CS-GY 9223 I: Lecture 7 Preconditioning, acceleration, coordinate decent, etc.

NYU Tandon School of Engineering, Prof. Christopher Musco

Recall from last lecture: a convex function f is β -smooth and α -strongly convex if, for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$,

$$\frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|_2^2 \leq \nabla f(\mathbf{x})^T (\mathbf{x} - \mathbf{y}) - [f(\mathbf{x}) - f(\mathbf{y})] \leq \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_2^2.$$

Theorem (GD for β -smooth, α -strongly convex.)

Let f be a β -smooth and α -strongly convex function. If we run GD for T steps (with step size $\eta = \frac{1}{\beta}$) we have:

$$\|\mathbf{x}^{(t)} - \mathbf{x}^*\|_2^2 \le e^{-(t-1)\frac{\alpha}{\beta}} \|\mathbf{x}^{(1)} - \mathbf{x}^*\|_2^2$$

 $\kappa = rac{eta}{lpha}$ is called the "condition number" of *f*.

Corollary: If $T = O(\kappa \log(1/\epsilon))$ we have:

$$\|\mathbf{x}^{(T)} - \mathbf{x}^*\|_2 \le \epsilon \|\mathbf{x}^{(1)} - \mathbf{x}^*\|_2.$$

Let $f(\mathbf{x}) = \|\mathbf{D}\mathbf{x} - \mathbf{b}\|_2^2$ where **D** is a diagonal matrix.

- $\beta = 2 \max(\mathbf{D})^2$
- $\alpha = 2 \min(\mathbf{D})^2$

Gradient descent on f:

•
$$x^{(1)} = 0$$

• For $t = 1, \ldots, T$

•
$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \frac{1}{\beta}(2\mathsf{D}(\mathsf{D}\mathbf{x} - \mathsf{b}))$$

IN-CLASS EXERCISE

Theorem (GD for β -smooth, α -strongly convex.)

Let f be a β -smooth and α -strongly convex function. If we run GD for T steps (with step size $\eta = \frac{1}{\beta}$) we have:

$$\|\mathbf{x}^{(t)} - \mathbf{x}^*\|_2 \le e^{-t/\kappa} \|\mathbf{x}^{(1)} - \mathbf{x}^*\|_2$$

Prove for $f(\mathbf{x}) = \|\mathbf{D}\mathbf{x} - \mathbf{b}\|_2^2$. You may assume that $\min(\mathbf{D})^2 > 0$.

IN-CLASS EXERCISE

Alternate view:

$$(\mathbf{x}^{(t+1)} - \mathbf{x}^*) = \left(\mathbf{I} - \frac{2}{\beta}\mathbf{D}^2\right)(\mathbf{x}^{(t)} - \mathbf{x}^*)$$

IN-CLASS EXERCISE

$$(\mathbf{x}^{(t+1)} - \mathbf{x}^*) = \left(\mathbf{I} - \frac{2}{\beta}\mathbf{D}^2\right)^t (\mathbf{x}^{(1)} - \mathbf{x}^*)$$

 $\|\mathbf{x}^{(t+1)} - \mathbf{x}^*\|_2 \le ?$

This same analysis holds for any linear system minimized via gradient descent:

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 = \min_{\mathbf{x}} \mathbf{x}^T \mathbf{A}^T \mathbf{A}\mathbf{x} - \mathbf{x}^T \mathbf{A}^T \mathbf{b}$$

Unrolling gradient decent updates leads to:

$$(\mathbf{x}^{(t+1)} - \mathbf{x}^*) = (\mathbf{I} - \eta \mathbf{A}^{\mathsf{T}} \mathbf{A})^t (\mathbf{x}^{(1)} - \mathbf{x}^*).$$

Quick linear algebra review:

- $A^T A$ is <u>symmetric</u> so has an <u>orthogonal</u> <u>eigendecomposition</u>: $U A U^T$.
 - $\cdot \ \mathbf{U}^{\mathsf{T}}\mathbf{U} = \mathbf{U}\mathbf{U}^{\mathsf{T}} = \mathbf{I}.$
 - Λ is diagonal with entries $\lambda_1 \geq \lambda_2 \geq \ldots, \lambda_d$.

Claim: $\lambda_d \geq 0$ (i.e., $A^T A$ is positive semidefinite).

Verify outside of class:

 $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$ is $2\lambda_1$ smooth and $2\lambda_d$ strongly convex. So we have: $\kappa = \frac{\lambda_1}{\lambda_d}$

$$(\mathbf{x}^{(t+1)} - \mathbf{x}^*) = (\mathbf{I} - \eta \mathbf{A}^T \mathbf{A})^t (\mathbf{x}^{(1)} - \mathbf{x}^*).$$
$$(\mathbf{I} - \eta \mathbf{A}^T \mathbf{A})^t = (\mathbf{U} (\mathbf{I} - \eta \mathbf{\Lambda}) \mathbf{U}^T)^t = \mathbf{U} (\mathbf{I} - \eta \mathbf{\Lambda})^t \mathbf{U}^T$$

t t t

$$\|\mathbf{x}^{(t+1)} - \mathbf{x}^*\|_2 =$$

(1 . 1)

We now have a <u>really good</u> understanding of gradient descent. Number of iterations for ϵ error:

	G-Lipschitz	eta-smooth
R bounded start	$O\left(\frac{G^2R^2}{\epsilon^2}\right)$	$O\left(\frac{\beta R^2}{\epsilon}\right)$
$\alpha\text{-}strong\ convex$	$O\left(\frac{G^2}{\alpha\epsilon}\right)$	$O\left(\frac{\beta}{\alpha}\log(1/\epsilon)\right)$

How do we use this understanding to design faster algorithms?

ACCELERATION

Total runtime for solving linear regression via GD:

(time per iteration) x (number of iterations)

 $O(nd \cdot \kappa \log(1/\epsilon))$ for $\mathbf{A} \in \mathbb{R}^{n \times d}$, $\mathbf{x} \in \mathbb{R}^{d}$, $\mathbf{b} \in \mathbb{R}^{n}$.

ACCELERATION

Theorem (Accelerated Iterative Regression)

Let $\mathbf{x}^* = \min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$. There is an algorithm which finds $\tilde{\mathbf{x}}$ with $\|\tilde{\mathbf{x}} - \mathbf{x}^*\|_2 \le \epsilon \|\mathbf{x}^*\|_2$ in time:

 $O(nd \cdot \sqrt{\kappa \log(1/\epsilon)})$

Claim: For any η , polynomial $p(z) = c_1 z + c_2 z^2 + \ldots + c_q z^q$ with $p(1) = \sum_{j=1}^{q} c_q = 1$, there is an algorithm running in O(ndq) time which outputs $\tilde{\mathbf{x}}$ satisfying:

$$\tilde{\mathbf{x}} - \mathbf{x}^* = p(\mathbf{I} - \frac{1}{\eta}\mathbf{A}^{\mathsf{T}}\mathbf{A})\mathbf{x}^*$$

For standard gradient descent, $p(z) = z^q$.

Claim: For any η , polynomial $p(z) = c_1 z + c_2 z^2 + \ldots + c_q z^q$ with $p(1) = \sum_{j=1}^{q} c_q = 1$, there is an algorithm running in O(ndq) time which outputs $\tilde{\mathbf{x}}$ satisfying:

$$\tilde{\mathbf{x}} - \mathbf{x}^* = c_1 \cdot (\mathbf{I} - \eta \mathbf{A}^T \mathbf{A}) \mathbf{x}^* + c_2 \cdot (\mathbf{I} - \eta \mathbf{A}^T \mathbf{A})^2 \mathbf{x}^* + \ldots + c_q \cdot (\mathbf{I} - \eta \mathbf{A}^T \mathbf{A})^q \mathbf{x}^*$$

Claim: $c_j \cdot \mathbf{I} - \eta \mathbf{A}^T \mathbf{A})^j \mathbf{x}^* = c_j \cdot \mathbf{x}^* + p'_j (\mathbf{I} - \eta \mathbf{A}^T \mathbf{A}) \mathbf{A}^T \mathbf{A} \mathbf{x}^*$ where p_j is a polynomial with degree j - 1.

Claim: For any η , polynomial $p(z) = c_1 z + c_2 z^2 + \ldots + c_q z^q$ with $p(1) = \sum_{j=1}^{q} c_q = 1$, there is an algorithm running in O(ndq) time which outputs $\tilde{\mathbf{x}}$ satisfying:

$$\mathbf{x}^* - \tilde{\mathbf{x}} = (c_1 + c_2 + \ldots + c_q) \cdot \mathbf{x}^* + p'(\mathbf{I} - \eta \mathbf{A}^T \mathbf{A}) \mathbf{A}^T \mathbf{A} \mathbf{x}^*$$

 $\tilde{\mathbf{x}} = p'(\mathbf{I} - \eta \mathbf{A}^T \mathbf{A}) \mathbf{A}^T \mathbf{b}$ where p' is a polynmial with degree q - 1.

$$\tilde{\mathbf{x}} - \mathbf{x}^* = p(\mathbf{I} - \eta \mathbf{A}^T \mathbf{A})\mathbf{x}^*$$

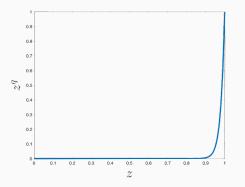
 $p(\mathbf{I} - \eta \mathbf{A}^T \mathbf{A}) = \mathbf{U}p(\mathbf{I} - \eta \mathbf{A})\mathbf{U}^T$

$$\|\tilde{\mathbf{x}} - \mathbf{x}^*\| = \|\mathbf{U}p(\mathbf{I} - \eta\mathbf{\Lambda})\mathbf{U}^T\mathbf{x}^*\|_2$$
$$= \|p(\mathbf{I} - \eta\mathbf{\Lambda})\mathbf{U}^T\mathbf{x}^*\|_2$$

As long as max $[p(I - \eta \Lambda)] \leq \epsilon$,

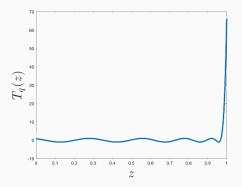
$$\|\tilde{\mathbf{X}} - \mathbf{X}^*\|_2 \le \epsilon \|\mathbf{X}^*\|_2$$

Goal: Find polynomial p such that p(1) = 1 and $p(z) \le \epsilon$ for $z \in [0, 1 - \frac{1}{\kappa}]$.



Gradient descent uses $p(z) = z^{O(\kappa \log(1/\epsilon))}$.

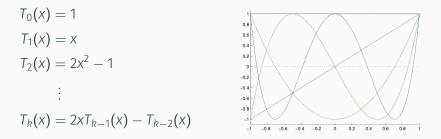
Goal: Find polynomial p such that p(1) = 1 and $p(z) \le \epsilon$ for $z \in [0, 1 - \frac{1}{\kappa}]$.



Can be done with degree $O(\sqrt{\kappa \log(1/\epsilon)})$ polynomial instead!

What are these polynomials?

Chebyshev polynomials of the first kind.



"There's only one bullet in the gun. It's called the Chebyshev polynomial." – Prof. Rocco Servedio Nesterov's accelerated gradient descent:

•
$$\mathbf{x}^{(1)} = \mathbf{y}^{(1)} = \mathbf{z}^{(1)}$$

For
$$t = 1, \dots, T$$

 $\cdot \mathbf{y}^{(t+1)} = \mathbf{x}^{(t)} - \frac{1}{\beta} \nabla f(\mathbf{x}^{(t)})$
 $\cdot \mathbf{x}^{(t+1)} = \left(1 + \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right) \mathbf{y}^{(t+1)} - \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \mathbf{y}^{(t)}$

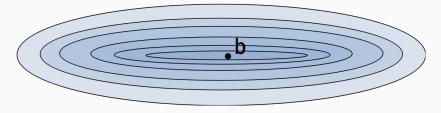
Theorem (AGD for β -smooth, α -strongly convex.)

Let f be a β -smooth and α -strongly convex function. If we run AGD for T steps we have:

$$f(\mathbf{x}^{(t)}) - f(\mathbf{x}^*) \le \kappa e^{-(t-1)\sqrt{\kappa}} \left[f(\mathbf{x}^{(1)}) - f(\mathbf{x}^*) \right]$$

Corollary: If $T = O(\sqrt{\kappa} \log(\kappa/\epsilon))$ achieve error ϵ .

INTUITION BEHIND ACCELERATION



Level sets of $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$.

Other terms for similar ideas:

- Momentum
- Heavy-ball methods

What if we look back beyond two iterates?

PRECONDITIONING

Main idea: Instead of minimizing $f(\mathbf{x})$, find another function $g(\mathbf{x})$ with the same minimum but which is better suited for first order optimization (e.g., has a smaller conditioner number).

Claim: Let $h(\mathbf{x}) : \mathbb{R}^d \to \mathbb{R}^d$ be an <u>invertible function</u>. Let $g(\mathbf{x}) = f(h(\mathbf{x}))$. Then

 $\min_{\mathbf{x}} f(\mathbf{x}) = \min_{\mathbf{x}} g(\mathbf{x}) \text{ and } \arg\min_{\mathbf{x}} f(\mathbf{x}) = h \left(\arg\min_{\mathbf{x}} g(\mathbf{x}) \right).$

First Goal: We need $g(\mathbf{x})$ to still be convex.

Claim: Let **P** be an invertible $d \times d$ matrix and let $g(\mathbf{x}) = f(\mathbf{Px})$.

 $g(\mathbf{x})$ is always convex.

Second Goal:

 $g(\mathbf{x})$ should have better condition number κ than $f(\mathbf{x})$. Example:

•
$$f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$
. $\kappa_f = \frac{\lambda_1(\mathbf{A}^T \mathbf{A})}{\lambda_d(\mathbf{A}^T \mathbf{A})}$.
• $g(\mathbf{x}) = \|\mathbf{A}\mathbf{P}\mathbf{x} - \mathbf{b}\|_2^2$. $\kappa_g = \frac{\lambda_1(\mathbf{P}^T \mathbf{A}^T \mathbf{A}\mathbf{P})}{\lambda_d(\mathbf{P}^T \mathbf{A}^T \mathbf{A}\mathbf{P})}$.

Ideal preconditioner: Choose *P* so that $P^TA^TAP = I$. For example, could set $P = \sqrt{(A^TA)^{-1}}$.

What's the problem with this choice?

Third Goal: P should be easy to compute.

Many, many problem specific preconditioners are used in practice. There design is usually a heuristic process.

Example: Diagonal preconditioner.

- Let $\mathbf{D} = \text{diag}(\mathbf{A}^T \mathbf{A})$
- Intuitively, we roughly have that $\mathbf{D} \approx \mathbf{A}^T \mathbf{A}$.
- · Let $P = \sqrt{D^{-1}}$

P is often called a Jacobi preconditioner. Often works very well in practice!

DIAGONAL PRECONDITIONER

-734	1	33	9111	0
-31	-2	108	5946	-19
232	-1	101	3502	10
426	0	-65	12503	9
-373	0	26	9298	0
-236	-2	-94	2398	-1
2024	0	-132	-6904	-25
-2258	-1	92	-6516	6
2229	0	0	11921	-22
338	1	-5	-16118	-23

>> cond(A'*A)	<pre>>> P = sqrt(inv(diag(diag(A'*A)))); >> cond(P*A'*A*P)</pre>
ans =	
	ans =
8.4145e+07	10.3878

Can you think of an example A where Jacobi preconditioning doesn't decrease a large κ ?

Can Jacobi preconditioning increase κ ?

ADAPTIVE STEPSIZES

Another view: If $g(\mathbf{x}) = f(\mathbf{P}\mathbf{x})$ then $\nabla g(\mathbf{x}) = \mathbf{P}^T \nabla f(\mathbf{P}\mathbf{x})$.

 $\nabla g(\mathbf{x}) = \mathbf{P} \nabla f(\mathbf{P} \mathbf{x})$ when **P** is symmetric.

Gradient descent on g:

• For
$$t = 1, ..., T$$
,
• $\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \eta \mathbf{P} \left[\nabla f(\mathbf{P} \mathbf{x}^{(t)}) \right]$

Gradient descent on g:

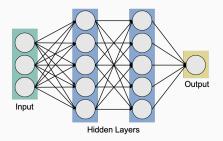
• For
$$t = 1, ..., T$$
,
• $\mathbf{y}^{(t+1)} = \mathbf{y}^{(t)} - \eta \mathbf{P}^2 \left[\nabla f(\mathbf{y}^{(t)}) \right]$

When **P** is diagonal, this is just gradient descent with a different step size for each parameter!

ADAPTIVE STEPSIZES

Algorithms based on this idea:

- AdaGrad
- RMSprop
- Adam optimizer



(Pretty much all of the most widely used optimization methods for training neural networks.)

COORDINATE DESCENT

Main idea: Trade slower convergence (more iterations) for cheaper iterations.

Stochastic Gradient Descent: When $f(\mathbf{x}) = \sum_{i=1}^{n} f_i(\mathbf{x})$, approximate $\nabla f(\mathbf{x})$ with $\nabla f_i(\mathbf{x})$ for randomly chosen *i*.

Main idea: Trade slower convergence (more iterations) for cheaper iterations.

Stochastic Coordinate Descent: Only compute a <u>single random</u> <u>entry</u> of $\nabla f(\mathbf{x})$ on each iteration:

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(\mathbf{x}) \\ \frac{\partial f}{\partial x_2}(\mathbf{x}) \\ \vdots \\ \frac{\partial f}{\partial x_d}(\mathbf{x}) \end{bmatrix} \qquad \nabla_i f(\mathbf{x}) = \begin{bmatrix} 0 \\ \frac{\partial f}{\partial x_i}(\mathbf{x}) \\ \vdots \\ 0 \end{bmatrix}$$

Update: $\mathbf{x}^{(t+1)} \leftarrow \mathbf{x}^{(t)} + \eta \nabla_i f(\mathbf{x}^{(t)})$.

When **x** has *d* parameters, computing $\nabla_i f(\mathbf{x})$ often costs just a 1/d fraction of what it costs to compute $\nabla f(\mathbf{x})$

Example: $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$ for $\mathbf{A} \in \mathbb{R}^{n \times d}$, $\mathbf{x} \in \mathbb{R}^d$, $\mathbf{b} \in \mathbb{R}^n$.

•
$$\nabla f(\mathbf{x}) = 2\mathbf{A}^T\mathbf{A}\mathbf{x} - 2\mathbf{A}^T\mathbf{b}.$$

•
$$\nabla_i f(\mathbf{x}) = 2 \left[\mathbf{A}^T \mathbf{A} \mathbf{x} \right]_i - 2 \left[\mathbf{A}^T \mathbf{b} \right].$$

Stochastic Coordinate Descent:

- Choose number of steps T and step size η .
- For i = 1, ..., T:
 - Pick random $j_i \in 1, \ldots, d$.

•
$$\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - \eta \nabla_{j_i} f(\mathbf{x}^{(i)})$$

• Return
$$\hat{\mathbf{x}} = \frac{1}{T} \sum_{i=1}^{T} \mathbf{x}^{(i)}$$
.

Theorem (Stochastic Coordinate Descent convergence) Given a G-Lipschitz function f with minimizer \mathbf{x}^* and initial point $\mathbf{x}^{(1)}$ with $\|\mathbf{x}^{(1)} - \mathbf{x}^*\|_2 \leq R$, SCD with step size $\eta = \frac{1}{Rd}$ satisfies the guarantee:

$$\mathbb{E}[f(\hat{\mathbf{x}}) - f(\mathbf{x}^*)] \le \frac{2GR}{\sqrt{T/d}}$$

Often it doesn't make sense to sample *i* uniformly at random:

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -.5 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & -2 & 0 & 0 & 0 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} 10 \\ 42 \\ -11 \\ -51 \\ 34 \\ -22 \end{bmatrix}$$

Select indices *i* proportional to $\|\mathbf{a}_i\|_2^2$:

Pr[select index *i* to update] =
$$\frac{\|\mathbf{a}_i\|_2^2}{\sum_{j=1}^d \|\mathbf{a}_j\|_2^2} = \frac{\|\mathbf{a}_i\|_2^2}{\|\mathbf{A}\|_2^2}$$