CS-GY 9223 I: Lecture 6 Smoothness, Strong convexity, and more.

NYU Tandon School of Engineering, Prof. Christopher Musco

GRADIENT DESCENT ANALYSIS

Assume:

- f is convex.
- Lipschitz function: for all \mathbf{x} , $\|\nabla f(\mathbf{x})\|_2 \leq \mathbf{G}$.
- Starting radius: $\|\mathbf{x}^* \mathbf{x}^{(1)}\|_2 \leq R$.

Gradient descent:

- Choose number of steps T.
- $\eta = \frac{R}{G\sqrt{T}}$
- For i = 1, ..., T:

•
$$\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - \eta \nabla f(\mathbf{x}^{(i)})$$

• Return $\hat{\mathbf{x}} = \arg\min_{\mathbf{x}^{(i)}} f(\mathbf{x}^{(i)})$.

Theorem (GD Convergence Bound) If $T \ge \frac{R^2G^2}{\epsilon^2}$, then $f(\hat{\mathbf{x}}) \le f(\mathbf{x}^*) + \epsilon$. Instead of a single function *f* to minimize, assume we have an unknown and changing set of objective functions:

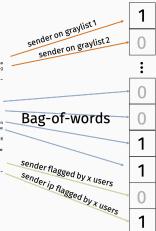
$f_1, ..., f_T.$

- At each time step, choose $\mathbf{x}^{(i)}$.
- f_i is revealed and we pay cost $f_i(\mathbf{x}^{(i)})$
- **Goal**: Minimize $\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)})$.

EXAMPLE

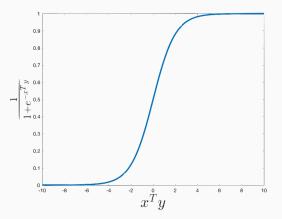
Email spam filtering:

MIME-Version: 1.0 Date: Mon, 7 Oct 2019 14:51:30 -0400 Message-ID: <CANVPizUGqx==B-39MLANnOPyJ9_jxaX60QmuHWb4QCFBPgNDzA@mail.gma il.com> Subject: 9223i Reading Group, Meeting 2. tomorrow at 10am From: Christopher Musco <cmusco@nyu.edu> To: algmlds@nyu.edu Content-Type: multipart/alternative; boundary="00000000000078ec240594568a53" --00000000000078ec240594568a53 Content-Type: text/plain; charset="UTF-8" I hope everyone had a good weekend! Tomorrow at *10am in 370 Jay St. #1114* we will meet for the second instantiation of the CS-GY 92231 reading group. Nick Feng will be leading a discussion about the paper Simple Analyses of the Sparse Johnson-Lindenstrauss Transform <http://drops.dagstuhl.de/opus/volltexte/2018 /8305/pdf/OASIcs-SOSA-2018-15.pdf>. Please read the abstract and introduction before the meeting. Best, - CM *Christopher Musco, Assistant Professor* *New York University. Tandon School of Engineering* *(401) 578 2541* --00000000000078ec240594568a53 Content-Type: text/html: charset="UTF-8" Content-Transfer-Encoding: guoted-printable



SPAM FILTERING

•
$$M_{\mathbf{x}}(\mathbf{y}) = \frac{1}{1+e^{-\mathbf{x}^T\mathbf{y}}}$$



Predict **y** as spam if $M_x(\mathbf{y}) \geq \frac{1}{2}$.

Logistic loss:

Given label $b \in \{0, 1\}$,

 $L(b, M_{x}(y)) = -b \log (M_{x}(y)) + (1 - b) \log (1 - M_{x}(y))$

Total cost of over time:

$$\sum_{i=1}^{T} L(b^{(i)}, M_{\mathbf{x}^{(i)}}(\mathbf{y}^{(i)})))$$

where $\mathbf{y}^{(i)}$ is the *i*th email and $b^{(i)}$ is the *i*th label.

How should we measure how well we did?

For some small value Δ , can we achieve:

$$\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)}) \leq \left[\min_{\mathbf{x}} \sum_{i=1}^{T} f_i(\mathbf{x}) \right] + \Delta.$$

I.e. can we compete with the best fixed solution in hindsight.

$$\Delta$$
 = "regret"

ONLINE GRADIENT DESCENT

Assume:

- Lipschitz functions: for all \mathbf{x} , i, $\|\nabla f_i(\mathbf{x})\|_2 \leq \mathbf{G}$.
- Starting radius: $\|\mathbf{x}^* \mathbf{x}^{(1)}\|_2 \le R$.

Online Gradient descent:

• Choose number of steps T.

•
$$\eta = \frac{D}{G\sqrt{T}}$$

• For
$$i = 1, ..., T$$
:

•
$$\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - \eta \nabla f_i(\mathbf{x}^{(i)})$$

• Play $\mathbf{x}^{(i+1)}$.

Claim (OGD Regret Bound)

After T steps,
$$\Delta = \left[\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)})\right] - \left[\sum_{i=1}^{T} f_i(\mathbf{x}^*)\right] \le RG\sqrt{T}$$

Recall the machine learning setup. In empirical risk minimization, we can typically write:

$$f(\mathbf{x}) = \sum_{j=1}^{n} f_j(\mathbf{x})$$

where f_i is the loss function for a particular data point.

Linear regression:

$$f(\mathbf{x}) = \sum_{j=1}^{n} (\mathbf{x}^{T} \mathbf{y}^{(j)} - b^{(j)})^{2}$$

Pick random $j \in 1, \ldots, n$:

$$\mathbb{E}\left[\nabla f_j(\mathbf{x})\right] = \nabla f(\mathbf{x}).$$

But $\nabla f_i(\mathbf{x})$ can often be computed in a 1/*n* fraction of the time!

Main idea: Use random approximate gradient in place of actual gradient.

Trade slower convergence for cheaper iterations.

STOCHASTIC GRADIENT DESCENT

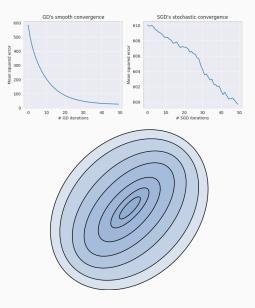
Assume:

- Lipschitz functions: for all \mathbf{x} , j, $\|\nabla f_j(\mathbf{x})\|_2 \leq \frac{G'}{n}$.
- Starting radius: $\|\mathbf{x}^* \mathbf{x}^{(1)}\|_2 \le R$.

Stochastic Gradient descent:

- Choose number of steps T.
- $\eta = \frac{D}{G'\sqrt{T}}$
- For i = 1, ..., T:
 - Pick random $j_i \in 1, \ldots, n$.
 - $\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} \eta \nabla f_{j_i}(\mathbf{x}^{(i)})$
- Return $\hat{\mathbf{x}} = \frac{1}{T} \sum_{i=1}^{T} \mathbf{x}^{(i)}$

VISUALIZING SGD



Claim (SGD Convergence) After $T = \frac{R^2 G'^2}{\epsilon^2}$ iteration: $\mathbb{E} [f(\hat{\mathbf{x}}) - f(\mathbf{x}^*)] \le \epsilon.$ Claim (SGD Convergence) After $T = \frac{R^2 G'^2}{\epsilon^2}$ iteration: $\mathbb{E} [f(\hat{\mathbf{x}}) - f(\mathbf{x}^*)] \le \epsilon.$ Number of iterations for error ϵ :

- Gradient Descent: $T = \frac{R^2 G^2}{\epsilon^2}$.
- Stochastic Gradient Descent: $T = \frac{R^2 G'^2}{\epsilon^2}$.

Always have $G \leq G'$:

$$\|\nabla f(x)\|_2 \leq \|\nabla f_1(x)\|_2 + \ldots + \|\nabla f_n(x)\|_2 \leq n \cdot \frac{G'}{n} = G'.$$

Fair comparison:

- SGD cost = (# of iterations) · O(1)
- GD cost = (# of iterations) · O(n)

Stochastic vs. Full Batch Gradient Descent:

Can the convergence bounds be tightened for certain functions? Can they guide us towards faster algorithms?

Goals:

- Improve ϵ dependence below $1/\epsilon^2$.
- Reduce or eliminate dependence on G and R.
- Etc.

SMOOTHNESS

Definition (β -smoothness) A function f is β smooth if, for all \mathbf{x}, \mathbf{y} $\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_2 \le \beta \|\mathbf{x} - \mathbf{y}\|_2$

 β is a parameter that will depend on our function.

Recall from definition of convexity that:

$$f(\mathbf{x}) - f(\mathbf{y}) \leq \nabla f(\mathbf{x})^{\mathsf{T}}(\mathbf{x} - \mathbf{y})$$

How much smaller can left hand side be?

$$\nabla f(\mathbf{x})^{\mathsf{T}}(\mathbf{x}-\mathbf{y}) - [f(\mathbf{x}) - f(\mathbf{y})] \le \frac{\beta}{2} \|\mathbf{x}-\mathbf{y}\|_2^2$$

Previously learning rate/step size η depended on *G*. Now choose it based on β :

$$\mathbf{x}^{(t+1)} \leftarrow \mathbf{x}^{(t)} - \frac{1}{\beta} \nabla f(\mathbf{x}^{(t)})$$

Progress per step of gradient descent:

Theorem (GD convergence for β -smooth functions.) Let f be a β smooth convex function and assume we have $\|\mathbf{x}^* - \mathbf{x}^{(1)}\|_2 \leq R$. If we run GD for T steps with $\eta = \frac{1}{\beta}$ we have:

$$f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \frac{2\beta R^2}{T-1}$$

Corollary: If $T = O\left(\frac{\beta R^2}{\epsilon}\right)$ we have $f(\mathbf{x}^{(T)}) - f(\mathbf{x}^*) \le \epsilon$.

STRONG CONVEXITY

Definition (α -strongly convex)

A convex function f is α -strongly convex if, for all \mathbf{x}, \mathbf{y}

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^{\mathsf{T}}(\mathbf{y} - \mathbf{x}) + \frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|_2^2$$

 α is a parameter that will depend on our function.

Completing the picture: If *f* is α strongly convex and β smooth,

$$\frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|_2^2 \leq \nabla f(\mathbf{x})^T (\mathbf{x} - \mathbf{y}) - [f(\mathbf{x}) - f(\mathbf{y})] \leq \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_2^2.$$

Gradient descent for strongly convex functions:

- Choose number of steps T.
- For i = 1, ..., T:

•
$$\eta = \frac{2}{\alpha \cdot (i+1)}$$

• $\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - \eta \nabla f(\mathbf{x}^{(i)})$

- Return $\hat{\mathbf{x}} = \arg\min_{\mathbf{x}^{(i)}} f(\mathbf{x}^{(i)})$.
- Alternatively, return $\hat{\mathbf{x}} = \sum_{i=1}^{T} \frac{2i}{T(T+1)} \mathbf{x}^{(i)}$.

Theorem (GD convergence for α **-strongly convex functions.)** Let f be an α -strongly convex function and assume we have that, for all \mathbf{x} , $\|\nabla f(\mathbf{x})\|_2 \leq \mathbf{G}$. If we run GD for T steps (with adaptive step sizes) we have:

$$f(\hat{\mathbf{x}}) - f(\mathbf{x}^*) \le \frac{2G^2}{\alpha(T-1)}$$

Corollary: If $T = O\left(\frac{G^2}{\alpha\epsilon}\right)$ we have $f(\hat{\mathbf{x}}) - f(\mathbf{x}^*) \le \epsilon$

What if f is both β -smooth and α -strongly convex?

$$\frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|_2^2 \leq \nabla f(\mathbf{x})^T (\mathbf{x} - \mathbf{y}) - [f(\mathbf{x}) - f(\mathbf{y})] \leq \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_2^2.$$

What if $\alpha = \beta$:

What if *f* is both β -smooth and α -strongly convex?

$$\frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|_2^2 \leq \nabla f(\mathbf{x})^T (\mathbf{x} - \mathbf{y}) - [f(\mathbf{x}) - f(\mathbf{y})] \leq \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_2^2.$$

What if $\alpha = \beta$:

Theorem (GD for β -smooth, α -strongly convex.)

Let f be a β -smooth and α -strongly convex function. If we run GD for T steps (with step size $\eta = \frac{1}{\beta}$) we have:

$$\|\mathbf{x}^{(t)} - \mathbf{x}^*\|_2^2 \le e^{-(t-1)\frac{\alpha}{\beta}} \|\mathbf{x}^{(1)} - \mathbf{x}^*\|_2^2$$

 $\kappa = \frac{\beta}{\alpha}$ is called the "condition number" of *f*. Is it better if κ is large or small? Converting to more familiar form:

$$\frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|_2^2 \leq \nabla f(\mathbf{x})^T (\mathbf{x} - \mathbf{y}) - [f(\mathbf{x}) - f(\mathbf{y})] \leq \frac{\beta}{2} \|\mathbf{x} - \mathbf{y}\|_2^2.$$

CONVERGENCE GUARANTEE

Corollary (GD for β **-smooth,** α **-strongly convex.)** Let f be a β -smooth and α -strongly convex function. If we run GD for T steps (with step size $\eta = \frac{1}{\beta}$) we have:

$$f(\mathbf{x}^{(t)}) - f(\mathbf{x}^*) \le \frac{\beta}{2}e^{-(t-1)\frac{\alpha}{\beta}}R$$

Corollary: If $T = O\left(\frac{\beta}{\alpha}\log(\beta R/\epsilon)\right)$ we have: $f(\hat{\mathbf{x}}) - f(\mathbf{x}^*) \le \epsilon.$

Alternative: If $T = O\left(\frac{\beta}{\alpha}\log(\beta/\alpha\epsilon)\right)$ we have: $f(\hat{\mathbf{x}}) - f(\mathbf{x}^*) \le \epsilon \left[f(\mathbf{x}^{(1)}) - f(\mathbf{x}^*)\right]$ Let $f(\mathbf{x}) = \|\mathbf{D}\mathbf{x} - \mathbf{b}\|_2^2$ where **D** is a diagaonl matrix. For now imagine we're in two dimensions: $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, $\mathbf{D} = \begin{bmatrix} d_1 & 0 \\ 0 & d_2 \end{bmatrix}$.

What is
$$\beta$$
 for $f(\mathbf{x}) = \|\mathbf{D}\mathbf{x} - \mathbf{b}\|_2^2$?

In other words: What is smallest β so that for all x, y,

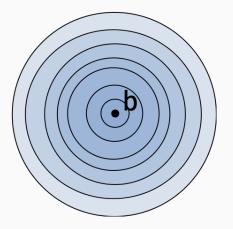
$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_2 \le \beta \|\mathbf{x} - \mathbf{y}\|_2$

What is
$$\alpha$$
 for $f(\mathbf{x}) = \|\mathbf{D}\mathbf{x} - \mathbf{b}\|_2^2$?

In other words: What is largest α so that for all x, y,

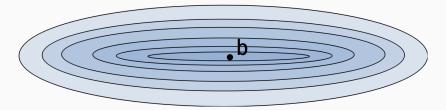
$$\frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|_2^2 \le \nabla f(\mathbf{x})^{\mathsf{T}} (\mathbf{x} - \mathbf{y}) - [f(\mathbf{x}) - f(\mathbf{y})]$$

UNDERSTANDING CONDITIONING



Level sets of $\|\mathbf{D}\mathbf{x} - \mathbf{b}\|_{2}^{2}$ when $d_{1} = 1, d_{2} = 1$.

UNDERSTANDING CONDITIONING



Level sets of $\|\mathbf{D}\mathbf{x} - \mathbf{b}\|_{2}^{2}$ when $d_{1} = \frac{1}{3}, d_{2} = 2$.

Steps to convergence $\approx O(\kappa \log(1/\epsilon)) = O\left(\frac{\max(\mathbf{D}^2)}{\min(\mathbf{D}^2)}\log(1/\epsilon)\right).$

For general regression problems $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$,

 $\beta = \lambda_{max}(\mathbf{A}^{\mathsf{T}}\mathbf{A})$ $\alpha = \lambda_{min}(\mathbf{A}^{\mathsf{T}}\mathbf{A})$

IN-CLASS EXERCISE

Theorem (GD for β -smooth, α -strongly convex.)

Let f be a β -smooth and α -strongly convex function. If we run GD for T steps (with step size $\eta = \frac{1}{\beta}$) we have:

$$\|\mathbf{x}^{(t)} - \mathbf{x}^*\|_2^2 \le e^{-(t-1)\frac{\alpha}{\beta}} \|\mathbf{x}^{(1)} - \mathbf{x}^*\|_2^2$$

Prove for $f(x) = ||Dx - b||_2^2$.

IN-CLASS EXERCISE

IN-CLASS EXERCISE