
CS-GY 9223 I: Lecture 5
Gradient Decent and Its Many Forms

NYU Tandon School of Engineering, Prof. Christopher Musco

1



locality sensitive hashing

Cosine similarity cos (θ(x, y)) = ⟨x,y⟩
∥x∥2∥y∥2 :

−1 ≤ cos (θ(x, y)) ≤ 1.
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simhash

Locality sensitive hash for cosine similarity:

• Let g ∈ Rd be randomly chosen with each entry N (0, 1).
• h : Rd → {−1, 1} is definied h(x) = sign(⟨g, x⟩).

If cos(θ(x, y)) = v, what is Pr[h(x) == h(y)]?

3



simhash analysis
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simhash analysis

5



simhash to speedup neural networks

Work of Anshumali Shrivastava at Rice University and
coauthors.

• Number of multiplications to evaluate N (x):
|x| · |layer 1|+ |layer 1| · |layer 2|+ |layer 2| · |layer 3|+ . . ..

• For an approximate solution, only consider neurons on
each each with high activation.
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simhash to speedup neural networks

Work of Anshumali Shrivastava at Rice University and
coauthors.

• High activation = large value of σ(⟨wi, x⟩).
• Typically σ(⟨wi, x⟩) increases as ⟨wi, x⟩ increases.
• Use LSH/SimHash to quickly find all wi for which ⟨wi, x⟩ is
large and only include these terms in the sum.
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new unit

Optimization
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optimization

Have some function f : Rd → R. Want to find x̂ such that:

f(x̂) = min
x
f(x).

Or at least x̂ is close to a minimum. E.g. f(x̂) ≤ minx f(x) + ϵ

Often we have some additional constraints:

• x > 0
• ∥x∥2 ≤ R, ∥x∥1 ≤ R
• aTx > c.
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optimization

Dimension d = 1:

Dimension d = 2:
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optimization in machine learning

Machine learning: Want to learn a model that maps input

• numerical data vectors
• images, video
• text documents

to prediction

• numerical value (probability stock price increases)
• label (is the image a cat? does the image contain a car?)
• decision (turn car left, rotate robotic arm)
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machine learning model

Let Mx be a model with parameters x = {x1, . . . , xd}.

Example:

Mx(y) = sign(yTx1:d−1 + xd)
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machine learning model

Example:
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supervised learning

Classic approach in supervised learning: Find a model that
works well on data that you already have the answer for
(labels, values, classes, etc.).

• Model Mx parameterized by a vector of numbers x.
• Dataset y(1), . . . , y(n) with outputs o(1), . . . ,o(n).

Want to find x̂ so that Mx̂(y(i)) ≈ o(i) for i ∈ 1, . . . ,n.

How do we turn this into a function minization problem?

14



loss function

Loss function L (Mx(y),o): Some measure of distance between
prediction Mx(y) and true output o. Increases if they are
further apart.

• Squared (ℓ2) loss: |Mx(y)− o|2

• Absolute deviation (ℓ1) loss: |Mx(y)− o|
• Hinge loss: 1 - o ·Mx(y)
• Cross-entropy loss (log loss).
• Etc.
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Empirical risk minimization

Empirical risk minimization:

f(x) =
n∑
i=1

L
(
Mx(y(i)),o(i)

)
Solve the optimization problem minx f(x).
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gradient descent

Gradient descent: A greedy algorithm for minimizing functions
of multiple variables that often works amazingly well.
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gradient descent

Abraham Maslow:

“I suppose it is tempting, if the only tool you have is a hammer,
to treat everything as if it were a nail.”
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optimization algorithms

So much to learn!
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calculus review

For i = 1, . . . ,d, let xi be the ith entry of x. Let e(i) be the ith
standard basis vector.

Partial derivative:

∂f
∂xi

(x) = lim
t→0

f(x+ te(i))− f(x)
t

Directional derivative:

Dvf(x) = lim
t→0

f(x+ tv)− f(x)
t
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calculus review

Gradient:

∇f(x) =


∂f
∂x1 (x)
∂f
∂x2 (x)...
∂f
∂xd (x)


Directional derivative:

Dvf(x) = lim
t→0

f(x+ tv)− f(x)
t = ∇f(x)Tv.
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first order optimization

Given a function f to minimize, assume we can:

• Function oracle: Evaluate f(x) for any x.
• Gradient oracle: Evaluate ∇f(x) for any x.
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example gradient evaluation

Linear least-squares regression:

• Given y(1), . . . y(n) ∈ Rd, b(1), . . .b(n) ∈ R.
• Want to minimize f(x) =

∑n
i=1

(
xTy(i) − b(i)

)2
.
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example gradient evaluation

Matrix view:
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decent methods

Greedy approach: Given a starting point x, make a small
adjustment that decreases f(x). In particular, x← x+ ηv and
f(x)← f(x+ ηv).

What property might I want in v?

Dvf(x) = lim
t→0

f(x+ tv)− f(x)
t = ∇f(x)Tv.
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gradient descent

Prototype algorithm:

• Choose arbitrary starting point x(1).
• For i = 1, . . . , T:

• x(i+1) = x(i) − η∇f(x(i))
• Return x(t).

η is a step-size parameter. Needs to be chosen ahead of time
or adapted on the go.
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gradient descent

Example in one dimension:
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gradient descent

Claim (Gradient descent = Steepest descent)
−∇f(x)
∥∇f(x)∥2 = argminv,∥v∥2≤1∇f(x)

Tv

Note: We could have chosen to restrict v using a different
norm. What if we had restricted ∥v∥1 ≤ 1? ∥v∥∞ ≤ 1? These
choices lead to variants of generalized steepest descent..
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gradient descent

In general, gradient descent can be proven to converge (and
we understand how quickly it converges) for convex functions.

Definition (Convex)
A function f is convex iff for any x, y, λ ∈ [0, 1]:

(1− λ) · f(x) + λ · f(y) ≥ f ((1− λ) · x+ λ · y)
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gradient descent

Definition (Convex)
A function f is convex iff for any x, y:

f(x+ z) ≥ f(x) +∇f(x)Tz

f(x)− f(y) ≤ ∇f(x)T(x− y)
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gradient descent

Definition (Convex)
A function f is convex iff for any x, y:

f(x)− f(y) ≤ ∇f(x)T(x− y)
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gradient descent analysis

Assume:

• f is convex.
• Lipschitz function: for all x, ∥∇f(x)∥2 ≤ G.
• Starting radius: ∥x∗ − x(1)∥2 ≤ R.

Gradient descent:

• Choose number of steps T.
• η = R

G
√
T

• For i = 1, . . . , T:
• x(i+1) = x(i) − η∇f(x(i))

• Return x̂ = argminx(i) f(x(i)).
• Alternatively, return x̂ = 1

T
∑T

i=1 x(i).
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gradient descent analysis

Claim (GD Convergence Bound)
If T ≥ R2G2

ϵ2
, then f(x̂) ≤ f(x∗) + ϵ.
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gradient descent analysis

Claim (GD Convergence Bound)
If T ≥ R2G2

ϵ2
, then f(x̂) ≤ f(x∗) + ϵ.
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gradient descent analysis

Claim (GD Convergence Bound)
If T ≥ R2G2

ϵ2
, then f(x̂) ≤ f(x∗) + ϵ.
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online gradient descent

Instead of a single function f to minimize, assume we have an
unknown and changing set of objective functions:

f1, . . . , fT.

• At each time step, choose x(i).
• fi is revealed and we pay cost fi(x(i))
• Goal: Minimize

∑T
i=1 fi(x(i)).

36



regret bound

Objective: Choose x(1), . . . , x(T) so that:

T∑
i=1

fi(x(i)) ≤
[
min
x

T∑
i=1

fi(x)
]
+∆.

We want to compete with the best fixed solution in hindsight.

37



online gradient descent

Assume:

• Lipschitz function: for all x, i, ∥∇fi(x)∥2 ≤ G.
• Starting radius: ∥x∗ − x(1)∥2 ≤ R.

Online Gradient descent:

• Choose number of steps T.
• η = D

G
√
T

• For i = 1, . . . , T:
• x(i+1) = x(i) − η∇fi(x(i))

• Play x(i+1).
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online gradient descent analysis

Claim (OGD Regret Bound)

After T steps, ∆ =
[∑T

i=1 fi(x(i))
]
−
[∑T

i=1 fi(x∗)
]
≤ RG

√
T
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online gradient descent analysis

Claim (OGD Regret Bound)

After T steps, ∆ =
[∑T

i=1 fi(x(i))
]
−
[∑T

i=1 fi(x∗)
]
≤ RG

√
T
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stochastic gradient descent

Recall the machine learning setup. In empirical risk
minimization, we can typically write:

f(x) =
n∑
j=1

fj(x)

where fi is the loss function for a particular data point.

Linear regression:

f(x) =
n∑
j=1

(xTy(j) − b(j))2
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stochastic gradient descent

Pick random j ∈ 1, . . . ,n:

E
[
∇fj(x)

]
= ∇f(x).

But ∇fj(x) can be computed in a 1/n fraction of the time!

Main idea: Use random approximate gradient in place of
actual gradient.

Trade slower convergence for cheaper iterations.
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stochastic gradient descent

Assume:

• Lipschitz functions: for all x, j, ∥∇fj(x)∥2 ≤ G′
n .

• Starting radius: ∥x∗ − x(1)∥2 ≤ R.

Stochastic Gradient descent:

• Choose number of steps T.
• η = D

G′
√
T

• For i = 1, . . . , T:
• Pick random ji ∈ 1, . . . ,n.
• x(i+1) = x(i) − η∇fji(x

(i))

• Return x̂ = 1
T
∑T

i=1 x(i)
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stochastic gradient descent analysis

Claim (SGD Convergence)
After T = R2G′2

ϵ2
iteration:

E [f(x̂)− f(x∗)] ≤ ϵ.
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stochastic gradient descent analysis

Claim (SGD Convergence)
After T = R2G′2

ϵ2
iteration:

E [f(x̂)− f(x∗)] ≤ ϵ.
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stochastic gradient descent analysis

Claim (SGD Convergence)
After T = R2G′2

ϵ2
iteration:

E [f(x̂)− f(x∗)] ≤ ϵ.
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comparison

Number of iterations for error ϵ:

• Gradient Descent: T = R2G2
ϵ2
.

• Stochastic Gradient Descent: T = R2G′2
ϵ2
.

Always have G ≤ G′:

∥∇f(x)∥2 ≤ ∥∇f1(x)∥2 + . . .+ ∥∇fn(x)∥2 ≤ n ·
G′
n = G′.

Fair comparison:

R2G′2
ϵ2

= n · R
2G2
ϵ2

47


