CS-GY 9223 I: Lecture 6
Smoothness, Strong convexity, and more.

NYU Tandon School of Engineering, Prof. Christopher Musco



GRADIENT DESCENT ANALYSIS

Assume:

- fis convex.
+ Lipschitz function: for all x, || Vf(x)|. < G.
- Starting radius: [|x* —xM|; <R.

Gradient descent:

- Choose number of steps T.

- Fori=1,...,T
- () = xO) — pvAx()
- Return X = arg min,q f(x().
Theorem (GD Convergence Bound)
IFT > B9 then f(X) < f(x*) + e



ONLINE GRADIENT DESCENT

Instead of a single function f to minimize, assume we have an
unknown and changing set of objective functions:

g e e a0

- At each time step, choose x().
- fi is revealed and we pay cost f;(x())
- Goal: Minimize =1, fi(x().



EXAMPLE

Email spam filtering:

MINE-Version: 1.0 Date: Mon, 7 Oct 2019
14:51:30 -0400 Message-ID: <CANVPizUGgx==B-

39MLANNOPYJ9_jxaX6 0QmuHWb4OCFBRGNDzAEmai 1 . gna
il.com> Subject: 9223i Reading Group, Meeting
2, tomorrow at 10am From: Christopher Musco

<cmuscofnyu.edu> To: algmldsényu.edu Content-
Type: multipart/alternative;

3 yp
text/plain; charset="UTF-8" I hope everyone

had a good weekend! Tomorrow at *10am in 370

Jay St. #1114% we will meet for the second

instantiation of the CS-GY 9223i reading Bag_of_wo rds
group. Nick Feng will be leading a discussion

about the paper Simple Analyses of the Sparse

Johnson-Lindenstrauss Transform

<http://drops.dagstuhl.de/opus/volltexte/2018 1

/8305 /pd£/OASIcs-SOSA-2018-15.pdf>. Please
read the abstract and introduction before the
meeting. Best, - Ci *Christopher Musco,

istant “New York Universi s
Tandon School of Engineering* *(401) 578 eflderf
2541+ --00000000000078ec240594568a53 Content—

1
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Transfer-Encoding: quoted-printable
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SPAM FILTERING
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SPAM FILTERING

Logistic loss:

Given label b € {0,1},

L(b, Mx(y)) = —blog (Mx(y)) + (1 — b) log (1 — Mx(y))

Total cost of over time:

T
Z L(b(i)’ Mx(") (y(i))))

i=1

where y() is the " email and b() is the /" label.



REGRET BOUND

How should we measure how well we did?

For some small value A, can we achieve:

T T
> i) < [mxin > filx)

l.e. can we compete with the best fixed solution in hindsight.

+ A.

A ="regret”



ONLINE GRADIENT DESCENT

Assume:

- Lipschitz functions: for all x, i, || Vfi(X)]|2 <
- Starting radius: ||x* — x|, <

Online Gradient descent:

- Choose number of steps T.

IR
- Fori=1,...,T
XKD — X0 — v (x)
Play x(+1,

Claim (OGD Regret Bound)
After T steps, A = [z,; ]‘,(x(’))] - [2,; ]‘i(x*)} < RGVT



STOCHASTIC GRADIENT DESCENT

Recall the machine learning setup. In empirical risk
minimization, we can typically write:

n
)= fi(x)
j=1
where f; is the loss function for a particular data point.

Linear regression:



STOCHASTIC GRADIENT DESCENT

Pick randomje1,..., n:
E [V£(x)] = Vf(x).

But Vfj(x) can often be computed in a 1/n fraction of the time!

Main idea: Use random approximate gradient in place of
actual gradient.

Trade slower convergence for cheaper iterations.
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STOCHASTIC GRADIENT DESCENT

Assume:

+ Lipschitz functions: for all x, j, [ Vfi(x)[> < &

- Starting radius: ||x* — x|, <R.
Stochastic Gradient descent:

- Choose number of steps T.

"= G/lzﬁ

- Fori=1,...,T:
- Pickrandom j; € 1,...,n.
< x(+) = x() — UVE,(X(i))

- Return X = 127 x()

"



VISUALIZING SGD

GD's smooth convergence SGD's stochastic convergence
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STOCHASTIC GRADIENT DESCENT ANALYSIS

Claim (SGD Convergence)

After T = RS2 jteration:

€2

E[f(X) - f(x)] < e
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STOCHASTIC GRADIENT DESCENT ANALYSIS

Claim (SGD Convergence)

After T = RS2 jteration:

€2

E[f(X) - f(x)] < e



COMPARISON

Number of iterations for error e

- Gradient Descent: T =

R262
=

- Stochastic Gradient Descent: T =

RZGIZ
Always have G < G':

VA2 < IVA2 + - .. + V()2 < n- % _q.

Fair comparison:

- SGD cost = (# of iterations) - O(1)
- GD cost = (# of iterations) - O(n)
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COMPARISON

Stochastic vs. Full Batch Gradient Descent:



BEYOND THE BASIC BOUND

Can the convergence bounds be tightened for certain
functions? Can they guide us towards faster algorithms?

Goals:
- Improve e dependence below 1/¢€.

- Reduce or eliminate dependence on G and R.
- Etc.



SMOOTHNESS

Definition (3-smoothness)
A function fis J smooth if, for all x, y

IVAX) = VAY)ll2 < Blix = yll2

B is a parameter that will depend on our function.



SMOOTHNESS

Recall from definition of convexity that:
fx) = fly) < VAX)T(x —y)

How much smaller can left hand side be?

N |

IIx = yli3

VIX) (x = y) = [f(x) = fiy)] <
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GUARANTEED PROGRESS

Previously learning rate/step size n depended on G. Now
choose it based on g:

() (O _ ;Vf(x“))

Progress per step of gradient descent:
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CONVERGENCE GUARANTEE

Theorem (GD convergence for 3-smooth functions.)
Let f be a 3 smooth convex function and assume we have
Ix* = xM|[; < R. If we run GD for T steps with n = § we have:

2
_ 28R

FD) = fxr) < 2

Corollary: If we have f(x(N) — f(x*) < e.
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STRONG CONVEXITY

Definition (a-strongly convex)
A convex function fis a-strongly convex if, for all x, y

fy) > 00 + VAT(y = ) + S [x — v}

« is a parameter that will depend on our function.
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STRONG CONVEXITY

Completing the picture: If fis « strongly convex and 3 smooth,

%I =yl < VA0~ y) = [ — ) < - Ix = v
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GD FOR STRONGLY CONVEX FUNCTION

Gradient descent for strongly convex functions:
- Choose number of steps T.
- Fori=1,...,T:

. _ 2
b= =0
(/+1) — x() — UVf(X(’ )

- Return & = argmin,g f(x").

- Alternatively, return x = 32, G 2-I‘r )x(f).

2%



CONVERGENCE GUARANTEE

Theorem (GD convergence for a-strongly convex functions.)
Let f be an a-strongly convex function and assume we have

that, for all x, || Vf(x)|| < G. If we run GD for T steps (with
adaptive step sizes) we have:

Corollary: If we have f(X) — f(x*) < e
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SMOOTH AND STRONGLY CONVEX

What if fis both 8-smooth and a-strongly convex?

%I =yl < VA0~ y) = [ — ) < - x = v

What if o = 3:
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SMOOTH AND STRONGLY CONVEX

What if fis both 8-smooth and a-strongly convex?

%I =yl < VA0~ y) = [ — ) < - x = v

What if o = 3:

27



CONVERGENCE GUARANTEE

Theorem (GD for 3-smooth, a-strongly convex.)
Let f be a -smooth and a-strongly convex function. If we run
GD for T steps (with step size n = %) we have:

Ix® —x*|3 < &= D5 xM — x(13

is called the “condition number” of f.

Is it better if « is large or small?
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SMOOTH AND STRONGLY CONVEX

Converting to more familiar form:

%I =yl < VA0~ y) = [ — ) < - Ix = v
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CONVERGENCE GUARANTEE

Corollary (GD for s-smooth, a-strongly convex.)
Let f be a 8-smooth and a-strongly convex function. If we run
GD for T steps (with step size n = %) we have:

fx®) — f(x*) < ge_(t_”%R

Corollary: If we have:
fIR) — f(x*) < e.
Alternative: If we have:

F8) = 0 < € [fx) = f(x)
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UNDERSTANDING CONDITIONING

Let f(x) = ||Dx — b||3 where D is a diagaonl matrix. For now

imagine we're in two dimensions: x = e ,D = o 0 )
X2 0 d2
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UNDERSTANDING CONDITIONING

What is 3 for f(x) = ||Dx — b||3?

In other words: What is smallest 8 so that for all x,y,

IVAX) = VAY)ll2 < BlIx = yl2
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UNDERSTANDING CONDITIONING

What is « for f(x) = ||Dx — b||3?

In other words: What is largest a so that for all x,y,

%HX —yl5 < VAX)(x —y) — [f(x) = f(Y)]

33



UNDERSTANDING CONDITIONING

@

Level sets of ||Dx — b||2 when dy =1,d, = 1.



UNDERSTANDING CONDITIONING

=

Level sets of [|Dx — b||3 when dy = {,d, = 2.




UNDERSTANDING CONDITIONING

Steps to convergence ~ O (k log(1/¢)) = O (“r;?;gj)) log(1 /e)).

For general regression problems ||Ax — b|}?,

B = )\max(ATA)
o = )\min(ATA)
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IN-CLASS EXERCISE

Theorem (GD for 3-smooth, a-strongly convex.)
Let f be a -smooth and a-strongly convex function. If we run
GD for T steps (with step size n = %) we have:

6 — x| < ™5 —xe 3
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IN-CLASS EXERCISE
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IN-CLASS EXERCISE
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