
CS-GY 9223 I: Lecture 9
Low-rank approximation and singular value
decomposition

NYU Tandon School of Engineering, Prof. Christopher Musco

1



spectral methods

Return to data compression:

2



spectral methods

Return to data compression:

3



spectral methods

Main difference from randomized methods:

In this section, we will discuss data dependent data
transformations. Johnson-Lindenstrauss, MinHash, SimHash
were all data oblivious.

4



spectral methods

Advantages of data independent methods:

Advantages of data dependent methods:

5



low-rank data

Suppose x1, . . . , xn ∈ Rd lie on a low-dimensional subspace S
through the origin. I.e. our data set is rank k for k < d.

Let v1, . . . , vk be orthogonal unit vectors spanning S.

For all i, we can write:

xi = ci,1v1 + . . .+ ci,kvk. 6



low-rank data

What are c1, . . . , cn?

7



low-rank data

Lots of information preserved:

• ∥xi − xj∥2 = ∥ci − cj∥2 for all i, j.
• xTi xj = cTi cj for all i, j.
• Norms preserved, linear separability preserved,
min ∥Xy− b∥ = min ∥Cz− b∥, etc., etc.

8



low-rank data

Formally, C = XVT:

X = CVT ⇒ XV = CVTV

Since V’s columns are an orthonormal basis, VTV = I.

So X = XVVT.
9



projection matrices

VVT is a symmetric projection matrix.

When all data points already lie in the subspace spanned by
V’s columns, projection doesn’t do anything. So X = XVVT.

10



low-rank approximation

When X’s rows lie close to a k dimensional subspace, we can
still approximate

X ≈ XVVT.

XVVT is a low-rank approximation for X.

For a given subspace V spanned by the columns in V,

XVVT = argmin
C

∥X− CVT∥2F =
∑
i,j

(Xi,j − (CVT)i,j)2.

11



low-rank approximation

∥xi − xj∥2 ≈ ∥(XVVT)i − (XVVT)j∥2 = ∥(XVT)i − (XVT)j∥2

XV can be used as a compressed version of data matrix X. 12



why is data approximately low-rank?

13



dual view

Rows of X (data points) are approximately spanned by k
vectors. Columns of X (data features) are approximately
spanned by k vectors.

14



row redundancy

If a data set only had k unique data points, it would be exactly
rank k. If it has k “clusters” of data points (e.g. the 10 digits)
it’s often very close to rank k.

15



column redundancy

Colinearity/correlation of data features leads to a low-rank
data matrix.

16



other reasons for low-rank structure

When encoded as a matrix, which image has lower
approximate rank?

17



applications of low-rank approximation

• XV · VT takes O(k(n+ d)) space to store instead of O(nd).
• Regression problems involving XV · VT can be solved in
O(nk2) instead of O(nd2) time.

• XV can be used for visualization when k = 2, 3.
• We will discuss many more next class.

18



applications of low-rank approximation

“Genes Mirror Geography Within Europe” – Nature, 2008.

Each data vector xi contains genetic information for one person in
Europe. Set k = 2 and plot (XV)i for each i on a 2-d plane. Color
points by what country they are from.

19



computational question

Given a subspace V spanned by the k columns in V,

∥X− XVVT∥2F = min
C

∥X− CVT∥2F

We want to find the best V ∈ Rd×k:

min
orthonormal V∈Rd×k

∥X− XVVT∥2F (1)

Note that ∥X− XVVT∥2F = ∥X∥2F − ∥XVVT∥2F for all orthonormal V
(since VVT is a projection). Equivalent form:

max
orthonormal V∈Rd×k

∥XVVT∥2F = ∥XV∥2F (2)

20



rank 1 case

If k = 1, want to find a single vector v1 which maximizes:

∥Xv1vT1∥2F = ∥Xv1∥2F = ∥Xv1∥22 = vT1XTXv1.

Choose v1 to be the top eigenvector of XTX.

What about higher k?

21



singular value decomposition

One-stop shop for computing optimal low-rank
approximations.

Any matrix X can be written:

Where UTU = I, VTV = I, and σ1 ≥ σ2 ≥ . . . σd ≥ 0.
22



connection to eigendecomposition

• U contains the orthonormal eigenvectors of XXT.
• V contains the orthonormal eigenvectors of XTX.
• σ2i = λi(XXT) = λi(XTX)

This can be checked directly:

23



singular value decomposition

Can read off optimal low-rank approximations from the SVD:

Xk = UkUTkX = XVkVTk.

Vk = argmin
orthonormal V∈Rd×k

∥X− XVVT∥2F = argmax
orthonormal V∈Rd×k

∥XVVT∥2F

24



singular value decomposition

• Vk’s columns are called the “top right singular vectors of X”
• Uk’s columns are called the “top left singular vectors of X”
• σ1, . . . , σk are the “top singular values”. σ1, . . . , σd are
sometimes called the “spectrum of X” (although this is
more typically used to refer to eigenvalues).

Connection to Principal Component Analysis:

• Let X̄ = X− 1µT where µ = 1
n
∑n

i=1 xi. I.e. X̄ is obtained by
mean centering X’s rows.

• Let ŪΣ̄V̄T be the SVD of X̄. Ū’s first columns are the “top
principal components” of X. V’s first columns are the
“weight vectors” for these principal components.

25



useful observations

Observation 1: The optimal compression XVk has orthogonal
columns.

26



useful observations

Observation 2: The optimal low-rank approximation error
Ek = ∥X− UkUTkX∥2F = ∥X− XVkVTk∥2F can be written:

Ek =
d∑

i=k+1
σ2i .

27



spectral plots

Observation 2: The optimal low-rank approximation error
Ek = ∥X− UkUTkX∥2F = ∥X− XVkVTk∥2F can be written:

Ek =
d∑

i=k+1
σ2i .

Can immediately get a sense of “how low-rank” a matrix is
from it’s spectrum:

28



spectral plots

Observation 2: The optimal low-rank approximation error
Ek = ∥X− UkUTkX∥2F = ∥X− XVkVTk∥2F can be written:

Ek =
d∑

i=k+1
σ2i .

Can immediately get a sense of “how low-rank” a matrix is
from it’s spectrum:

29



spectral plots

Observation 2: The optimal low-rank approximation error
Ek = ∥X− UkUTkX∥2F = ∥X− XVkVTk∥2F can be written:

Ek =
d∑

i=k+1
σ2i .

Can immediately get a sense of “how low-rank” a matrix is
from it’s spectrum:

30



computing the svd

Suffices to compute V. Then UΣ = XV.

• Compute XTX.
• Find eigendecomposition VΛVT = XTX.
• Compute L = XV. Set σi = ∥Li∥2 and Ui = Li/∥Li∥2.

Total runtime ≈

31



computing the svd (faster)

• Use an iterative algorithm.
• Compute approximate solution.
• Only compute top k singular vectors/values. Runtime will
depend on k. When k = d we can’t do any better than
classical algorithms based on eigendecomposition.

What we won’t discuss today: sketching methods and
stochastic methods (which are faster in some settings).

32



power method

Today: What about when k = 1?

Goal: Find some z ≈ v1.

Input: X ∈ Rn×d with SVD UΣV.

Power method:

• Choose z(0) randomly. E.g. z0 ∼ N (0, 1).
• For i = 1, . . . , T

• z(i) = XT · (Xz(i−1))
• ni = ∥z(i)∥2
• z(i) = z(i)/ni

Return zT
33



power method intuition

Write z(0) in the right singular vector basis:

z(0) = c1v1 + c2v2 + . . .+ cdvd

Update step: z(i) = XT · (Xz(i−1)) = VΣ2VTz(i−1) (then normalize)

Claim:

z(1) = 1
n1

[
c1 · σ21v1 + c2 · σ22v2 + . . .+ cd · σ2dvd

]

34



power method intuition

Claim:

z(T) = 1∏T
i=1 ni

[
c1 · σ2T1 v1 + c2 · σ2T2 v2 + . . .+ cd · σ2Td vd

]

35



power method formal convergence

Theorem (Basis Power Method Convergence)
Let γ = σ1−σ2

σ1
be parameter capturing the “gap” between the

first and second largest singular values. If Power Method is
initialized with a random Gaussian vector then, with high
probability, after T = O

(
log d/ϵ

γ

)
steps, we have:

∥v1 − z(T)∥2 ≤ ϵ.

Total runtime:

36



power method formal convergence

First observation: For all i

O(1/d2) ≤ ci ≤ O(d)

with probability 1
d . This is a very loose bound, but it’s all that

we will need. Prove at home.

Corollary:

max
j

cj
c1

≤ O(d3).

37



power method formal convergence

z(T) = 1∏T
i=1 ni

c1 · σ2T1 v1 +
1∏T
i=1 ni

c2 · σ2T2 v2 + . . .+
1∏T
i=1 ni

cd · σ2Td vd

38



power method formal convergence

Since z(T) is a unit vector,
∑d

i=1 α
2
i = 1.

• α1 ≤ 1.
• α2j ≤ (ϵ/2d)2 for j ≥ 2.
• α21 ≥ 1− d · (ϵ/2d)2 =⇒ α1 ≥ 1− ϵ/2.

∥v1 − z(T)∥2 ≤

39



power method – no gap dependence

Theorem (Basis Power Method Convergence)
If Power Method is initialized with a random Gaussian vector
then, with high probability, after T = O

(
log d/ϵ

ϵ

)
steps, we

obtain a z satisfying:

∥X− XzzT∥2F ≤ (1+ ϵ)∥X− Xv1vT1∥2F

40



krylov subspace methods

vs.

Lanczos method, Arnoldi method, etc. require T = O
(
log d/ϵ√

ϵ

)
steps for the same guarantee.

41



generalizations to large k

• Block Power Method aka Simultaneous Iteration aka
Subspace Iteration aka Orthogonal Iteration

• Block Krylov methods

Runtime: O
(
ndk · log d/ϵ√

ϵ

)
to obtain a nearly optimal low-rank approximation.

42


