
CS-GY 9223 I: Lecture 7
Preconditioning, acceleration, coordinate
decent, etc.

NYU Tandon School of Engineering, Prof. Christopher Musco

1



smooth and strongly convex

Recall from last lecture: a convex function f is β-smooth and
α-strongly convex if, for all x, y ∈ Rd,

α

2 ∥x− y∥
2
2 ≤ ∇f(x)T(x− y)− [f(x)− f(y)] ≤ β

2 ∥x− y∥
2
2.

2



convergence guarantee

Theorem (GD for β-smooth, α-strongly convex.)
Let f be a β-smooth and α-strongly convex function. If we run
GD for T steps (with step size η = 1

β ) we have:

∥x(t) − x∗∥22 ≤ e
−(t−1)α

β ∥x(1) − x∗∥22

κ = β
α is called the “condition number” of f.

Corollary: If T = O (κ log(1/ϵ)) we have:

∥x(T) − x∗∥2 ≤ ϵ∥x(1) − x∗∥2.

3



from last class

Let f(x) = ∥Dx− b∥22 where D is a diagonal matrix.

• β = 2max(D)2

• α = 2min(D)2

Gradient descent on f:

• x(1) = 0
• For t = 1, . . . , T

• x(t+1) = x(t) − 1
β (2D(Dx− b))

4



in-class exercise

Theorem (GD for β-smooth, α-strongly convex.)
Let f be a β-smooth and α-strongly convex function. If we run
GD for T steps (with step size η = 1

β ) we have:

∥x(t) − x∗∥2 ≤ e−t/κ∥x(1) − x∗∥2

Prove for f(x) = ∥Dx− b∥22. You may assume that min(D)2 > 0.

5



in-class exercise

Alternate view:

(x(t+1) − x∗) =
(
I− 2

β
D2

)
(x(t) − x∗)

6



in-class exercise

(x(t+1) − x∗) =
(
I− 2

β
D2

)t
(x(1) − x∗)

∥x(t+1) − x∗∥2 ≤ ?

7



general linear regression

This same analysis holds for any linear system minimized via
gradient descent:

min
x
∥Ax− b∥22 = min

x
xTATAx− xTATb

Unrolling gradient decent updates leads to:

(x(t+1) − x∗) =
(
I− ηATA

)t
(x(1) − x∗).

8



general linear regression

Quick linear algebra review:

• ATA is symmetric so has an orthogonal
eigendecomposition: UΛUT.
• UTU = UUT = I.
• Λ is diagonal with entries λ1 ≥ λ2 ≥ . . . , λd.

Claim: λd ≥ 0 (i.e., ATA is positive semidefinite).

9



general linear regression

Verify outside of class:

f(x) = ∥Ax− b∥22 is 2λ1 smooth and 2λd strongly convex. So we
have: κ = λ1

λd

(x(t+1) − x∗) =
(
I− ηATA

)t
(x(1) − x∗).

(
I− ηATA

)t
=

(
U (I− ηΛ)UT

)t
= U (I− ηΛ)t UT

∥x(t+1) − x∗∥2 =

10



improving gradient descent

We now have a really good understanding of gradient descent.

Number of iterations for ϵ error:

G-Lipschitz β-smooth
R bounded start O

(
G2R2
ϵ2

)
O
(
βR2
ϵ

)
α-strong convex O

(
G2
αϵ

)
O
(
β
α log(1/ϵ)

)

How do we use this understanding to design faster algorithms?

11



acceleration

11



linear regression runtime

Total runtime for solving linear regression via GD:

(time per iteration) x (number of iterations)

O(nd · κ log(1/ϵ))

for A ∈ Rn×d, x ∈ Rd, b ∈ Rn.

12



acceleration

Theorem (Accelerated Iterative Regression)
Let x∗ = minx ∥Ax− b∥22. There is an algorithm which finds x̃
with ∥x̃− x∗∥2 ≤ ϵ∥x∗∥2 in time:

O(nd ·
√
κ log(1/ϵ))

13



the polynomial view

Claim: For any η, polynomial p(z) = c1z+ c2z2 + . . .+ cqzq with
p(1) =

∑q
j=1 cq = 1, there is an algorithm running in O(ndq)

time which outputs x̃ satisfying:

x̃− x∗ = p(I− 1
η
ATA)x∗

For standard gradient descent, p(z) = zq.

14



the polynomial view

Claim: For any η, polynomial p(z) = c1z+ c2z2 + . . .+ cqzq with
p(1) =

∑q
j=1 cq = 1, there is an algorithm running in O(ndq)

time which outputs x̃ satisfying:

x̃− x∗ = c1 · (I− ηATA)x∗ + c2 · (I− ηATA)2x∗ + . . .+ cq · (I− ηATA)qx∗

Claim: cj · I− ηATA)jx∗ = cj · x∗ + p′j(I− ηATA)ATAx∗ where pj is a
polynomial with degree j− 1.

15



the polynomial view

Claim: For any η, polynomial p(z) = c1z+ c2z2 + . . .+ cqzq with
p(1) =

∑q
j=1 cq = 1, there is an algorithm running in O(ndq)

time which outputs x̃ satisfying:

x∗ − x̃ = (c1 + c2 + . . .+ cq) · x∗ + p′(I− ηATA)ATAx∗

x̃ = p′(I− ηATA)ATb where p′ is a polynmial with degree q− 1.

16



the polynomial view

x̃− x∗ = p(I− ηATA)x∗

p(I− ηATA) = Up(I− ηΛ)UT

∥x̃− x∗∥ = ∥Up(I− ηΛ)UTx∗∥2
= ∥p(I− ηΛ)UTx∗∥2

As long as max [p(I− ηΛ)] ≤ ϵ,

∥x̃− x∗∥2 ≤ ϵ∥x∗∥2

17



constructing a jump polynomial

Goal: Find polynomial p such that p(1) = 1 and p(z) ≤ ϵ for
z ∈ [0, 1− 1

κ ].

Gradient descent uses p(z) = zO(κ log(1/ϵ)).
18



a better jump polynomial

Goal: Find polynomial p such that p(1) = 1 and p(z) ≤ ϵ for
z ∈ [0, 1− 1

κ ].

Can be done with degree O(
√
κ log(1/ϵ)) polynomial instead!

19



chebyshev polynomials

What are these polynomials?

Chebyshev polynomials of the first kind.

T0(x) = 1
T1(x) = x
T2(x) = 2x2 − 1

...
Tk(x) = 2xTk−1(x)− Tk−2(x)

“There’s only one bullet in the gun. It’s called the Chebyshev
polynomial.” – Prof. Rocco Servedio

20



accelerated gradient descent

Nesterov’s accelerated gradient descent:

• x(1) = y(1) = z(1)
• For t = 1, . . . , T

• y(t+1) = x(t) − 1
β∇f(x(t))

• x(t+1) =
(
1+

√
κ−1√
κ+1

)
y(t+1) −

√
κ−1√
κ+1y

(t)

Theorem (AGD for β-smooth, α-strongly convex.)
Let f be a β-smooth and α-strongly convex function. If we run
AGD for T steps we have:

f(x(t))− f(x∗) ≤ κe−(t−1)
√
κ
[
f(x(1))− f(x∗)

]

Corollary: If T = O (
√
κ log(κ/ϵ)) achieve error ϵ.

21



intuition behind acceleration

Level sets of ∥Ax− b∥22.

Other terms for similar ideas:

• Momentum
• Heavy-ball methods

What if we look back beyond two iterates?

22



preconditioning

22



preconditioning

Main idea: Instead of minimizing f(x), find another function
g(x) with the same minimum but which is better suited for first
order optimization (e.g., has a smaller conditioner number).

Claim: Let h(x) : Rd → Rd be an invertible function. Let
g(x) = f(h(x)). Then

min
x
f(x) = min

x
g(x) and argmin

x
f(x) = h

(
argmin

x
g(x)

)
.

23



preconditioning

First Goal: We need g(x) to still be convex.

Claim: Let P be an invertible d× d matrix and let g(x) = f(Px).

g(x) is always convex.

24



preconditioning

Second Goal:

g(x) should have better condition number κ than f(x).

Example:

• f(x) = ∥Ax− b∥22. κf =
λ1(ATA)
λd(ATA)

.

• g(x) = ∥APx− b∥22. κg =
λ1(PTATAP)
λd(PTATAP)

.

Ideal preconditioner: Choose P so that PTATAP = I. For
example, could set P =

√
(ATA)−1.

What’s the problem with this choice?

25



diagonal preconditioner

Third Goal: P should be easy to compute.

Many, many problem specific preconditioners are used in
practice. There design is usually a heuristic process.

Example: Diagonal preconditioner.

• Let D = diag(ATA)
• Intuitively, we roughly have that D ≈ ATA.
• Let P =

√
D−1

P is often called a Jacobi preconditioner. Often works very
well in practice!

26



diagonal preconditioner

27



diagonal preconditioner

Can you think of an example A where Jacobi preconditioning
doesn’t decrease a large κ?

Can Jacobi preconditioning increase κ?

28



adaptive stepsizes

Another view: If g(x) = f(Px) then ∇g(x) = PT∇f(Px).

∇g(x) = P∇f(Px) when P is symmetric.

Gradient descent on g:

• For t = 1, . . . , T,
• x(t+1) = x(t) − ηP

[
∇f(Px(t))

]
Gradient descent on g:

• For t = 1, . . . , T,
• y(t+1) = y(t) − ηP2

[
∇f(y(t))

]
When P is diagonal, this is just gradient descent with a

different step size for each parameter!
29



adaptive stepsizes

Algorithms based on this idea:

• AdaGrad
• RMSprop
• Adam optimizer

(Pretty much all of the most widely used optimization methods
for training neural networks.)

30



coordinate descent

30



stochastic methods

Main idea: Trade slower convergence (more iterations) for
cheaper iterations.

Stochastic Gradient Descent: When f(x) =
∑n

i=1 fi(x),
approximate ∇f(x) with ∇fi(x) for randomly chosen i.

31



stochastic methods

Main idea: Trade slower convergence (more iterations) for
cheaper iterations.

Stochastic Coordinate Descent: Only compute a single random
entry of ∇f(x) on each iteration:

∇f(x) =


∂f
∂x1 (x)
∂f
∂x2 (x)...
∂f
∂xd (x)

 ∇if(x) =


0

∂f
∂xi (x)...
0


Update: x(t+1) ← x(t) + η∇if(x(t)).

32



coordinate descent

When x has d parameters, computing ∇if(x) often costs just a
1/d fraction of what it costs to compute ∇f(x)

Example: f(x) = ∥Ax− b∥22 for A ∈ Rn×d, x ∈ Rd,b ∈ Rn.

• ∇f(x) = 2ATAx− 2ATb.
• ∇if(x) = 2

[
ATAx

]
i − 2

[
ATb

]
.

33



stochastic coordinate descent

Stochastic Coordinate Descent:

• Choose number of steps T and step size η.
• For i = 1, . . . , T:

• Pick random ji ∈ 1, . . . ,d.
• x(i+1) = x(i) − η∇jif(x

(i))

• Return x̂ = 1
T
∑T

i=1 x(i).

34



coordinate descent

Theorem (Stochastic Coordinate Descent convergence)
Given a G-Lipschitz function f with minimizer x∗ and initial
point x(1) with ∥x(1) − x∗∥2 ≤ R, SCD with step size η = 1

Rd
satisfies the guarantee:

E[f(x̂)− f(x∗)] ≤ 2GR√
T/d

35



importance sampling

Often it doesn’t make sense to sample i uniformly at random:

A =



0 0 1 0 0 0
0 0 2 0 0 0
0 0 −1 0 0 0
0 0 −.5 0 0 0
0 0 3 0 0 0
0 0 −2 0 0 0


b =



10
42
−11
−51
34
−22


Select indices i proportional to ∥ai∥22:

Pr[select index i to update] = ∥ai∥22∑d
j=1 ∥aj∥22

=
∥ai∥22
∥A∥22

36


