
CS-GY 9223 I: Lecture 6
Smoothness, Strong convexity, and more.

NYU Tandon School of Engineering, Prof. Christopher Musco

1



gradient descent analysis

Assume:

• f is convex.
• Lipschitz function: for all x, ∥∇f(x)∥2 ≤ G.
• Starting radius: ∥x∗ − x(1)∥2 ≤ R.

Gradient descent:

• Choose number of steps T.
• η = R

G
√
T

• For i = 1, . . . , T:
• x(i+1) = x(i) − η∇f(x(i))

• Return x̂ = argminx(i) f(x(i)).

Theorem (GD Convergence Bound)
If T ≥ R2G2

ϵ2
, then f(x̂) ≤ f(x∗) + ϵ.

2



online gradient descent

Instead of a single function f to minimize, assume we have an
unknown and changing set of objective functions:

f1, . . . , fT.

• At each time step, choose x(i).
• fi is revealed and we pay cost fi(x(i))
• Goal: Minimize

∑T
i=1 fi(x(i)).

3



example

Email spam filtering:

4



spam filtering

• Mx(y) = 1
1+e−xTy

Predict y as spam if Mx(y) ≥ 1
2 . 5



spam filtering

Logistic loss:

Given label b ∈ {0, 1},

L(b,Mx(y)) = −b log (Mx(y)) + (1− b) log (1−Mx(y))

Total cost of over time:
T∑
i=1

L(b(i),Mx(i)(y(i))))

where y(i) is the ith email and b(i) is the ith label.

6



regret bound

How should we measure how well we did?

For some small value ∆, can we achieve:

T∑
i=1

fi(x(i)) ≤
[
min
x

T∑
i=1

fi(x)
]
+∆.

I.e. can we compete with the best fixed solution in hindsight.

∆ = “regret”

7



online gradient descent

Assume:

• Lipschitz functions: for all x, i, ∥∇fi(x)∥2 ≤ G.
• Starting radius: ∥x∗ − x(1)∥2 ≤ R.

Online Gradient descent:

• Choose number of steps T.
• η = D

G
√
T

• For i = 1, . . . , T:
• x(i+1) = x(i) − η∇fi(x(i))

• Play x(i+1).
Claim (OGD Regret Bound)

After T steps, ∆ =
[∑T

i=1 fi(x(i))
]
−
[∑T

i=1 fi(x∗)
]
≤ RG

√
T

8



stochastic gradient descent

Recall the machine learning setup. In empirical risk
minimization, we can typically write:

f(x) =
n∑
j=1

fj(x)

where fi is the loss function for a particular data point.

Linear regression:

f(x) =
n∑
j=1

(xTy(j) − b(j))2

9



stochastic gradient descent

Pick random j ∈ 1, . . . ,n:

E
[
∇fj(x)

]
= ∇f(x).

But ∇fj(x) can often be computed in a 1/n fraction of the time!

Main idea: Use random approximate gradient in place of
actual gradient.

Trade slower convergence for cheaper iterations.

10



stochastic gradient descent

Assume:

• Lipschitz functions: for all x, j, ∥∇fj(x)∥2 ≤ G′
n .

• Starting radius: ∥x∗ − x(1)∥2 ≤ R.

Stochastic Gradient descent:

• Choose number of steps T.
• η = D

G′
√
T

• For i = 1, . . . , T:
• Pick random ji ∈ 1, . . . ,n.
• x(i+1) = x(i) − η∇fji(x

(i))

• Return x̂ = 1
T
∑T

i=1 x(i)

11



visualizing SGD

12



stochastic gradient descent analysis

Claim (SGD Convergence)
After T = R2G′2

ϵ2
iteration:

E [f(x̂)− f(x∗)] ≤ ϵ.

13



stochastic gradient descent analysis

Claim (SGD Convergence)
After T = R2G′2

ϵ2
iteration:

E [f(x̂)− f(x∗)] ≤ ϵ.

14



comparison

Number of iterations for error ϵ:

• Gradient Descent: T = R2G2
ϵ2
.

• Stochastic Gradient Descent: T = R2G′2
ϵ2
.

Always have G ≤ G′:

∥∇f(x)∥2 ≤ ∥∇f1(x)∥2 + . . .+ ∥∇fn(x)∥2 ≤ n ·
G′
n = G′.

Fair comparison:

• SGD cost = (# of iterations) · O(1)
• GD cost = (# of iterations) · O(n)

15



comparison

Stochastic vs. Full Batch Gradient Descent:

16



beyond the basic bound

Can the convergence bounds be tightened for certain
functions? Can they guide us towards faster algorithms?

Goals:

• Improve ϵ dependence below 1/ϵ2.
• Reduce or eliminate dependence on G and R.
• Etc.

17



smoothness

Definition (β-smoothness)
A function f is β smooth if, for all x, y

∥∇f(x)−∇f(y)∥2 ≤ β∥x− y∥2

β is a parameter that will depend on our function.

18



smoothness

Recall from definition of convexity that:

f(x)− f(y) ≤ ∇f(x)T(x− y)

How much smaller can left hand side be?

∇f(x)T(x− y)− [f(x)− f(y)] ≤ β

2 ∥x− y∥
2
2

19



guaranteed progress

Previously learning rate/step size η depended on G. Now
choose it based on β:

x(t+1) ← x(t) − 1
β
∇f(x(t))

Progress per step of gradient descent:

20



convergence guarantee

Theorem (GD convergence for β-smooth functions.)
Let f be a β smooth convex function and assume we have
∥x∗ − x(1)∥2 ≤ R. If we run GD for T steps with η = 1

β we have:

f(x(T))− f(x∗) ≤ 2βR2
T− 1

Corollary: If T = O
(
βR2
ϵ

)
we have f(x(T))− f(x∗) ≤ ϵ.

21



strong convexity

Definition (α-strongly convex)
A convex function f is α-strongly convex if, for all x, y

f(y) ≥ f(x) +∇f(x)T(y− x) + α

2 ∥x− y∥
2
2

α is a parameter that will depend on our function.

22



strong convexity

Completing the picture: If f is α strongly convex and β smooth,

α

2 ∥x− y∥
2
2 ≤ ∇f(x)T(x− y)− [f(x)− f(y)] ≤ β

2 ∥x− y∥
2
2.

23



gd for strongly convex function

Gradient descent for strongly convex functions:

• Choose number of steps T.
• For i = 1, . . . , T:

• η = 2
α·(i+1)

• x(i+1) = x(i) − η∇f(x(i))
• Return x̂ = argminx(i) f(x(i)).
• Alternatively, return x̂ =

∑T
i=1

2i
T(T+1)x(i).

24



convergence guarantee

Theorem (GD convergence for α-strongly convex functions.)
Let f be an α-strongly convex function and assume we have
that, for all x, ∥∇f(x)∥2 ≤ G. If we run GD for T steps (with
adaptive step sizes) we have:

f(x̂)− f(x∗) ≤ 2G2
α(T− 1)

Corollary: If T = O
(
G2
αϵ

)
we have f(x̂)− f(x∗) ≤ ϵ

25



smooth and strongly convex

What if f is both β-smooth and α-strongly convex?

α

2 ∥x− y∥
2
2 ≤ ∇f(x)T(x− y)− [f(x)− f(y)] ≤ β

2 ∥x− y∥
2
2.

What if α = β:

26



smooth and strongly convex

What if f is both β-smooth and α-strongly convex?

α

2 ∥x− y∥
2
2 ≤ ∇f(x)T(x− y)− [f(x)− f(y)] ≤ β

2 ∥x− y∥
2
2.

What if α = β:

27



convergence guarantee

Theorem (GD for β-smooth, α-strongly convex.)
Let f be a β-smooth and α-strongly convex function. If we run
GD for T steps (with step size η = 1

β ) we have:

∥x(t) − x∗∥22 ≤ e
−(t−1)α

β ∥x(1) − x∗∥22

κ = β
α is called the “condition number” of f.

Is it better if κ is large or small?

28



smooth and strongly convex

Converting to more familiar form:

α

2 ∥x− y∥
2
2 ≤ ∇f(x)T(x− y)− [f(x)− f(y)] ≤ β

2 ∥x− y∥
2
2.

29



convergence guarantee

Corollary (GD for β-smooth, α-strongly convex.)
Let f be a β-smooth and α-strongly convex function. If we run
GD for T steps (with step size η = 1

β ) we have:

f(x(t))− f(x∗) ≤ β

2 e
−(t−1)α

β R

Corollary: If T = O
(
β
α log(βR/ϵ)

)
we have:

f(x̂)− f(x∗) ≤ ϵ.

Alternative: If T = O
(
β
α log(β/αϵ)

)
we have:

f(x̂)− f(x∗) ≤ ϵ
[
f(x(1))− f(x∗)

]
30



understanding conditioning

Let f(x) = ∥Dx− b∥22 where D is a diagaonl matrix. For now

imagine we’re in two dimensions: x =
[
x1
x2

]
, D =

[
d1 0
0 d2

]
.

31



understanding conditioning

What is β for f(x) = ∥Dx− b∥22?

In other words: What is smallest β so that for all x, y,

∥∇f(x)−∇f(y)∥2 ≤ β∥x− y∥2

32



understanding conditioning

What is α for f(x) = ∥Dx− b∥22?

In other words: What is largest α so that for all x, y,
α

2 ∥x− y∥
2
2 ≤ ∇f(x)T(x− y)− [f(x)− f(y)]

33



understanding conditioning

Level sets of ∥Dx− b∥22 when d1 = 1,d2 = 1.

34



understanding conditioning

Level sets of ∥Dx− b∥22 when d1 = 1
3 ,d2 = 2.

35



understanding conditioning

Steps to convergence ≈ O (κ log(1/ϵ)) = O
(
max(D2)
min(D2) log(1/ϵ)

)
.

For general regression problems ∥Ax− b∥22,

β = λmax(ATA)
α = λmin(ATA)

36



in-class exercise

Theorem (GD for β-smooth, α-strongly convex.)
Let f be a β-smooth and α-strongly convex function. If we run
GD for T steps (with step size η = 1

β ) we have:

∥x(t) − x∗∥22 ≤ e
−(t−1)α

β ∥x(1) − x∗∥22

Prove for f(x) = ∥Dx− b∥22.

37



in-class exercise

38



in-class exercise

39


