
New York University Tandon School of Engineering
Computer Science and Engineering

CS-GY 9223D: Homework 2.
Due Friday, October 9th, 2020, 11:59pm ET.

Collaboration is allowed on this problem set, but solutions must be written-up individually. Please list
collaborators for each problem separately, or write “No Collaborators” if you worked alone.

Problem 1: Johnson-Lindenstrauss Approximates Inner Products.

(10 pts) Suppose that Π is a Johnson-Lindenstrauss matrix with O
(

log(1/δ)
ϵ2

)
rows. Prove that for any x, y:

|⟨x, y⟩ − ⟨Πx,Πy⟩| ≤ ϵ(∥x∥22 + ∥y∥22)

with probability ≥ 1− δ.

Problem 2: Geometry of high-dimensional vector pairs.

(10 pts)

1. Let x and y be random unit vectors in Rd. Let Z = ⟨x, y⟩. Prove that Var[Z] = 1
d . Hint: Since doing

so will not change the distribution of ⟨x, y⟩, without loss of generality we can assume x = e1 where e1
is the first standard basis vector: [1, 0, . . . , 0].

2. Consider the following two random processes, which are illustrated with images below:

• Pick two uniformly random unit vectors x, y from the sphere in d dimension.

• Pick a uniformly random plane passing through the origin in d dimensions. Then pick two
uniformly random unit vectors w, z from the 2D sphere lying on that plane.

Are x and w identically distributed, or not? Are y and z identically distributed, or not? Are the pairs
(x, y) and (w, z) identically distributed or not? Answer all three questions and argue your reasoning.

Problem 3: Hashing around the clock.

(15 pts) In modern systems, hashing is often used to distribute data items or computational tasks to a
collection of servers. What happens when a server is added or removed from a system? Most hash functions,
including those discussed in class, are tailored to the number of servers, n, and would change completely if
n changes. This would require rehashing and moving all of our m data items, an expensive operation.

Here we consider an approach to avoid this problem. Assume we have access to a completely random
hash function that maps any value x to a real value h(x) ∈ [0, 1]. Use the hash function to map both data
items and servers randomly to [0, 1]. Each data item is stored on the first server to its right on the number
line (with wrap around – i.e. a job hashed below 1 but above all serves is assigned to the first server after
0). When a new server is added to the system, we hash it to [0, 1] and move data items accordingly.

1. Suppose we have n servers initially. When a new server is added to the system, what is the expected
number of data items that need to be relocated?

Figure 1: Each data item is stored on the server with matching color.

2. Show that, with probability > 9/10, no server “owns” more than an O(log n/n) fraction of the interval
[0, 1]. Hint: This can be proven without a concentration bound.

3. Show that if we have n servers and m items and m > n, the maximum load on any server is O(mn log n)
with probability > 9/10.

Problem 4a: Compressed classification.

(10 pts) In machine learning, the goal of many classification methods (like support vector machines) is to
separate data into classes using a separating hyperplane.

Recall that a hyperplane in Rd is defined by a unit vector a ∈ Rd (∥a∥2 = 1) and scalar c ∈ R. It contains
all h ∈ Rd such that ⟨a, h⟩ = c.

Suppose our dataset consists of n unit vectors in Rd (i.e., each data point is normalized to have norm
1). These points can be separated into two sets X,Y , with the guarantee that there exists a hyperplane
such that every point in X is on one side and every point in Y is on the other. In other words, for all
x ∈ X, ⟨a, x⟩ > c and for all y ∈ Y, ⟨a, y⟩ < c.

Furthermore, suppose that the ℓ2 distance of each point in X and Y to this separating hyperplane is at
least ϵ. When this is the case, the hyperplane is said to have “margin” ϵ.

1. Show that this margin assumption equivalently implies that for all x ∈ X, ⟨a, x⟩ > c + ϵ and for all
y ∈ Y, ⟨a, y⟩ < c− ϵ.

2. Show that if we use a Johnson-Lindenstrauss map Π to reduce our data points to O(log n/ϵ2) dimen-
sions, then the dimension reduced data can still be separated by a hyperplane with margin ϵ/4, with
high probability (say > 9/10).

Problem 5: LSH in the Wild

Note: Based on topics that will be covered in the 9/30 lecture.

(10 pts) To support its largely visual platform, Pinterest runs a massive image de-duplication operation
built on Locality Sensitive Hashing for Cosine Similarity. You can read about the actual system here. All
information and numbers below are otherwise purely hypothetical.

Pinterest has a database of N = 1 billion images. Each image in the database is pre-processed and
represented as a vector q ∈ Rd. When a new image is pinned, it is also processed to form a vector y ∈ Rd.
The goal is to check for any existing duplicates or near-duplicates to y in the database. Specifically, Pinterest
would like to flag an image q as a near-duplicate to y if cos(θ(q,y)) ≥ .98. We want to find any near-duplicate
with probability ≥ 99%.

Given this requirement, your job is to design a multi-table LSH scheme using SimHash to find candidate
near-duplicates, which can then be checked directly against y. To support this task, Pinterest has collected
data on the empirical distribution of cos(θ(q,y)) for a typical new image y. It roughly follows a bell-curve:

https://medium.com/pinterest-engineering/detecting-image-similarity-using-spark-lsh-and-tensorflow-618636afc939

Pinterest wants to consider two possible computational targets for your LSH scheme, which will determine
the speed of the de-duplication algorithm:

1. Ensure that no more than 1 million candidate near-duplicates are checked on average when a new image
is pinned. Here “checked” means directly compared against the new image for high cosine similarity.

2. Ensure that no more than 200, 000 candidates are checked on average when a new image is pinned.

Based on the data above, describe how to set parameters for your LSH scheme to minimize the space (i.e.,
number of tables) used, while achieving each of the above goals. Justify your answers, and any assumptions
you make. If you code anything up to help calculate your answer, please attach the code. As in class, you
can assume that each hash table in your scheme is large: with O(N) buckets.

(Relatively Easy) Bonus: Understanding Moment Bounds

(5 pts) Let X be a random variable uniformly distributed in the interval [0, 1]. Since we know X’s distribu-
tion exacty, we can easily check that Pr[X ≥ 7/8] = 1/8. But let’s take a look at what various concentration
inequalities would predict about this probability using less information about X.

1. Given an upper bound on Pr[X ≥ 7/8] using Markov’s inequality.

2. Given an upper bound on Pr[X ≥ 7/8] by applying Markov’s inequality to the random variables X2

(the “raw” second moment). Note that this is slightly different than using Chebyshev’s inequality,
which applies Markov to “central” second moment (X − E[X])2.

3. What happens for higher moments? Try applying Markov’s to Xq for q = 3, 4, . . . , 10. Describe what
you see. What value of q gives the tightest bound?

4. Exhibit a monotonic function g so that applying Markovs to g(X) gives as tight an upper bound on
Pr[X ≥ 7/8] as you can. Maximum points if you can get Pr[X ≥ 7/8] ≤ 1/8, which would be the best
possible.

	Problem 1: Johnson-Lindenstrauss Approximates Inner Products.
	Problem 2: Geometry of high-dimensional vector pairs.
	Problem 3: Hashing around the clock.
	Problem 4a: Compressed classification.
	Problem 5: LSH in the Wild
	(Relatively Easy) Bonus: Understanding Moment Bounds

