
CS-GY 9223/CS-UY 3943B: Lecture 1
Course Introduction, Randomized Methods,
Hashing

NYU Tandon School of Engineering, Prof. Christopher Musco

1

welcome!

Algorithmic Machine Learning and Data Science
What is this course all about?

2

algorithms in the age of data science

Statistics, machine learning, and data science study how to
used data to make better decisions or discoveries.

Applications across industry, engineering, and the sciences.

In this class, we study how to do so as quickly as possible, or
with bounded computational resources.

3

applications by the numbers

• Twitter receives 6,000 tweets every second.
• Google receives ≈ 10,000 Maps queries every second.
• NASA collects 6.4 TB of satallite images every day.
• Large Synoptic Survey Telescope will collect 20 TB of
images every night.

• MIT/Harvard Broad Institute sequences 24 TB of genetic
data every day.

4

role of algorithms

Growing demands of data science and machine learning have
ushered in a new “golden age” for algorithms research.

• Bolstered by our limited ability to build faster computers
(or to access computational resources with a limited
financial budget).

• Typical data applications require combining a diverse set
of algorithmic tools. Most are not heavily covered in your
traditional algorithms curriculum.

5

class topics

(1) Randomized methods.
(2) Continuous optimization.
(3) Spectral methods and linear algebra.
(4) Fourier methods.

6

randomized methods

Section 1: Randomized Algorithms.

• Probability tools and concentration of random variables
(Markovs, Chebyshev, Chernoff/Bernstein inequalities).

• Random hashing for fast data search, load balancing, and more.
Locality sensitive hashing, MinHash, SimHash, etc.

• Sketching and streaming algorithms for compressing and
processing data on the fly.

• High-dimensional geometry and the Johnson-Lindenstrauss
lemma for compressing high dimensional vectors.

It is hard to find an algorithms paper in 2020 that does not use
randomness in some way, but this wasn’t always the case!

7

continuous optimization

Section 2: Continuous optimization.

• Gradient descent, stochastic gradient descent, coordinate
descent, and how to analyze these methods.

• Acceleration, conditioning, preconditioning, adaptive gradient
methods.

• Constrained optimization, linear programming. Ellipsoid and
interior point methods.

• Relaxation of combinatorial optimization problems.

Continuous optimization has become the algorithmic workhorse of
modern machine learning.

8

spectral methods

Section 3: Spectral methods and linear algebra.

• How to compute singular value decompositions and
eigendecomposition.

• Spectral graph theory: i.e. how to use linear algebara to
understanding large graphs through linear algebra (social
networks, interaction graphs, etc.).

• Spectral clustering and non-linear dimensionality reduction.

• Random sampling and sketching methods for for matrix
computations.

“Complex math operations (machine learning, clustering, trend
detection) [are] mostly specified as linear algebra on array data” –
Michael Stonebraker, Turing Award Winner

9

fourier methods

Section 4: Fourier methods.

• Compressed sensing, sparse recovery, and their applications.

• Heavy-hitters/frequent item algorithms for data streams.

• Fourier perspective on machine learning techniques like kernel
methods, and the algorithmic benefits.

10

what we won’t cover

Won’t cover:

Software tools or frameworks. MapReduce, Tensorflow, Spark,
etc. If you are interested CS-GY 6513 might be a good course.

Machine Learning Models + Techniques. Neural nets,
reinforcement learning, Bayesian methods, unsupervised
learning etc. I am assuming you already have a course in ML
and the focus of this class will be on computational
considerations.

But if your research is in machine learning, I think you will find
the theoretical tools we learn are more broadly applicable

than in designing faster algorithms.

11

our approach

This is primarily a theory course.

• Emphasis on proofs of correctness, bounding asymptotic
runtimes, convergence analysis, etc. Why?

• Learn how to model complex problems in simple ways.

• Learn general mathematical tools that can be applied in a wide
variety of problems (in your research, in industry, etc.)

• The homework requires creative problem solving and thinking
beyond what was covered in class. You will not be able to solve
many problems on your first try!

You will need a good background in probability and linear algebra.
See the syllabus for more details. Ask me is you are still unsure of
your preparation.

12

course structure and logistics

How will you learn all this stuff?

13

course structure and logistics

All of this information is on the course webpage
https://www.chrismusco.com/amlds2020/ and in the

syllabus posted there! Please read it.

Class structure:

• First half of class (11am - 12pm) will be a flipped course.
• Second half (12:15pm - 1:30pm) will be traditional lecture.
• Short video lecture will be posted on Thursday (must
watch on your own time).

• Lecture notes and optional readings posted on course
website.

Why?
14

https://www.chrismusco.com/amlds2020/

course structure and logistics

Class work:

• Weekly online quiz (10% of course grade) posted after
Thursday lecture. Due following Wednesday before class.

• Biweekly problem sets (40% of course grade).
• These are challenging, and the most effective way to
learn the material. I recommend you start early, work
with others, ask questions on Piazza, etc.

• You must write-up solutions on your own.1

• Take-home midterm (15% of course grade).

110% bonus on first problem set for using Markdown or LaTex. It should
save you time in the long run!

15

course structure and logistics

Course project (25% of grade):

• Can be based on a recent algorithms paper. Can be either
an experimental or theoretical project.

• Work in pairs.
• We will hold an optional reading group outside of class for
those interested in research and getting better at reading
and presenting papers. Time TBA.

16

course structure and logistics

Class participation project (10% of grade):

• My goal is to know you all individually by the end of this
course.

• Lots of ways to earn the full grade: participation in
lecture, office hours, or Piazza. Participation in the reading
group. Effort on the project.

17

course structure and logistics

Important note:

• This is a mixed undergraduate/graduate course.
• Workload is the same, but undergraduates are graded on
a different “curve”.

• Tandon Ph.D. student Raphael Meyer will be offering
undergraduate only office hours for extra support.

18

course structure and logistics

Other important note: No class next week because of
memorial day. But I will release a problem set tomorrow and
schedule office hours so you can start getting a better sense of
the course.

In the next week, please:

• Make sure you are enrolled in the Piazza site.
• Respond to polls for selecting office hour and reading
group times.

19

Questions?

19

this class

Goal: Demonstrate how even the simplest tools from
probability can lead to a powerful algorithmic results.

Lecture applications:

• Estimating unique elements from queries.
• Hash tables with worst-case guarantees.
• Load balancing.

Problem set applications:

• Group testing for COVID-19.
• Smarter load balancing.

20

probability review

Let X be a random variable taking value in some set S . I.e. for a
dice, S = {1, . . . , 6}. For a continuous r.v., we might have S = R.

• Expectation: E[X] =
∑

s∈S Pr[X = s] · s

For continuous r.v., E[X] =
∫
s∈S Pr(s) · s ds.

• Variance: Var[X] = E[(X− E[X])2]

Exercise: For any scalar α, E[αX] = αE[X]. Var[αX] = α2 Var[X]. 21

probability review

Let A and B be random events.

• Joint Probability: Pr(A ∩ B). Probability that both
events happen.

• Conditional Probability: Pr(A | B) = Pr(A∩B)
Pr(B) . Probability

A happens conditioned on the event that B happens.
• Independence: A and B are independent events if:
Pr(A | B) = Pr(A).

Alternative definition of independence:

Pr(A ∩ B) = Pr(A) · Pr(B).

22

probability review

Example: What is the probability that for two independent
dice rolls taking value uniformly in {1, 2, 3, 4, 5, 6}, the first roll
comes up odd and the second is < 3?

Let X and Y be random variables. X and Y are independent if,
for all events s, t, the random events [X = s] and [Y = t] are
independent.

23

the most powerful theorem in all of probability?

Linearity of expectation:

E[X+ Y] = E[X] + E[Y]

24

related equations

Always, sometimes, or never?

For random variables X, Y:

• E[XY] = E[X] · E[Y].

• Var[X+ Y] = Var[X] + Var[Y].

• Var[X] = E[X2]− E[X]2.

25

first application

You run a web company that is considering contracting with a
vendor that provides CAPTCHAs for logins.

They claim to have a data base of n = 1,000,000 unique
CAPTCHAs in their database, and a random one will be shown
on each API call to their service. They give you access to a test
API so you can try it out.

Question: Roughly how many queries to the API, m, would you
need to independently verify the claim that there are ∼ 1
million unique puzzles? 26

first application

First attempt: Count how many unique CAPTCHAs you see, until
you find 1, 000, 000 or close to it. Declare that you are satisfied.

As a function of n, roughly how many API queries m do you
need?

27

a different approach

Clever alternative: Count how many duplicate CAPTCHAs you
see. If you see the same CAPTCHA on query i and j, that’s one
duplicate. If you see the same CAPTCHA on queries i, j, and k,
that’s three duplicates: (i, j), (i, k), (j, k).

If you see many duplicates, the size of the data base probably
isn’t as big as claimed.

28

formalizing the problem

Question: How many duplicates do we expect to see?

Let Di,j = 1 if queries i, j return the same CAPTCHA, and 0
otherwise.

This is called an indicator random variable.
Di,j = 1[CAPTCHA i equals CAPTCHA j].

Number of duplicates D is :

D =
∑

i,j∈{1,...,m}

Di,j.

What is E[D]?

29

formalizing the problem

Question: How many duplicates do we expect to see?
Formally, what is E[D]?

E[D] =

n = number of CAPTCHAS in database, m = number of test queries.
Di,j = indicator for event CAPTCHA i and j collide.

30

some hard numbers

Suppose you take m = 1000 queries and see 10 duplicates.
How does this compare to the expectation if the database
actually has n = 1, 000, 000 unique CAPTCHAs?

E[D] = = .4995.

Something seems wrong... this random variable D came up
much larger than it’s expectation.

Can we say something formally?

n = number of CAPTCHAS in database, m = number of test queries. 31

concentration inequality

One of the most important tools in analyzing randomized
algorithms. Tell us how likely it is that a random variable X
deviates a certain amount from its expectation E[X].

We will learn three fundamental concentration inequalities
that require increasingly stronger assumptions, but provide
increasingly tighter results:

1. Markov’s Inequality.
2. Chebyshev’s Inequality.
3. Hoeffding/Bernstein/Chernoff bounds.

32

markov’s inequality

Theorem (Markov’s Inequality): For any random variable X
which only takes non-negative values any positive t,

Pr[X ≥ t] ≤ E[X]
t .

Equivalently,

Pr[X ≥ α · E[X]] ≤ 1
α
.

Proof:

33

application to captcha problem

Suppose you take m = 1000 queries and see 10 duplicates.
How does this compare to the expectation if the database
actually has n = 1, 000, 000 unique CAPTCHAs?

E[D] = m(m− 1)
2n = .4995.

By Markov’s:

Pr[D ≥ 10] ≤ E[D]
10 < .05 if n actually equals 1 million.

We can be pretty sure we’re being scammed...

n = number of CAPTCHAS in database, m = number of test queries.

34

general bound

Alternative view: If E[D] = m(m−1)
2n , then a natural estimator for

n is:

ñ =
m(m− 1)

2D .

With a little more work it is possible to show the following:

Claim: If m = Ω(
√
n/ϵ) queries, then with probability 9/10,

(1− ϵ)n ≤ ñ ≤ (1+ ϵ)n. This is a two-sided multiplicative error
guarantee.

This is a lot better than our original method that required
O(n) queries!

n = number of CAPTCHAS in database, m = number of test queries.

35

this problem in the wild

Fun facts:

• Known as the “mark-and-recapture” method in ecology.
• Can also be used by webcrawlers to estimate the size of
the internet, a social network, etc.

This is also closely related to the birthday paradox.

36

first set of tools

Linearity of Expectation + Markov’s Inequality

Primitive but powerful toolkit, which can be applied to a wide
variety of applications!

37

algorithmic application

Goal: Want to store n (key,value) pairs in a data structure, where keys
are from a finite by massive universe U . Want to support in O(1) time
the operations:

• insert(key,value)
• delete(key)
• query(key)

. Applications:

• URL/DNS resolution: key is a website url (e.g. www.nyu.edu)
and value is an IP address.

• No-SQL Datastores: arbitrary keys and values. Amazon
DynamoDB, MongoDB, Cassandra.

38

classic solution

Hash table. Build a table with n slots, and construct a hash function
h : U → {1, . . . ,n}.

Example application: a website wants to track how pages each
unique visitor (represented by a 128 bit IP address) visits over the
course of a day.

Today: Let’s only worry about query time, not inserts and deletes..
39

hash table

Typically |U| ≫ n, so two keys could hash to the same table slot.

When this happens it’s called a hash collision. Both pieces of data
need to be stored at the same table slot, e.g. in a linked list.

Worse case query time = max number of collisions in a single row.

Question: How can we bound this?

40

hash analysis

If we insert m keys, in the worst case, all could hash to the
same bucket, which would yield O(m) worst case query time.
We want O(1). To avoid this we either need to assume:

• Keys are random. This is hard to guarantee in many
applications.

• The hash function is random. This is something we can
control!

41

random hash function

Let h be a random function from |U| → {1, . . . ,n}. This means
that h is chosen using a seed of random numbers, but then
the function is fixed. Given input x ∈ U , it always returns the
same output, h(x).

Definition: Uniformly Random Hash Function. A random
function h : U → n is called uniformly random if:

• Pr[h(x) = i] = 1
n for all x ∈ U , i ∈ {1, . . . ,n}.

• h(x) and h(y) are independent r.v.’s for all x, y ∈ U .
• Which implies that Pr[h(x) = h(y)] =

U = universe of possible keys, n = size of hash table. 42

random hash function

Caveat: It is not possible to efficiently implement uniform
random hash functions! But:

• In practice “random looking” functions like MD5, SHA256,
etc. often suffice.

• If we have time, we will discuss weaker hash functions (in
particular, 2-universal functions) which suffice for our
application, and are efficient to implement.

For now, assume we have access to a uniformly random hash
function. This is an assumption we will use in future lectures
as well.

43

estimating number of hash collisions

Let C be the total number of collisions in the hashtable.

What is expected value of C?

m = number of items inserted, n = size of hash table.
44

estimating number of hash collisions

Write down formal expression for C:

Evaluate expectation:

m = number of items inserted, n = size of hash table, h =

uniformly random hash function.
45

collision free hash table

How large does n need to be so that with probability 9/10,
there are no collisions at all?

E[C] = m(m− 1)
2n =

1
10

if n > m2/5.

By Markov’s inequality,

Pr[C ≥ 1] ≤ 1
10 ,

so C = 0 with probability 9/10.

Collision free – i.e. O(1) lookup time – with O(m2) space!

m = number of items inserted, n = size of hash table. 46

note on success probability

The previous bound holds with high constant probability
(9/10). What if we wanted higher probability? Just try different
random hash function h1, . . . ,hq. Probability we find a collision
free hash after q tries is:

9/10 99/100 999/100 . . .

47

two-level hashing

O(m2) is a lot of space to store m items. Can we achieve O(m)

space, while maintaining O(1) worst-case lookups?

Key idea: Two-levels of hash tables.

Choose level two tables T1, . . . , Tn to be collision-free, which
ensures O(1) time lookups.

48

two-level hashing

Let’s choose n = m for the Level 1 hash table. How much
space is needed for collision-free Level 2 tables?

Let s1, . . . , sn be the number of elements in rows 1, . . . ,n of the
Level 1 Table.

Total space of Level 2 Tables is:

O(s21) + O(s22) + . . .+ O(s2n) = O(S),

where S =
∑n

i=1 s2i .

m = number of items inserted, n = size of level 1 table, C =

number of collisions in level 1 table.

49

two-level hashing

What is the expected space E[S]?

Claim: S = 2C+m.

m = number of items inserted, n = size of level 1 table (n = m),
C = number of collisions in level 1 table. si = number of keys in
row i of level 1 table. S =

∑n
i=1 s2i . 50

two-level hashing

Result: E[S] = 2E[C] +m =

Final result: O(1) worst-case hashtable looks-ups using just
O(m) space!

m = number of items inserted, n = size of level 1 table (n = m),
C = number of collisions in level 1 table. si = number of keys in
row i of level 1 table. S =

∑n
i=1 s2i . 51

note on random hash functions

Can we weaken our assumption that h is uniformly random?
Definition (2-universal hash function)
A random hash function h : U → {1, . . . ,n} is 2-universal if,
for any fixed x, y ∈ U ,

Pr[h(x) = h(y)] ≤ 1
n .

Claim: A uniformly random hash-function is two universal.

Efficient alternative: Let p be a prime number between |U|
and 2|U|. Let a,b be random numbers in 0, . . . ,p, a ̸= 0.

h(x) = [a · x+ b (mod p)] (mod n)

is 2-universal. Lecture notes with proof posted on website.
52

note on random hash functions

Another definition you might come across:

Definition (Pairwise independent hash function)
A random hash function h : U → {1, . . . ,n} is pairwise
independent if, for any fixed x, y ∈ U , i, j ∈ {1 . . . ,n},

Pr[h(x) = i ∩ h(y) = j] = 1
n2 .

Can we naturally extended to k-wise independence for k > 2,
which is strictly stronger, and needed for some applications.

53

distributing work loads

Another application of hashing:

Suppose Google answers map search queries using an army of
servers A1, . . . ,Aq. Given a query like “new york to rhode
island”, common practice is to choose a random hash function
h→ {1 . . . ,q} and to route this query to server:

Ah(“new york to rhode island’)

Why use a hash function instead of just sending the query to
a uniformly random server?

54

distributing work loads

Online lecture: We will see how the Markov bound fails us in
analyzing this application of hashing, which will motivate a
new tool: the Chebyshev inequality.

55

