CS-GY 9223 I: Lecture 7
Preconditioning, acceleration, coordinate
decent, etc.

NYU Tandon School of Engineering, Prof. Christopher Musco

SMOOTH AND STRONGLY CONVEX

Recall from last lecture: a convex function fis g-smooth and
a-strongly convex if, for all x,y € RY,

%Ik =y < VA0~ y) ~ [0 —)] < - x = v

CONVERGENCE GUARANTEE

Theorem (GD for 3-smooth, a-strongly convex.)
Let f be a 8-smooth and a-strongly convex function. If we run
GD for T steps (with step size n = %) we have:

Ix® —x*|3 < &= 05 xM — x*|13

is called the “condition number” of f.

Corollary: If we have:

X —x*[l2 < e x® —x*2.

FROM LAST CLASS

Let f(x) = ||Dx — b||3 where D is a diagonal matrix.
- B =2max(D)?
- a =2min(D)?

Gradient descent on f:

.FO[’t:1,...,T
- x(t) = x® — 1(2D(Dx — b))

|

IN-CLASS EXERCISE

Theorem (GD for 3-smooth, a-strongly convex.)
Let f be a -smooth and a-strongly convex function. If we run
GD for T steps (with step size n = %) we have:

X0 = X" < eI —]l

IN-CLASS EXERCISE

Alternate view:

() xry = (I - ;DZ) (xO — x)

IN-CLASS EXERCISE

t
(XD ety = (I _ ZDZ) (x) = x*)

GENERAL LINEAR REGRESSION

This same analysis holds for any linear system minimized via
gradient descent:

min [|Ax — b||2 = min x'ATAX — x"ATb

Unrolling gradient decent updates leads to:

(XD —x*) = (1 = pATA) " (XD — x*).

GENERAL LINEAR REGRESSION

Quick linear algebra review:

- ATA s symmetric so has an orthogonal
eigendecomposition: UAUT.

-U'u=uu’=1.
- Nis diagonal with entries \y > Xy > ..., Ay,

Claim: \y > 0 (i.e., ATA is positive semidefinite).

GENERAL LINEAR REGRESSION

Verify outside of class:

f(x) = ||Ax — b]|3 is 2\ smooth and 24 strongly convex. So we

have: 1 = {1

(XD —x*) = (1= pATA) (XD — x*).

(1—nATA) = (U (1= nA)UT)" = U (I — gAY U7

(t+1) _

X = xl2 =

10

IMPROVING GRADIENT DESCENT

We now have a really good understanding of gradient descent.

Number of iterations for ¢ error:

\ G-Lipschitz B-smooth
R bounded start | O (Gifz) 0 (B—Rz)

€

a-strong convex | O (2—1) 0 (g log(T/e))

How do we use this understanding to design faster algorithms?

"

ACCELERATION

LINEAR REGRESSION RUNTIME

Total runtime for solving linear regression via GD:

(time per iteration) x (number of iterations)

O(nd - klog(1/e))
forAe R™¥ x e R% b e R".

12

ACCELERATION

Theorem (Accelerated Iterative Regression)

Let x* = min ||Ax — b||3. There is an algorithm which finds X
with [|X — x*||2 < €||x*||2 in time:

O(nd - v/r log(1/e))

13

THE POLYNOMIAL VIEW

Claim: For any n, polynomial p(2) = c1z + 2% + ... + cqz% with
p(1) = 2?21 Cq =1, there is an algorithm running in O(ndq)
time which outputs X satisfying:

- 1
X —x* = p(l — —ATA)x*
n

For standard gradient descent, p(z) = Z°.

14

THE POLYNOMIAL VIEW

Claim: For any n, polynomial p(2) = c1z + 2% + ... + cqz% with
p(1) = 2?21 Cq =1, there is an algorithm running in O(ndq)
time which outputs X satisfying:

X—x*=cr-(1—nATAX* + o - (1 = nATAYX* + ... 4+ ¢q - (1 — nATA)IX*

Claim: ¢; - 1 — nATAYX* = ¢; - x* + pi(I — nATA)ATAX* where p; is a
polynomial with degree j — 1.

15

THE POLYNOMIAL VIEW

Claim: For any n, polynomial p(2) = c1z + 2% + ... + cqz% with
p(1) = 2?21 Cq =1, there is an algorithm running in O(ndq)
time which outputs X satisfying:

X*—X=(C1+C+...+cq)-x*+p'(1 — nATA)ATAX*

% = p'(I — nATA)A’b where p’ is a polynmial with degree g — 1.

THE POLYNOMIAL VIEW

X —x* = p(l — nATA)x*
p(I — nATA) = Up(1 — nA)UT

IX = x*|| = [[Up(1 = nA)UTX |2
= [lp(1 = nA)U'X" |2

As long as max [p(l — nN)] <,

1% =x*l2 < elx7[l2

CONSTRUCTING A JUMP POLYNOMIAL

Goal: Find polynomial p such that p(1) = 1and p(z) < e for
ze[o,1-1].

24

Gradient descent uses p(z) = z0(+og(1/9),

A BETTER JUMP POLYNOMIAL

Goal: Find polynomial p such that p(1) = 1and p(z) < e for
ze[o,1-1].

70

60

50

~ 2
E _/_\/—\/\/\J
20
10
0

Can be done with degree O(y/x log(1/€)) polynomial instead!

19

CHEBYSHEV POLYNOMIALS

What are these polynomials?

Chebyshev polynomials of the first kind.

“There’s only one bullet in the gun. It's called the Chebyshev

polynomial.” — Prof. Rocco Servedio
20

ACCELERATED GRADIENT DESCENT

Nesterov's accelerated gradient descent:

s fFort=1,...,T
. y(pﬂ) — x(® _ %Vf(x(t))

L (1) VE=TY (tH1) _ VE=T (¢
x()_(1+ﬁ+1)y() — LEy0

Theorem (AGD for 3-smooth, a-strongly convex.)

Let f be a -smooth and a-strongly convex function. If we run
AGD for T steps we have:

F) = f(x) < wem IR [xO) - fx)]

Corollary: If
21

INTUITION BEHIND ACCELERATION

>

Level sets of ||Ax — b||3.

Other terms for similar ideas:

+ Momentum
- Heavy-ball methods

22

PRECONDITIONING

PRECONDITIONING

Main idea: Instead of minimizing f(x), find another function
g(x) with the same minimum but which is better suited for first
order optimization (e.g, has a smaller conditioner number).

Claim: Let h(x) : R — RY be an invertible function. Let
g9(x) = f(h(x)). Then

mxmf(x) = mxm g(x) and argminf(x)=nh <arg min g(x)> .

23

PRECONDITIONING

First Goal: We need g(x) to still be convex.

Claim: Let P be an invertible d x d matrix and let g(x) = f(Px).

g(x) is always convex.

2%

PRECONDITIONING

Second Goal:

g(x) should have better condition number « than f(x).

Example:
M(ATA
- f(x) = A% = bI3. k=S4
M(PTATAP
- 9(x) = [|APx — b|[3. g = JUEEAS.
Ideal preconditioner: Choose P so that PTATAP = I. For
example, could set P = /(ATA)~.

What's the problem with this choice?

25

DIAGONAL PRECONDITIONER

Third Goal: P should be easy to compute.

Many, many problem specific preconditioners are used in
practice. There design is usually a heuristic process.
Example: Diagonal preconditioner.

- Let D = diag(A'A)
- Intuitively, we roughly have that D ~ ATA.
- Let P =+vD~’

P is often called a Jacobi preconditioner. Often works very
well in practice!

26

DIAGONAL PRECONDITIONER

A =
-734 1 33 9111 0
31 -2 108 5946 -19
232 = 101 3502 10
426 0 -65 12503 9
-373 0 26 9298 0
-236 . -94 2398 -1
2024 0 -132 -6904 -25
-2258] 92 -6516 6
2229 0 0 11921 -22
338 1 -5 -16118 -23
>> cond(A'*A) >> P = sqrt(inv(diag(diag(A'xA))));
>> cond (PxA"'*xAxP)
ans =
ans =
8.4145e+07
10.3878

27

DIAGONAL PRECONDITIONER

Can you think of an example A where Jacobi preconditioning
doesn't decrease a large x?

Can Jacobi preconditioning increase x?

28

ADAPTIVE STEPSIZES

Another view: If g(x) = f(Px) then Vg(x) = PTVf(PXx).
Vg(x) = PVf(Px) when P is symmetric.

Gradient descent on g:

s Fort=1,...,T,
. X(t'H) = X(t) _ nP [Vf(Px(t))]

Gradient descent on g:
« Fort=1,...,T,
-yt =y — P2 [Vf(yO)]

When P is diagonal, this is just gradient descent with a
different step size for each parameter!

29

ADAPTIVE STEPSIZES

Algorithms based on this idea:

- AdaGrad
- RMSprop
- Adam optimizer

SRS
A‘\ . /INAN . Output
\W

Hidden Layers

30

COORDINATE DESCENT

STOCHASTIC METHODS

Main idea: Trade slower convergence (more iterations) for
cheaper iterations.

Stochastic Gradient Descent: When f(x) = >°, fi(x),
approximate Vf(x) with Vf;(x) for randomly chosen i.

31

STOCHASTIC METHODS

Main idea: Trade slower convergence (more iterations) for
cheaper iterations.

Stochastic Coordinate Descent: Only compute a single random
entry of Vf(x) on each iteration:

v = | v = |7
25 () 0

Update: x(1) «— x(O 4 5V f(x®).

32

COORDINATE DESCENT

When x has d parameters, computing V,f(x) often costs just a
1/d fraction of what it costs to compute Vf{(x)

Example: f(x) = ||Ax — b||3 for Ac R x ¢ RY b € R".

- Vf(x) = 2ATAx — 2ATb.
© Vif(x) = 2 [ATAx]. — 2 [ATb].

33

STOCHASTIC COORDINATE DESCENT

Stochastic Coordinate Descent:

- Choose number of steps T and step size 7.
- Fori=1,...,T:

- Pick random j; € 1,...,d.

< x(+1) — x() — 77vj/_f(x(i))
- Return X = 171, x(),

34

COORDINATE DESCENT

Theorem (Stochastic Coordinate Descent convergence)
Given a G-Lipschitz function f with minimizer x* and initial
point XM with |x(V — x*||; < R, SCD with step size n = 25
satisfies the guarantee:

E[fR) — f(x)] < —2

E
Q.

35

IMPORTANCE SAMPLING

Often it doesn’t make sense to sample i uniformly at random:

00 1 000 [10]

00 2 00O 42

A_ 00 -1 0 0O b— =11

0 0 =50 00 —51

00 3 000 34

00 —2 0 0 0] |22

Select indices i proportional to ||a;||3:

lailz — _ llaill3

Pr[select index i to update] = =
S llail3 lAlS

36

