
New York University Tandon School of Engineering
Computer Science and Engineering

CS-GY 9223D: Homework 3.
Due Wednesday, November 25th, 2020, 11:59pm.

Collaboration is allowed on this problem set, but solutions must be written-up individually. Please list
collaborators for each problem separately, or write “No Collaborators” if you worked alone.

Problem 1: Acceleration Through the Polynomial Lens

(15 pts) In Lecture 7, we saw how to analyze gradient descent for f(x) = ‖Ax − b‖22, which has gradient
∇f(x) = 2ATAx− 2ATb. The dominant cost for each gradient descent iteration is multiplying x by ATA
to compute the gradient, which takes O(nd) time when A is n× d.

We obtained a convergence bound depending on the largest and smallest eigenvalues of ATA, which we
denote λ1 and λd respectively. We did so by rearranging the gradient descent update rule:

x(i) = x(i−1) − η
(

2ATAx(i−1) − 2ATb
)

x(i) − x∗ = x(i−1) − η
(

2ATAx(i−1) − 2ATAx∗
)
− x∗ since ∇f(x∗) = 0, so ATAx∗ = ATb

x(i) − x∗ = (I− 2ηATA)(x(i−1) − x∗).

By induction, it follows that the error x(i) − x∗ equals x(i) − x∗ = (I − 2ηATA)i(x(0) − x∗). This allowed
us to obtain a convergence bound by arguing that, if we set η = 1/2λ1 where λ1 is the largest eigenvalue of
ATA, then (I − 1

λ1
ATA)i has top eigenvalue < ε after i = O(λ1

λd
log(1/ε)) iterations. In this problem you

will prove an “accelerated” version of this bound that only requires O(
√

λ1

λd
log(1/ε)) iterations.

1. Let p be a degree q polynomial. I.e. p = c0+c1x+. . .+cqx
q. Show that, for any p with c0+c1+. . .+cq =

1 and any starting vector x(0), we can compute in O(ndq) time a vector x(q) such that:

x(q) − x∗ = p

(
I− 1

λ1
ATA

)
(x0 − x∗).

2. Prove that for q = O(
√

λ1

λd
log(1/ε)), there exists a polynomial p with coefficients c0 + c1 + . . .+ cq = 1

such that the top eigenvalue of p
(
I− 1

λ1
ATA

)
≤ ε. Hint: What does this requirement on the

coefficients tell us about the value of p(0) and p(1)?

3. Quick answer: Write down a convergence bound for your new algorithm based on the above result.

Problem 2: Non-convex Optimization

(10 pts) Consider the problem of computing the top right singular vector v1 of a matrix A ∈ Rn×d.
As mentioned, it is possible to frame this problem as an optimization problem and solve it with gradient
descent. As discussed in class, a benefit of doing so is that it makes it easier to introduce stochastic and
online methods, and possible use projection to add additional constraints.

1. Quick answer: Assume we have know some coarse upper bound λ̃ ≥ λ1. Let f(x) = λ̃ · xTx −
xTATAx. It is easy to check that v1 = arg minx∈S f(x) where S = {y : ‖y‖22 ≥ 1}. Prove that f(x)
is a convex function, but S is not a convex set.

2. Quick answer: Since S is not convex, our analysis of projected gradient descent will give no guarantees
for this problem. However, we could try using it anyway. Prove that power method is exactly equivalent
to using projected gradient descent to solve arg minx∈S f(x) with a specific learning rate η.



3. Consider an alternative approach through unconstrained optimization. Let g(x) = −xTATAx
xTx

. Now
we have that v1 ∈ arg min g(x). Prove that g is non-convex and derive an expression for its gradient
∇g(x). Show that c · vi is a statitionary point of g for any right singular vector vi and scaling c.

4. While g’s non-convexity also rules out a direct convergence bound: in theory gradient descent could
converge to any singluar vector of A, not the top one. However, we can argue this is unlikely to happen.
In particular, we claim that for any i 6= 1, vi is actually just a saddle point of g, not a local minimum.
To prove this, it suffices to show that for any such vi, and any t > 0,

There exists a perturbation tz with ‖z‖2 = 1 such that g(vi + tz) < g(vi).

Prove the above. You can assume that A has unique singular values – i.e., σ1 > σ2 > . . . , σd.

If you are interested, you can find a some work on proving gradient methods won’t get stuck at saddle
points here https://arxiv.org/abs/1703.00887.

Problem 3: Locating Points via the SVD

(15 pts) Suppose you are given all pairs distances between a set of points x1, . . . ,xn ∈ Rd. You can assume
that d� n. Formally, you are given an n× n matrix D with Di,j = ‖xi − xj‖22. You would like to recover
the location of the original points, at least up to possible rotation and translation (which do not change
pairwise distances).

Since we can only recover up to a translation, it may be easiest to assume that the points are centered
around the origin. I.e. that

∑n
i=1 xi = 0.

1. Under this assumption, describe a polynomial time algorithm for learning
∑n
i=1 ‖xi‖22 from D. Hint:

expand ‖xi − xj‖22 as (xi − xj)
T (xi − xj) and go from there.

2. Next, describe a polynomial time algorithm for learning ‖xi‖22 for each i ∈ 1, . . . , n.

3. Finally, describe an algorithm for recovering a set of points x1, . . . ,xn which realize the distances in
D. Hint: This is where you will use the SVD! It might help to know (and prove to yourself) that D
has rank ≤ d+ 2.

4. Implement your algorithm and run it on the U.S. cities dataset provided in UScities.txt. Note that
the distances in the file are unsquared Euclidean distances, so you need to square them to obtain D.
Plot your estimated city locations on a 2D plot and label the cities to make it clear how the plot is
oriented. Submit these images and your code with the problem set (in the same file, as plaintext) – I
don’t need to be able to run the code.

Problem 4: Faster Trace Estimation

(10 pts) A common task in linear algebra is to approximately compute the trace tr(A) of a matrix A that
you do not have explicit access to, but can multiply vectors by efficiently. For example, in machine learning,
the trace of the Hessian H is often useful to compute. While constructing H and then computing its trace
directly would be very expensive, the cost of computing Hx for any vector x is the same as the cost of two
gradient evaluations – do you see why? (Look up “Pearlmutter’s trick” if you don’t.)

On the midterm, we analyzed a randomized algorithm for approximating the trace of any matrix A ∈
Rn×n using a small number of matrix-vector multiplication with A. In particular, let x1, . . . ,xm be vectors
with uniformly random ±1 entries and consider the estimator t̃ = 1

m

∑m
i=1 x

T
i (Axi). We proved that:

E[t̃] = tr(A) Var[t̃] ≤ ‖A‖2F .

We concluded via Chebyshev’s that if m = O(1/ε2), then with probability 9/10,
∣∣tr(A)− t̃

∣∣ ≤ ε‖A‖F .

1. Assume A is symmetric and positive semi-definite with eiganvalues λ1 ≥ . . . ≥ λn ≥ 0. For example,
it might be a Hessian. Show that the above implies a relative error approximation:

(1− ε) tr(A) ≤ t̃ ≤ (1 + ε) tr(A).

Hint: Use the fact that ‖A‖2F =
∑n
i=1 λ

2
i and tr(A) =

∑n
i=1 λi.

https://arxiv.org/abs/1703.00887


2. Quick answer: Let k = 1/ε and let Vk be a span for the top eigenvectors of A (which are the same
as its top right singular vectors since A is symmetric PSD). Prove that:

tr(A) = tr(A−AVkV
T
k ) + tr(VT

kAVk).

Hint: You might want to use cyclic property of the trace.

3. Prove that ‖A − AVkV
T
k ‖2F ≤ ε tr(A)2 for k = 1/ε. Hint: Write both sides as sums involving

eigenvalues.

4. Argue that using m = O(1/ε) matrix vector multiplications with A, it is possible to find some estimate
z̃ such that with probability 9/10: ∣∣z̃ − tr(A−AVkV

T
k )
∣∣ ≤ ε tr(A).

5. Quick answer: Vk can be computed with roughly O(k) = O(1/ε) matrix vector multiplications
using e.g block power method.1 Conclude from the pieces above that with O(1/ε) matrix-vector
multiplications total we can find some t̃ such that with probability 9/10 (1−ε) tr(A) ≤ t̃ ≤ (1+ε) tr(A).

Note that this approach beats the naive estimator by a factor of 1/ε, which is quite a lot!

1For the sake of this problem, assume you get an exact answer in that time. It is possible to rigorously address the case
when Vk is only computed approximately, but I’m not asking you to do that here.


	Problem 1: Acceleration Through the Polynomial Lens
	Problem 2: Non-convex Optimization
	Problem 3: Locating Points via the SVD
	Problem 4: Faster Trace Estimation

