
New York University Tandon School of Engineering
Computer Science and Engineering

CS-GY 9223D: Homework 1.
Due Friday, September 18th, 2020, 11:59pm ET.

Collaboration is allowed on this problem set, but solutions must be written-up individually. Please list
collaborators for each problem separately, or write “No Collaborators” if you worked alone.

For just this first problem set, 10% extra credit will be given if solutions are typewritten (using LaTeX,
Markdown, or some other mathematical formatting program).

Problem 1: Short answers.

(20 pts) Do these first!

1. For any given k > 0, give an example of a random variable for which Chebyshev’s inequality is tight
up to constant factors. Specifically, for any given k, describe a random variable X with variance σ2

such that Pr[|X − EX| ≥ kσ] ≥ 1
10k2 .

2. A biased random coin comes up heads with probability 1/n for some n > 1. Show that, after n random
flips, the probability that you never see heads is ≤ .3679. Show that after n log n flips, the probability
that you never see heads is ≤ 1/n. Hint: You might need to use a little calculus! I used the Taylor
series for log(1− x).

3. In class, we saw that, when hashing m items into a hash table of size O(m2), the expected number
of collisions was < 1. In particular, this meant that with probability > 9/10) we could easily find a
“perfect” hash function into the table that had no collisions. Use (2) above to to give an alternative
proof of this fact. Specifically, to have no collisions we much have the following events all happen in
sequence: the second item inserted into the hash table doesn’t collide with an existing item, the third
item inserted doesn’t collide with an existing item, ..., the mth item inserted doesn’t collide with an
existing item. Analyze the probability these events all happen.

4. Since I was a bit informal in lecture, prove the Union Bound using... Markovs Inequality + Linearity
of Expectation. That is, prove that for any random events A1, . . . , Ak,

Pr[A1 ∪A2∪, . . . ,∪Ak] ≤
k∑

i=1

Pr[Ai].

Hint: Markov’s inequality applies to a random variable. You’re going to need to define a new random
variable in a clever way to get the proof.

Problem 2: If at first you don’t success, try again.

(10 pts) In class, we saw that, when hashing m items into a hash table of size O(m2), the expected number
of collisions was < 1. In particular, this meant we could easily find a “perfect” hash function into the table
that had no collisions.

Consider the following alternative scheme: build two tables, each of size O(m1.5) and choose a separate
random hash function (independently at random) for each table. To insert an item, hash it to one bucket in
each table and place it in the emptier bucket.

1. Show that, if we’re hashing m items, with probability 1/2, there will be no collisions in either table.
You may assume a uniformly random hash functions.

2. Modify the above scheme to use O(logm) tables. Prove that this approach yields a collision-free
hashing scheme with space O(m logm). Again, you may assume a fully random hash function.



Problem 3: Pinning down the median.

(15 pts) A very common objective in statistical analysis is to estimate the median (not the mean) of a
dataset from uniformly random samples. For example, a census might poll random citizens in a city to
request information about their income. From this sample, the goal is to estimate the city’s median income.

1. Suppose we have a list S of n numbers with median M . We sample k numbers X1, . . . , Xk uniformly at
random (with replacement) from S. Show that as long as k ≥ O

(
1
ϵ2

)
, then M̃ = median(X1, . . . , Xk)

is a good approximate median in the following sense: with probability 9/10, at least a 1
2 − ϵ fraction

of numbers in S are ≤ M̃ and at least a 1
2 − ϵ fraction of numbers in S are ≥ M̃ .

2. Extra Credit – optional! Show that it is impossible to estimate the value of the true median M
with o(n) random samples from S, even if we just want to get within a constant approximation factor,
and succeed with constant probability. For example, we can’t even guarantee that .5M ≤ M̃ ≤ 2M
with probability ≥ 2/3 unless we take nearly n samples from S.

Problem 4: Randomized methods for COVID-19 group testing.

(15 pts) One of the most important factors in controlling the COVID-19 outbreak has been testing. Unfor-
tunately, testing can be expensive and slow. A popular proposal to make it cheaper is by testing patients in
groups. In particular, the biological samples from multiple patients (e.g., multiple nose swabs) are combined
into single test tube and tested for COVID-19 all at once. If the test comes back negative, we know everyone
in the group is negative. If the test comes back positive, we do not know which patients in the group actually
had COVID-19, so further testing would be necessary. There’s a trade-off here, but it turns out that, overall,
group testing can save on the total number of tests run.

1. Consider the following deterministic “two-level” testing scheme. We divide a population of n individuals
to be tested into C arbitrary groups. We then test each of these groups in aggregate. For any group
that comes back positive, we retest all members of the group individually. Show that there is a choice
for C such that, if k individuals in the population have COVID-19, we can find all of those individuals
with ≤ 2

√
nk tests. You can assume k is known in advance (often it can be estimated accurately from

the positive rate of prior tests). This is already an improvement on the naive n tests when k < 25% ·n.

2. We can use randomness to do even better. Consider the following scheme: Collect q = O(log n) nose
swabs from each individual (I know... not pleasant). Then, repeat the following process q times:
randomly partition our set of n individuals into C groups, and test each group in aggregate. Once
this process is complete, report that an individual “has COVID” if the group they were part of tested
positive all q times. Report that an individual “is clear” if any of the groups they were part of tested
negative. Show that for C = O(k), with probability 9/10, this scheme finds all truly positive patients
and reports no false positives. Thus, we only require O(k log n) tests!

3. (Hard) Extra Credit – optional. Show that no scheme can use o(k log(n/k)) tests and succeed with
probability > 2/3. So, for small k, the approach above is essentially optimal up to constant factors!

4. Optional qeustions to think about for a possible final project or research project:

• Clearly administering O(log n) nasal swabs to every individual is not ideal, even if it reduces the
total number of tests that need to be run in a lab. Are there different schemes which trade-off
between total number of tests, number of swabs that need to be run up-front, and number of
patient revisits to a testing center (as required e.g., in part 1)?

• Could you improve the above method if you had some prior knowledge on the probability a patient
would test positive (e.g., from a survey on if they had symptoms, if they had been exposed to
someone with COVID, if they traveled recently, etc.)? Can you surpass the lower bound? I have
some ideas on this, and would be happy to point students to some relevant papers.

• What if instead of finding all individuals, I just wanted to estimate the COVID-positive rate in
my population. How many tests are needed, and can you reduce that number with clever group
testing schemes?
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