CS-GY 9223 I: Lecture 5 Gradient Decent and Its Many Forms

NYU Tandon School of Engineering, Prof. Christopher Musco

Cosine similarity $\cos(\theta(\mathbf{x}, \mathbf{y})) = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\||\mathbf{x}\|_2 \|\mathbf{y}\|_2}$:

 $-1 \leq \cos(\theta(\mathbf{x}, \mathbf{y})) \leq 1.$

Locality sensitive hash for cosine similarity:

- Let $\mathbf{g} \in \mathbb{R}^d$ be randomly chosen with each entry $\mathcal{N}(0, 1)$.
- $h : \mathbb{R}^d \to \{-1, 1\}$ is defined $h(\mathbf{x}) = \operatorname{sign}(\langle \mathbf{g}, \mathbf{x} \rangle).$

If $cos(\theta(\mathbf{x}, \mathbf{y})) = v$, what is $Pr[h(\mathbf{x}) == h(\mathbf{y})]$?

SIMHASH ANALYSIS

SIMHASH ANALYSIS

Work of Anshumali Shrivastava at Rice University and coauthors.

- Number of multiplications to evaluate $\mathcal{N}(\mathbf{x})$: $|\mathbf{x}| \cdot ||ayer 1| + ||ayer 1| \cdot ||ayer 2| + ||ayer 2| \cdot ||ayer 3| + \dots$
- For an approximate solution, only consider neurons on each each with <u>high activation</u>.

Work of Anshumali Shrivastava at Rice University and coauthors.

- <u>High activation</u> = large value of $\sigma(\langle \mathbf{w}_i, \mathbf{x} \rangle)$.
- Typically $\sigma(\langle \mathbf{w}_i, \mathbf{x} \rangle)$ increases as $\langle \mathbf{w}_i, \mathbf{x} \rangle$ increases.
- Use LSH/SimHash to quickly find all w_i for which (w_i, x) is large and only include these terms in the sum.

Optimization

Have some function $f : \mathbb{R}^d \to \mathbb{R}$. Want to find $\hat{\mathbf{x}}$ such that:

 $f(\hat{\mathbf{x}}) = \min_{\mathbf{x}} f(\mathbf{x}).$

Or at least $\hat{\mathbf{x}}$ is close to a minimum. E.g. $f(\hat{\mathbf{x}}) \leq \min_{\mathbf{x}} f(\mathbf{x}) + \epsilon$

Often we have some additional constraints:

- $\cdot \mathbf{x} > 0$
- $\|\mathbf{x}\|_2 \le R$, $\|\mathbf{x}\|_1 \le R$
- $\mathbf{a}^T \mathbf{x} > c$.

OPTIMIZATION

Dimension d = 1:

Dimension d = 2:

Machine learning: Want to learn a model that maps input

- numerical data vectors
- images, video
- text documents
- to <u>prediction</u>
 - numerical value (probability stock price increases)
 - label (is the image a cat? does the image contain a car?)
 - decision (turn car left, rotate robotic arm)

Let $M_{\mathbf{x}}$ be a model with parameters $\mathbf{x} = \{x_1, \dots, x_d\}$.

Example:

$$M_{\mathbf{x}}(\mathbf{y}) = \operatorname{sign}(\mathbf{y}^{T}\mathbf{x}_{1:d-1} + \mathbf{x}_{d})$$

MACHINE LEARNING MODEL

Example:

Classic approach in <u>supervised learning</u>: Find a model that works well on data that you already have the answer for (labels, values, classes, etc.).

- Model M_x parameterized by a vector of numbers x.
- Dataset $\mathbf{y}^{(1)}, \ldots, \mathbf{y}^{(n)}$ with outputs $o^{(1)}, \ldots, o^{(n)}$.

Want to find $\hat{\mathbf{x}}$ so that $M_{\hat{\mathbf{x}}}(\mathbf{y}^{(i)}) \approx o^{(i)}$ for $i \in 1, ..., n$. How do we turn this into a function minization problem? **Loss function** $L(M_x(y), o)$: Some measure of distance between prediction $M_x(y)$ and true output o. Increases if they are further apart.

- Squared (ℓ_2) loss: $|M_x(y) o|^2$
- Absolute deviation (ℓ_1) loss: $|M_x(y) o|$
- Hinge loss: $1 o \cdot M_x(y)$
- Cross-entropy loss (log loss).
- Etc.

Empirical risk minimization:

$$f(\mathbf{x}) = \sum_{i=1}^{n} L\left(M_{\mathbf{x}}(\mathbf{y}^{(i)}), o^{(i)}\right)$$

Solve the optimization problem $\min_{\mathbf{x}} f(\mathbf{x})$.

Gradient descent: A greedy algorithm for minimizing functions of multiple variables that often works amazingly well.

Abraham Maslow:

"I suppose it is tempting, if the only tool you have is a hammer, to treat everything as if it were a nail."

OPTIMIZATION ALGORITHMS

So much to learn!

For i = 1, ..., d, let x_i be the ith entry of **x**. Let $e^{(i)}$ be the ith standard basis vector.

Partial derivative:

$$\frac{\partial f}{\partial x_i}(\mathbf{x}) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{e}^{(i)}) - f(\mathbf{x})}{t}$$

Directional derivative:

$$D_{\mathbf{v}}f(\mathbf{x}) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{v}) - f(\mathbf{x})}{t}$$

Gradient:

$$\nabla f(\mathbf{x}) = \begin{bmatrix} rac{\partial f}{\partial x_1}(\mathbf{x}) \\ rac{\partial f}{\partial x_2}(\mathbf{x}) \\ \vdots \\ rac{\partial f}{\partial x_d}(\mathbf{x}) \end{bmatrix}$$

7

Directional derivative:

$$D_{\mathbf{v}}f(\mathbf{x}) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{v}) - f(\mathbf{x})}{t} = \nabla f(\mathbf{x})^{\mathsf{T}}\mathbf{v}$$

Given a function *f* to minimize, assume we can:

- Function oracle: Evaluate $f(\mathbf{x})$ for any \mathbf{x} .
- Gradient oracle: Evaluate $\nabla f(\mathbf{x})$ for any \mathbf{x} .

Linear least-squares regression:

- Given $\mathbf{y}^{(1)}, \dots \mathbf{y}^{(n)} \in \mathbb{R}^d$, $b^{(1)}, \dots b^{(n)} \in \mathbb{R}$.
- Want to minimize $f(\mathbf{x}) = \sum_{i=1}^{n} (\mathbf{x}^{T} \mathbf{y}^{(i)} b^{(i)})^{2}$.

Matrix view:

Greedy approach: Given a starting point **x**, make a small adjustment that decreases $f(\mathbf{x})$. In particular, $\mathbf{x} \leftarrow \mathbf{x} + \eta \mathbf{v}$ and $f(\mathbf{x}) \leftarrow f(\mathbf{x} + \eta \mathbf{v})$.

What property might I want in **v**?

$$D_{\mathbf{v}}f(\mathbf{x}) = \lim_{t \to 0} \frac{f(\mathbf{x} + t\mathbf{v}) - f(\mathbf{x})}{t} = \nabla f(\mathbf{x})^{\mathsf{T}}\mathbf{v}$$

Prototype algorithm:

- Choose arbitrary starting point $\mathbf{x}^{(1)}$.
- For i = 1, ..., T:

•
$$\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - \eta \nabla f(\mathbf{x}^{(i)})$$

• Return $\mathbf{x}^{(t)}$.

 η is a step-size parameter. Needs to be chosen ahead of time or adapted on the go.

Example in one dimension:

GRADIENT DESCENT

 $\begin{array}{l} \mbox{Claim (Gradient descent = Steepest descent)} \\ \frac{-\nabla f(\mathbf{x})}{\|\nabla f(\mathbf{x})\|_2} = \arg\min_{\mathbf{v}, \|\mathbf{v}\|_2 \leq 1} \nabla f(\mathbf{x})^T \mathbf{v} \end{array}$

Note: We could have chosen to restrict **v** using a different norm. What if we had restricted $\|\mathbf{v}\|_1 \leq 1$? $\|\mathbf{v}\|_{\infty} \leq 1$? These choices lead to variants of generalized steepest descent.

In general, gradient descent can be proven to converge (and we understand how quickly it converges) for <u>convex</u> functions.

Definition (Convex)

A function *f* is convex iff for any $\mathbf{x}, \mathbf{y}, \lambda \in [0, 1]$:

$$(1 - \lambda) \cdot f(\mathbf{x}) + \lambda \cdot f(\mathbf{y}) \ge f((1 - \lambda) \cdot \mathbf{x} + \lambda \cdot \mathbf{y})$$

Definition (Convex)

A function *f* is convex iff for any **x**, **y**:

 $f(\mathbf{x} + \mathbf{z}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^{\mathsf{T}} \mathbf{z}$

$$f(\mathbf{x}) - f(\mathbf{y}) \leq \nabla f(\mathbf{x})^{\mathsf{T}}(\mathbf{x} - \mathbf{y})$$

Definition (Convex)

A function *f* is convex iff for any **x**, **y**:

$$f(\mathbf{x}) - f(\mathbf{y}) \leq \nabla f(\mathbf{x})^{\mathsf{T}}(\mathbf{x} - \mathbf{y})$$

Assume:

- f is convex.
- Lipschitz function: for all \mathbf{x} , $\|\nabla f(\mathbf{x})\|_2 \leq \mathbf{G}$.
- Starting radius: $\|\mathbf{x}^* \mathbf{x}^{(1)}\|_2 \leq R$.

Gradient descent:

- Choose number of steps T.
- $\eta = \frac{R}{G\sqrt{T}}$
- For i = 1, ..., T:
 - $\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} \eta \nabla f(\mathbf{x}^{(i)})$
- Return $\hat{\mathbf{x}} = \arg\min_{\mathbf{x}^{(i)}} f(\mathbf{x}^{(i)})$.
- Alternatively, return $\hat{\mathbf{x}} = \frac{1}{\overline{T}} \sum_{i=1}^{T} \mathbf{x}^{(i)}$.

Claim (GD Convergence Bound) If $T \ge \frac{R^2G^2}{\epsilon^2}$, then $f(\hat{\mathbf{x}}) \le f(\mathbf{x}^*) + \epsilon$.

Claim (GD Convergence Bound) If $T \ge \frac{R^2G^2}{\epsilon^2}$, then $f(\hat{\mathbf{x}}) \le f(\mathbf{x}^*) + \epsilon$.

Claim (GD Convergence Bound) If $T \ge \frac{R^2G^2}{\epsilon^2}$, then $f(\hat{\mathbf{x}}) \le f(\mathbf{x}^*) + \epsilon$. Instead of a single function *f* to minimize, assume we have an unknown and changing set of objective functions:

$$f_1, \ldots, f_T.$$

- At each time step, choose $\mathbf{x}^{(i)}$.
- f_i is revealed and we pay cost $f_i(\mathbf{x}^{(i)})$
- **Goal**: Minimize $\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)})$.

Objective: Choose $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(T)}$ so that:

$$\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)}) \leq \left[\min_{\mathbf{x}} \sum_{i=1}^{T} f_i(\mathbf{x}) \right] + \Delta.$$

We want to compete with the best fixed solution in hindsight.

ONLINE GRADIENT DESCENT

Assume:

- Lipschitz function: for all \mathbf{x} , i, $\|\nabla f_i(\mathbf{x})\|_2 \leq \mathbf{G}$.
- Starting radius: $\|\mathbf{x}^* \mathbf{x}^{(1)}\|_2 \leq R$.

Online Gradient descent:

- Choose number of steps T.
- $\eta = \frac{D}{G\sqrt{T}}$
- For i = 1, ..., T:
 - $\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} \eta \nabla f_i(\mathbf{x}^{(i)})$
- Play $\mathbf{x}^{(i+1)}$.

Claim (OGD Regret Bound)

After T steps,
$$\Delta = \left[\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)})\right] - \left[\sum_{i=1}^{T} f_i(\mathbf{x}^*)\right] \le RG\sqrt{T}$$

Claim (OGD Regret Bound)

After T steps,
$$\Delta = \left[\sum_{i=1}^{T} f_i(\mathbf{x}^{(i)})\right] - \left[\sum_{i=1}^{T} f_i(\mathbf{x}^*)\right] \le RG\sqrt{T}$$

Recall the machine learning setup. In empirical risk minimization, we can typically write:

$$f(\mathbf{x}) = \sum_{j=1}^{n} f_j(\mathbf{x})$$

where f_i is the loss function for a particular data point.

Linear regression:

$$f(\mathbf{x}) = \sum_{j=1}^{n} (\mathbf{x}^{T} \mathbf{y}^{(j)} - b^{(j)})^{2}$$

Pick random $j \in 1, \ldots, n$:

$$\mathbb{E}\left[\nabla f_j(\mathbf{x})\right] = \nabla f(\mathbf{x}).$$

But $\nabla f_i(\mathbf{x})$ can be computed in a 1/*n* fraction of the time!

Main idea: Use random approximate gradient in place of actual gradient.

Trade slower convergence for cheaper iterations.

STOCHASTIC GRADIENT DESCENT

Assume:

- Lipschitz functions: for all \mathbf{x} , j, $\|\nabla f_j(\mathbf{x})\|_2 \leq \frac{G'}{n}$.
- Starting radius: $\|\mathbf{x}^* \mathbf{x}^{(1)}\|_2 \le R$.

Stochastic Gradient descent:

- Choose number of steps T.
- $\eta = \frac{D}{G'\sqrt{T}}$
- For i = 1, ..., T:
 - Pick random $j_i \in 1, \ldots, n$.
 - $\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} \eta \nabla f_{j_i}(\mathbf{x}^{(i)})$
- Return $\hat{\mathbf{x}} = \frac{1}{T} \sum_{i=1}^{T} \mathbf{x}^{(i)}$

Claim (SGD Convergence) After $T = \frac{R^2 G'^2}{\epsilon^2}$ iteration: $\mathbb{E} [f(\hat{\mathbf{x}}) - f(\mathbf{x}^*)] \le \epsilon.$ Claim (SGD Convergence) After $T = \frac{R^2 G'^2}{\epsilon^2}$ iteration: $\mathbb{E} [f(\hat{\mathbf{x}}) - f(\mathbf{x}^*)] \le \epsilon.$ Claim (SGD Convergence) After $T = \frac{R^2 G'^2}{\epsilon^2}$ iteration: $\mathbb{E} [f(\hat{\mathbf{x}}) - f(\mathbf{x}^*)] \le \epsilon.$ Number of iterations for error ϵ :

- Gradient Descent: $T = \frac{R^2 G^2}{\epsilon^2}$.
- Stochastic Gradient Descent: $T = \frac{R^2 G'^2}{\epsilon^2}$.

Always have $G \leq G'$:

$$\|\nabla f(x)\|_2 \leq \|\nabla f_1(x)\|_2 + \ldots + \|\nabla f_n(x)\|_2 \leq n \cdot \frac{G'}{n} = G'.$$

Fair comparison:

$$\frac{R^2 G'^2}{\epsilon^2} = n \cdot \frac{R^2 G^2}{\epsilon^2}$$