CS-GY 9223 I: Lecture 8
Coordinate decent and non-convex models.

NYU Tandon School of Engineering, Prof. Christopher Musco



STOCHASTIC METHODS

Main idea: Trade slower convergence (more iterations) for
cheaper iterations.

Stochastic Coordinate Descent: Only compute a single random
entry of Vf(x) on each iteration:

v = | v = |7
25 () 0

Update: x(1) «— x(O 4 5V f(x®).



COORDINATE DESCENT

When x has d parameters, computing V,f(x) often costs just a
1/d fraction of what it costs to compute Vf{(x)

Example: f(x) = ||Ax — b||3 for Ac R x ¢ RY b € R".

- Vf(x) = 2ATAx — 2ATb.
© Vif(x) = 2 [ATAx]. — 2 [ATb] .

- AX(HD) — A (x(t) +c-e) O(n) time
- 2 [AT (A — b)]. 0(n) time
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STOCHASTIC COORDINATE DESCENT

Stochastic Coordinate Descent:

- Choose number of steps T and step size 7.
- Fort=1,...,T:

- Pickrandomje1,...,d.
< x) — x () nvjf(x(‘))
- Return X = 17 xO.



STOCHASTIC COORDINATE DESCENT

Theorem (Stochastic Coordinate Descent convergence)
Given a G-Lipschitz function f with minimizer x* and initial
point XM with |x(V — x*||; < R, SCD with step size n = 25
satisfies the guarantee:

E[fR) — f(x)] < —2

E
Q.



IMPORTANCE SAMPLING

Often it doesn’t make sense to sample i uniformly at random:

(00 1 0 0 O] [ 10 ]
00 2 00O 42
00 -1 0 0 O =
A b— M
0 0 =50 00 =5
00 3 000 34
00 -2 0 0 0] |22
Select indices i proportional to ||a;|3:
a3 _ lail3

Pr[select index i to update] = — = T
S llail  lIAllE

Let’s analyze this approach.



STOCHASTIC COORDINATE DESCENT

Specialization of SCD to ||Ax — b||3:

Randomized Coordinate Descent (Strohmer, Vershynin 2007 /
Leventhal, Lewis 2018)

- For iterate x( let r() be the residual:
r® = ax(®) —p

- x(# = x(® — ce;. Here cis a scalar and e; is a standard
basis vector.

- 1) = 1O — ca;. Here a; is the /™" column of A.



STOCHASTIC COORDINATE DESCENT

What choice for ¢ minimizes ||r(t+7)|3?



STOCHASTIC COORDINATE DESCENT

Specialization of SCD to ||Ax — b||3:

Randomized Coordinate Descent

- Choose number of steps T.
- Letx(M =0and rM = b,
- Fort=1,...,T:
- Pick randomj € 1,...,d. Indexj is selected with
probability proportional to |a;||3/||Al
- Setc =alr0/||aj|3
- X)) — () _ ce;
() — ) — ca;

- Return x(D.



CONVERGENCE

Claim

1

E[r™V)3 = |Ir®)3 R
F

IATF3
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CONVERGENCE

Any residual r can be written asr = r* +r where r* = Ax* — b
and T = A(x' — x*). Note that ATr* =0 and ¥ L r*.

Claim
_ _ 1 .
EH"(HUH% = Hr(t)H% - WHATV(UH%
F
_ Mo (ATA)
> [0 — 2minAA) 2

IAII?

"



CONVERGENCE

Theorem (Randomized Coordinate Descent convergence)

After T steps of RCD with importance sampling run on
f(x) = ||Ax — b||3, we have:

)\min (ATA)

EIx) 0] < (1= 228

)Uu@>ﬂﬁn

HAIIF
. (ATA)

Corollary: After T = O(5; log 1) we obtain error €||b]|3.
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COMPARISON

d
Al = tr(ATA) = Y Ai(ATA)
=1

Amax(ATA) < [|A[[F < d - Amax(ATA)

For solving ||Ax — b]|3,

(# GD lIterations) < (# RCD lIterations) < d - (# GD lIterations)
But RCD iterations are cheaper by a factor of d.
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COMPARISON

When does ||A[|Z = tr(ATA) = d - Amax(ATA)?

When does ||A[|Z = tr(ATA) = 1 Amax(ATA)?
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COMPARISON

Roughly:

Stochastic Gradient Descent performs well when data points
(rows) are repetitive.

Stochastic Coordinate Descent performs well when data
features (columns) are repetitive.
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NON-CONVEX OPTIMIZATION



VISUALIZATION

Given f(x) which is potentially non-convex, find X such that

fX) < f(x*) +e.

We understand very little about optimizing non-convex
functions in comparison to convex functions, but not nothing.
In many cases, we're still figuring out the right questions to ask.



STATIONARY POINTS

Definition (Stationary point)
For a differentiable function f, a stationary point is any x with:

Vf(x) =0

local/global minima - local/global maxima - saddle points



STATIONARY POINTS

Reasonable goal: Find an approximate stationary point X with

[VAX)[l2 < e.



SMOOTHNESS FOR NON-CONVEX FUNTIONS

Definition

A differentiable (potentially non-convex) function fis g8
smooth if for all x,y,

IVF(x) = VAY)ll2 < Blx = yll2

Corollary: For all x,y

0)7(x )~ [0~ Fl| < 2 1x — v



GRADIENT DESCENT FINDS APPROXIMATE STATIONARY POINTS

Theorem

If Gradient Descent is run with step size n = % on a

differentiable function f with global minimum x* then after
1 * . 5 o

= O(w) we will find an e-approximate stationary

point X.
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GRADIENT DESCENT FINDS APPROXIMATE STATIONARY POINTS
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QUESTIONS IN NON-CONVEX OPTIMIZATION

If GD can find a stationary point and that seems to work for
your problem, are there algorithms which find a stationary
point faster using preconditioning, acceleration, stocastic
methods, etc.?
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QUESTIONS IN NON-CONVEX OPTIMIZATION

What if my function only has global minima and stationary
points? Randomized methods (SGD, perturbed gradient

methods, etc.) can “escape” stationary points under some
minor assumptions.

o TAT
Example: min, =% £ A%

- Global minimum: Top eigenvector of ATA (i.e., top principal
component of A).

- Stationary points: All other eigenvectors of A.

Useful for lots of other matrix factorization problems beyond
vanilla PCA.
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QUESTIONS IN NON-CONVEX OPTIMIZATION

- Can random or careful initialization lead to a good
minima?

- Can we escape “shallow” local minima.

- Is a global minima even needed?

2%



