
CS-GY 9223 I: Lecture 8
Coordinate decent and non-convex models.

NYU Tandon School of Engineering, Prof. Christopher Musco
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stochastic methods

Main idea: Trade slower convergence (more iterations) for
cheaper iterations.

Stochastic Coordinate Descent: Only compute a single random
entry of ∇f(x) on each iteration:

∇f(x) =


∂f
∂x1 (x)
∂f
∂x2 (x)...
∂f
∂xd (x)

 ∇if(x) =


0

∂f
∂xi (x)...
0


Update: x(t+1) ← x(t) + η∇if(x(t)).
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coordinate descent

When x has d parameters, computing ∇if(x) often costs just a
1/d fraction of what it costs to compute ∇f(x)

Example: f(x) = ∥Ax− b∥22 for A ∈ Rn×d, x ∈ Rd,b ∈ Rn.

• ∇f(x) = 2ATAx− 2ATb.
• ∇if(x) = 2

[
ATAx

]
i − 2

[
ATb

]
i.

• Ax(t+1) = A
(
x(t) + c · ei

)
O(n) time

• 2
[
AT

(
Ax(t+1) − b

)]
i O(n) time
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stochastic coordinate descent

Stochastic Coordinate Descent:

• Choose number of steps T and step size η.
• For t = 1, . . . , T:

• Pick random j ∈ 1, . . . ,d.
• x(t+1) = x(t) − η∇jf(x(i))

• Return x̂ = 1
T
∑T

t=1 x(t).
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stochastic coordinate descent

Theorem (Stochastic Coordinate Descent convergence)
Given a G-Lipschitz function f with minimizer x∗ and initial
point x(1) with ∥x(1) − x∗∥2 ≤ R, SCD with step size η = 1

Rd
satisfies the guarantee:

E[f(x̂)− f(x∗)] ≤ 2GR√
T/d

How can we improve on this?
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importance sampling

Often it doesn’t make sense to sample i uniformly at random:

A =



0 0 1 0 0 0
0 0 2 0 0 0
0 0 −1 0 0 0
0 0 −.5 0 0 0
0 0 3 0 0 0
0 0 −2 0 0 0


b =



10
42
−11
−51
34
−22


Select indices i proportional to ∥ai∥22:

Pr[select index i to update] = ∥ai∥22∑d
j=1 ∥aj∥22

=
∥ai∥22
∥A∥2F

Let’s analyze this approach.
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stochastic coordinate descent

Specialization of SCD to ∥Ax− b∥22:

Randomized Coordinate Descent (Strohmer, Vershynin 2007 /
Leventhal, Lewis 2018)

• For iterate x(t), let r(t) be the residual:

r(t) = Ax(t) − b

• x(t+1) = x(t) − cej. Here c is a scalar and ej is a standard
basis vector.

• r(t+1) = r(t) − caj. Here aj is the ith column of A.
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stochastic coordinate descent

What choice for c minimizes ∥r(t+1)∥22?
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stochastic coordinate descent

Specialization of SCD to ∥Ax− b∥22:

Randomized Coordinate Descent

• Choose number of steps T.
• Let x(1) = 0 and r(1) = b.
• For t = 1, . . . , T:

• Pick random j ∈ 1, . . . ,d. Index j is selected with
probability proportional to ∥aj∥22/∥A∥2F.

• Set c = aTj r(t)/∥aj∥22
• x(t+1) = x(t) − cej
• r(t+1) = r(t) − caj

• Return x(T).
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convergence

Claim

E∥r(t+1)∥22 = ∥r(t)∥22 −
1
∥A∥2F

∥ATr(t)∥22
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convergence

Any residual r can be written as r = r∗ + r̄ where r∗ = Ax∗ − b
and r̄ = A(xt − x∗). Note that ATr∗ = 0 and r̄ ⊥ r∗.

Claim

E∥r̄(t+1)∥22 = ∥r̄(t)∥22 −
1
∥A∥2F

∥ATr̄(t)∥22

≥ ∥r̄(t)∥22 −
λmin(ATA)
∥A∥2F

∥r̄(t)∥22
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convergence

Theorem (Randomized Coordinate Descent convergence)
After T steps of RCD with importance sampling run on
f(x) = ∥Ax− b∥22, we have:

E[f(x(t))− f(x∗)] ≤
(
1− λmin(ATA)

∥A∥2F

)
[f(x(0))− f(x∗)]

Corollary: After T = O( ∥A∥2F
λmin(ATA)

log 1
ϵ) we obtain error ϵ∥b∥22.

Is this more or less iterations than the T = O(λmax(A
TA)

λmin(ATA)
log 1

ϵ)

required for gradient descent to converge? 12



comparison

∥A∥2F = tr(ATA) =
d∑
i=1

λi(ATA)

λmax(ATA) ≤ ∥A∥2F ≤ d · λmax(ATA)

For solving ∥Ax− b∥22,

(# GD Iterations) ≤ (# RCD Iterations) ≤ d · (# GD Iterations)

But RCD iterations are cheaper by a factor of d.
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comparison

When does ∥A∥2F = tr(ATA) = d · λmax(ATA)?

When does ∥A∥2F = tr(ATA) = 1 · λmax(ATA)?
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comparison

Roughly:

Stochastic Gradient Descent performs well when data points
(rows) are repetitive.

Stochastic Coordinate Descent performs well when data
features (columns) are repetitive.
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non-convex optimization
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visualization

Given f(x) which is potentially non-convex, find x̂ such that
f(x̂) ≤ f(x∗) + ϵ.

We understand very little about optimizing non-convex
functions in comparison to convex functions, but not nothing.
In many cases, we’re still figuring out the right questions to ask.
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stationary points

Definition (Stationary point)
For a differentiable function f, a stationary point is any x with:

∇f(x) = 0

local/global minima - local/global maxima - saddle points
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stationary points

Reasonable goal: Find an approximate stationary point x̂ with

∥∇f(x̂)∥2 ≤ ϵ.
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smoothness for non-convex funtions

Definition
A differentiable (potentially non-convex) function f is β
smooth if for all x, y,

∥∇f(x)−∇f(y)∥2 ≤ β∥x− y∥2

Corollary: For all x, y∣∣∇f(x)T(x− y)− [f(x)− f(y)]
∣∣ ≤ β

2 ∥x− y∥
2
2.
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gradient descent finds approximate stationary points

Theorem
If Gradient Descent is run with step size η = 1

β on a
differentiable function f with global minimum x∗ then after
T = O(β[f(x

(1))−f(x∗)]
ϵ ) we will find an ϵ-approximate stationary

point x̂.
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gradient descent finds approximate stationary points

Theorem
If Gradient Descent is run with step size η = 1

β on a
differentiable function f with global minimum x∗ then after
T = O(β[f(x

(1))−f(x∗)]
ϵ ) we will find an ϵ-approximate stationary

point x̂.
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questions in non-convex optimization

If GD can find a stationary point and that seems to work for
your problem, are there algorithms which find a stationary
point faster using preconditioning, acceleration, stocastic
methods, etc.?
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questions in non-convex optimization

What if my function only has global minima and stationary
points? Randomized methods (SGD, perturbed gradient
methods, etc.) can “escape” stationary points under some
minor assumptions.

Example: minx −xTATAx
xTx

• Global minimum: Top eigenvector of ATA (i.e., top principal
component of A).

• Stationary points: All other eigenvectors of A.

Useful for lots of other matrix factorization problems beyond
vanilla PCA.
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questions in non-convex optimization

• Can random or careful initialization lead to a good
minima?

• Can we escape “shallow” local minima.
• Is a global minima even needed?
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