − λj|

where λ1, . . . , λd are the eigenvalues of A.

The error gets larger if there are eigenvalues with similar
magnitudes.
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eigenvector perturbation
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application to stochastic block model

Claim 1 (Matrix Concentration): For p ≥ O
(
log4 n
n

)
,

∥A− E[A]∥2 ≤ O(
√
pn).

Claim 2 (Davis-Kahan): For p ≥ O
(
log4 n
n

)
,

sin θ(v2, v̄2) ≤
O(√pn)

minj̸=i |λi − λj|
≤ O(√pn)

(p− q)n/2 = O
( √p
(p− q)

√
n

)
Recall: E[A], has eigenvalues λ1 = (p+q)n

2 , λ2 = (p−q)n
2 , λi = 0 for i ≥ 3.

min
j̸=i

|λi − λj| = min
(
qn, (p− q)n

2

)
.

Assume
∣∣∣ (p−q)n2 − 0

∣∣∣ will be the minimum of the two gaps. I.e.

smaller than
∣∣∣ (p+q)n2 − (p−q)n

2

∣∣∣ = qn.
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application to stochastic block model

So Far: sin θ(v2, v̄2) ≤ O
( √p

(p−q)
√
n

)
. What does this give us?

• Can show that this implies ∥v2 − v̄2∥22 ≤ O
(

p
(p−q)2n

)
(exercise).

• v̄2 is 1√
nχB,C: the community indicator vector.

• Every i where v2(i), v̄2(i) differ in sign contributes ≥ 1
n to

∥v2 − v̄2∥22.

• So they differ in sign in at most O
(

p
(p−q)2

)
positions.
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application to stochastic block model

Upshot: If G is a stochastic block model graph with adjacency
matrix A, if we compute its second large eigenvector v2 and
assign nodes to communities according to the sign pattern of
this vector, we will correctly assign all but O

(
p

(p−q)2

)
nodes.

• Why does the error increase as q gets close to p?
• Even when p−q = O(1/

√
n), assign all but an O(n) fraction

of nodes correctly. E.g., assign 99% of nodes correctly.

55


