CS-GY 9223 I: Lecture 9
Low-rank approximation and singular value
decomposition

NYU Tandon School of Engineering, Prof. Christopher Musco



SPECTRAL METHODS
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SPECTRAL METHODS

Main difference from randomized methods:
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In this section, we will discuss data dependent data
transformations. Johnson-Lindenstrauss, MinHash, SimHash
were all data oblivious.




SPECTRAL METHODS

Advantages of data independent methods:

Advantages of data dependent methods:



LOW-RANK DATA

Suppose X1, ...,X, € R? lie on a low-dimensional subspace S
through the origin. l.e. our data set is for k < d.

Let vq,...,V, be orthogonal unit vectors spanning S.

vV For all i, we can write:

DLVZ Xi = C,'71V1 + ...+ C,'J?Vh,. 6



LOW-RANK DATA
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LOW-RANK DATA

Lots of information preserved:

. ||X,‘ = Xj||2 =S HC,‘ = Cj||2 for all I,j

Ty — cTe -
X;X; = ¢;c; foralli,j.

- Norms preserved, linear separability preserved,
min ||[Xy — b|| = min ||Cz — b]|, etc,, etc.




LOW-RANK DATA
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Formally, C = XV
X=CV = Xxv=cVv'v

Since V's columns are an orthonormal basis, VIV = 1.



PROJECTION MATRICES

W/ is a symmetric projection matrix.

NG ” VT - %7

When all data points already lie in the subspace spanned by
V's columns, projection doesn’t do anything. So X = XVV'.
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LOW-RANK APPROXIMATION

When X's rows lie close to a k dimensional subspace, we can
still approximate

X ~ XW/'.

XVWVT is a low-rank approximation for X.

For a given subspace V spanned by the columns inV,

Xw' = argcmin X —CVT| = Z(Xi,j — (V7))
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LOW-RANK APPROXIMATION

Xy

X S (xwv),

0w,
° (XVVT), o X,

1Xi = Xi[l2 & [[(XVVT); — (XWT)j[2 = [[(XVT); — (XVT)j]]2

XV can be used as a compressed version of data matrix X. 12



WHY IS DATA APPROXIMATELY LOW-RANK?
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DUAL VIEW

Rows of X (data points) are approximately spanned by k
vectors. Columns of X (data features) are approximately

spanned by k vectors.
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ROW REDUNDANCY

If a data set only had k unique data points, it would be exactly
rank k. If it has k “clusters” of data points (e.g. the 10 digits)
it's often very close to rank k.

projections onto 15
784 dimensional vectors  dimensional space  orthonormal basis vy, ...,V4s

NJ6]~[0]
SESE
SN e

S0l

&

15



COLUMN REDUNDANCY

Colinearity/correlation of data features leads to a low-rank

data matrix.
bedrooms| bathrooms| sq.ft.|floors| |i
home 1 2 2 1800 | 2
home 2 4 2.5 2700 [ 1
home n 5 35 [3600| 3




OTHER REASONS FOR LOW-RANK STRU

When encoded as a matrix, which image has lower
approximate rank?




APPLICATIONS OF LOW-RANK APPROXIMATION

d k
— —
X ) | XV

- XV - VT takes O(R(n + d)) space to store instead of O(nd).

- Regression problems involving XV - VT can be solved in
O(nk?) instead of O(nd?) time.

- XV can be used for visualization when k = 2, 3.

- We will discuss many more next class.



APPLICATIONS OF LOW-RANK APPROXIMATION

“Genes Mirror Geography Within Europe” — Nature, 2008.

Each data vector x; contains genetic information for one person in
Europe. Set k =2 and plot (XV); for each i on a 2-d plane. Color
points by what country they are from.
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COMPUTATIONAL QUESTION

Given a subspace V spanned by the k columnsinV,

X=XV = min X — cV7|

We want to find the best V € Rk

min [X — XWVT||2 (1)

orthonormal VERdxk

Note that ||[X — XVWVT||Z = ||X||2 — |[XVVT||2 for all orthonormal V
(since W/ is a projection). Equivalent form:

max XTI = V|2 @

orthonormal VeRdxk
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RANK 1 CASE

If k =1, want to find a single vector v; which maximizes:
”XV1V1 HF ||XV1”F = ||XVWH2 = V1XTXV1

Choose v, to be the top eigenvector of X'X.

What about higher k?
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SINGULAR VALUE DECOMPOSITION

Any matrix X can be written:

d left singular vectors  singular values right singular vectors

0,
0,

X = v b3 VT

Og-q

n Oy

WhereUTU=1,VIV=1,and o1 > 0, > ...04 > 0.
2



CONNECTION TO EIGENDECOMPOSITION

- U contains the orthonormal eigenvectors of XX'.
- V contains the orthonormal eigenvectors of X'X.
- o2 = N(XXT) = N(XTX)

This can be checked directly:
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SINGULAR VALUE DECOMPOSITION

Can read off optimal low-rank approximations from the SVD:

d left singular vectors  singular values right singular vectors

'l

0,
Oy

Xi | ={Uk 2

Xp = URUIX = XV,VT,
Vo= argmin  |X=XW'||2=  argmax | XW|}?

orthonormal VERdxk orthonormal VERYxk
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SINGULAR VALUE DECOMPOSITION

- Vi's columns are called the “top right singular vectors of X”

- U's columns are called the “top left singular vectors of X"

- 01,...,0p are the “top singular values”. o1, ...,04 are
sometimes called the “spectrum of X" (although this is
more typically used to refer to eigenvalues).

Connection to Principal Component Analysis:

- Let X =X—1p” where p =137 x;. l.e. X is obtained by
mean centering X's rows.

- Let UZVT be the SVD of X. U’s first columns are the “top
principal components” of X. V's first columns are the
“weight vectors” for these principal components.
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USEFUL OBSERVATIONS

d left singular vectors  singular values right singular vectors

0, va

Ok

X = [ Uy z,

Observation 1: The optimal compression XV, has orthogonal
columns.
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USEFUL OBSERVATIONS

ctors singular values
< v
o «

Observation 2: The optimal low-rank approximation error
Er = ||X — ULUX||2 = [|X — XV V]||# can be written:

d
E/?: Z 0'1-2.

I=R+1
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SPECTRAL PLOTS

Observation 2: The optimal low-rank approximation error
Er = ||X — ULUX||2 = [|X — XV V]||# can be written:

d
Ek: Z 0,2.

I=R+1
Can immediately get a sense of “how low-rank” a matrix is
from it's spectrum:

784 dimensional vectors

E singular

I |
-
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SPECTRAL PLOTS

Observation 2: The optimal low-rank approximation error
Er = |X — URULX||2 = ||X — XV,V}||# can be written:

d
Er = Z 0,»2.

i=R+1
Can immediately get a sense of “how low-rank” a matrix is
from it's spectrum:

784 dimensional vectors

singular
valueo, , ——— —o—
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SPECTRAL PLOTS

Observation 2: The optimal low-rank approximation error
Er = |X — URULX||2 = ||X — XV,V}||# can be written:

d
E, = Z 0,»2.

i=k+1
Can immediately get a sense of “how low-rank” a matrix is
from it's spectrum:

singular |
value o,
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COMPUTING THE SVD

Suffices to compute V. Then UX = XV.

- Compute X'X.
- Find eigendecomposition VAV™ = X'X.
- Compute L = XV. Set g; = ||Li||> and U; = L;/||Lj||.

Total runtime =~
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COMPUTING THE SVD (FASTER)

- Use an iterative algorithm.

- Compute approximate solution.

- Only compute top k singular vectors/values. Runtime will
depend on k. When k = d we can't do any better than
classical algorithms based on eigendecomposition.

What we won’t discuss today: sketching methods and
stochastic methods (which are faster in some settings).
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POWER METHOD

Today: What about when k =1?
Goal: Find some z ~ v,.

Input: X € R™*? with SVD UZV.

Power method:

- Choose z(9 randomly. E.g. zg ~ N(0,1).

- Fori=1,...,T
- 20 = X (xz(-M)
- nj = 1205
- 200 = 200/,

Return zr
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POWER METHOD INTUITION

Write z(®) in the right singular vector basis:

z(® = C1V1 + GV + ... + CgVy

Update step: z() = X7 . (Xz(0=") = vx2v7z(~") (then normalize)

Claim:

NOP

—rT[C1-(72V1—|—C2-O‘§V2+...+Cd-ﬁévd}
]
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POWER METHOD INTUITION

Claim:

7 1

= T
[Ii=ini

2(

[C1 - (Tf"Vq +Cy- UETV2 +...+Cq- (Ti"Vd}
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POWER METHOD FORMAL CONVERGENCE

Theorem (Basis Power Method Convergence)

Let v = ‘”a;fz be parameter capturing the “gap” between the
first and second largest singular values. If Power Method is
initialized with a random Gaussian vector then, with high
probability, after T= 0 (%) steps, we have:

vy — 2|, < e.
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POWER METHOD FORMAL CONVERGENCE

First observation: For all /
0(1/d?) < ¢; < 0(d)

with probability %. This is a very loose bound, but it’s all that
we will need. Prove at home.

Corollary:

C.
max -2 < O(d®).
;G

37



POWER METHOD FORMAL CONVERGENCE

T _ T;C
[Ti=i ni

'7T i
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POWER METHOD FORMAL CONVERGENCE

Since 27 is a unit vector, 2%, a? = 1.

IN

1.
< (¢/2d)? forj > 2.
1—

o
o2 <
/
o? d-(e/2d)? = a1 > 1—¢/2.

v

vy = 2D|; <
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POWER METHOD — NO GAP DEPENDENCE

Theorem (Basis Power Method Convergence)

If Power Method is initialized with a random Gaussian vector
then, with high probability, after T= O (%) steps, we
obtain a z satisfying:

X = XezT|[2 < (1 + &)X — Xvy] |2
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KRYLOV SUBSPACE METHODS

0
o o1 0z 03 o4 05 06 o7 08 08

Lanczos method, Arnoldi method, etc. require T= 0 (lof/dg/e>
steps for the same guarantee.
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GENERALIZATIONS TO LARGE R

- Block Power Method aka Simultaneous Iteration aka
Subspace Iteration aka Orthogonal Iteration

- Block Krylov methods

Runtime: O (ndl?- lO%/Cé/E)

to obtain a nearly optimal low-rank approximation.
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