
CS-GY 9223 I: Lecture 4
Near neighbor search + locality sensitive
hashing

NYU Tandon School of Engineering, Prof. Christopher Musco
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administrative

• Problem set 1.
• Reading group.
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euclidean dimensionality reduction

Lemma (Johnson-Lindenstrauss, 1984)
For any set of n data points q1, . . . ,qn ∈ Rd there exists a
linear map Π : Rd → Rm where m = O

(
log n
ϵ2

)
such that for all

i, j,

(1− ϵ)∥qi − qj∥2 ≤ ∥Πqi −Πqj∥2 ≤ (1+ ϵ)∥qi − qj∥2.
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randomized jl constructions

Π ∈ Rk×d be chosen so that each entry equals 1√
mN (0, 1).

... or each entry equals 1√
m ± 1 with equal probability.

Often called “random projections”. Why?
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randomized jl constructions
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k-means clustering

k-means objective: Find clusters C1, . . . , Ck ⊆ {1, . . . ,n} to
minimize:

Cost(C1, . . . , Ck) =
k∑
j=1

1
2|Cj|

∑
u,v∈Cj

∥Xu − Xv∥22.
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k-means clustering

Approximation algorithm: Find optimal clusters C̃∗1 , . . . , C̃∗k for
the k dimension data set ΠX1, . . . ,ΠXn.
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k-means clustering

Cost(C1, . . . , Ck) =
k∑
j=1

1
2|Cj|

∑
u,v∈Cj

∥Xu − Xv∥22.

C̃ost(C1, . . . , Ck) =
k∑
j=1

1
2|Cj|

∑
u,v∈Cj

∥ΠXu − ΠXv∥22.

For any C1, . . . , Ck,

(1− ϵ)Cost(C1, . . . , Ck) ≤ C̃ost(C1, . . . , Ck) ≤ (1+ ϵ)Cost(C1, . . . , Ck)
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k-means clustering

Let C∗1 , . . . , C∗k = argmin Cost(C1, . . . , Ck) and
C̃∗1 , . . . , C̃∗k = argmin C̃ost(C1, . . . , Ck)

Want to prove: Cost(C̃∗1 , . . . , C̃∗k) ≤ (1+ O(ϵ))Cost(C∗1 , . . . , C∗k)
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similarity sketching

Goal: Given input vectors q and y, C(q) and C(y) should be
similar if q and y are similar.
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similarity sketching

Other Example: Binary valued vectors.

Definition (Jaccard Similarity)

J(q, y) = |q ∩ y|
|q ∪ y| =

# of non-zero entries in common
total # of non-zero entries

0 ≤ J(q, y) ≤ 1.
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minhash

• Choose k random hash functions
h1, . . . ,hk : {1, . . . ,n} → [0, 1].

• For i ∈ 1, . . . , k, let ci = minj,qj=1 hi(j).
• C(q) = [c1, . . . , ck].
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similarity sketching

Example 1: Binary valued vectors.

If J(q, y) = v then the expected number of common entries
between C(q) and C(y) is v.

Using a Chernoff bound, we proved that if Cmaps to dimension
O
(
log(1/δ)

ϵ2

)
, we can approximate the Jaccard similarity between

any two binary vectors to accuracy ϵ with probability 1− δ.
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near neighbor search

Common goal: Find all fingerprints in database q1, . . . ,qn ∈ Rd

that are close to some input finger print y ∈ Rd.

• Audio + video search.
• Finding duplicate or near duplicate documents.
• Seismic applications (here they want all pairs of close
fingerprints).

Does similarity sketching help in these applications?
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beyond a linear scan

New goal: Sublinear o(n) time to find near neighbors.
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locality sensitive hash functions

Let h : Rd → {1, . . . ,m} be a random hash function.

We call h locality sensitive if Pr [h(q) == h(y)] is:

• Higher when q and y are more similar.
• Lower when q and y differ substantially.
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locality sensitive hash functions

LSH for Jaccard similarity:

• Let c : {0, 1}d → [0, 1] be a single instantiation of MinHash.
• Let g : [0, 1] → {1, . . . ,m} be a fully random hash function.
• Let h(x) = g(c(x)).

If J(q, y) = v,

Pr [h(q) == h(y)] =
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near neighbor search

Basic approach for near neighbor search in a database.

Pre-processing:

• Select random LSH function h : {0, 1}d → 1, . . . ,m.
• Create table T with m slots.
• For i = 1, . . . ,n, insert qi into T(h(qi)).

Query:

• Want to find near neighbors of input y ∈ {0, 1}d.
• Linear scan through all vectors in T(h(y)).
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near neighbor search
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near neighbor search

Two main considerations:

• False Negative Rate: What’s the probability we do not find
a vector that is close to y?

• False Positive Rate: What’s the probability we need to
scan over vectors that are not close to y?
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reducing false negative rate

Suppose the nearest database point q has J(y,q) = .4.

What’s the probability we do not find q?
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reducing false negative rate

Pre-processing:

• Select t independent LSH’s h1, . . . ,ht : {0, 1}d → 1, . . . ,m.
• Create tables T1, . . . , Tt, each with m slots.
• For i = 1, . . . ,n, j = 1, . . . , t, insert qi into Tj(hj(qi)).

22



reducing false negative rate

Query:

• Want to find near neighbors of input y ∈ {0, 1}d.
• Linear scan through all vectors in
T1(h1(y)), T2(h2(y)), . . . , Tt(ht(y)).

Suppose the nearest database point q has J(y,q) = .4.

What’s the probability we find q?
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what happens to false positives?

Suppose there is some other database point qj with
J(y,qj) = .2? What is the probability we will consider that point
in our original scheme?

In the new scheme?
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reducing false positives

Change our locality sensitive hash function.

Tunable LSH for Jaccard similarity:

• Choose parameter s ∈ Z+.
• Let c1, . . . , cs : {0, 1}d → [0, 1] be random MinHashs.
• Let g : [0, 1]s → {1, . . . ,m} be a fully random hash function.
• Let h(x) = g(c1(x), . . . , cs(x)).

If J(q, y) = v,

Pr [h(q) == h(y)] =
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tunable lsh
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some examples

Parameter: S = 1.

Chance we find qi with J(y,qi) = .8:

Chance we need to scan qj with J(y,qj) = .4:
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some examples

Parameter: S = 2.

Chance we find qi with J(y,qi) = .8:

Chance we need to scan qj with J(y,qj) = .4:
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some examples

Parameter: S = 5.

Chance we find qi with J(y,qi) = .8:

Chance we need to scan qj with J(y,qj) = .4:
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s-curve tuning

Probability we see q when querying y if J(q, y) = v:

1− (1− vs)t

s = 5, t = 5
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s-curve tuning

Probability we see q when querying y if J(q, y) = v:

1− (1− vs)t

s = 5, t = 40
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s-curve tuning

Probability we see q when querying y if J(q, y) = v:

≈ 1− (1− vs)t

s = 40, t = 5
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s-curve tuning

Probability we see q when querying y if J(q, y) = v:

1− (1− vs)t

Increasing both s and t gives a steeper curve.

Better for search, but worse space complexity. 33



fixed threshold

Use Case 1: Fixed threshold.

• Shazam wants to find match to audio clip y in a database of 10
million clips.

• There are 10 true matches with J(y,q) > .9.

• There are 10,0000 near matches with J(y,q) ∈ [.7, .9].

With s = 25 and t = 40,

• Hit probability for J(y,q) > .9 is ≳ 1− (1− .925)40 = .95

• Hit probability for J(y,q) ∈ [.7, .9] is ≲ 1− (1− .925)40 = .95

• Hit probability for J(y,q) < .7 is ≲ 1− (1− .725)40 = .005

Total number of items scanned:

.95 · 10+ .95 · 10, 000+ .005 · 9, 989, 990 ≈ 60, 000≪ 10, 000, 000.
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fixed threshold

Space complexity: 40 hash tables ≈ 40 · O(n).

Directly trade space for fast search.
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fixed threshold r

Concrete worst case result:
Theorem (Indyk, Motwani, 1998)
If there exists some q with ∥q− y∥0 ≤ R, return a vector q̃
with ∥q̃− y∥0 ≤ C · R in:

• Time: O
(
n1/C

)
.

• Space: O
(
n1+1/C

)
.

∥q− y∥0 = ”hamming distance” = number of elements that
differ between q and y.
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approximate nearest neighbor search

Theorem (Indyk, Motwani, 1998)
Let q be the closest database vector to y. Return a vector q̃
with ∥q̃− y∥0 ≤ C · ∥q− y∥0 in:

• Time: Õ
(
n1/C

)
.

• Space: Õ
(
n1+1/C

)
.

Any ideas for how this is done?
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other lsh functions

Good locality sensitive hash functions exists for many other
similarity measures.

Cosine similarity cos (θ(x, y)) = ⟨x,y⟩
∥x∥2∥y∥2 :

−1 ≤ cos (θ(x, y)) ≤ 1.
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cosine similarity

Cosine similarity is natural “ inverse” for Euclidean distance.

Euclidean distance ∥x− y∥22:

• Suppose for simplicity that ∥x∥22 = ∥y∥22 = 1.
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simhash

Locality sensitive hash for cosine similarity:

• Let g ∈ Rd be randomly chosen with each entry N (0, 1).
• h : Rd → {−1, 1} is definied h(x) = sign(⟨g, x⟩).

If cos(θ(x, y)) = v, what is Pr[h(x == h(y)]?
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simhash

Inspired by Johnson-Lindenstrauss sketching
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simhash

Locality sensitive hash for cosine similarity:

• Let g ∈ Rd be randomly chosen with each entry N (0, 1).
• h : Rd → {−1, 1} is definied h(x) = sign(⟨g, x⟩).

If cos(θ(x, y)) = v, what is Pr[h(x == h(y)]?

42



simhash analysis
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simhash analysis
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simhash to speedup neural networks

Work of Anshumali Shrivastava at Rice University and
coauthors.

• Number of multiplications to evaluate N (x):
|x| · |layer 1|+ |layer 1| · |layer 2|+ |layer 2| · |layer 3|+ . . ..

• For an approximate solution, only consider neurons on
each each with high activation.
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simhash to speedup neural networks

Work of Anshumali Shrivastava at Rice University and
coauthors.

• High activation = large value of σ(⟨wi, x⟩).
• Typically σ(⟨wi, x⟩) increases as ⟨wi, x⟩ increases.
• Use LSH/SimHash to quickly find all wi for which ⟨wi, x⟩ is
large and only include these terms in the sum.
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fast johnson-lindenstrauss (time permitting)

Why can’t we just sample entries from vectors?
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fast johnson-lindenstrauss (time permitting)

[Ailon, Chazelle, 2009 – The Fast Johnson-Lindenstrauss
Transform]
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fast johnson-lindenstrauss (time permitting)

[Ailon, Chazelle, 2009 – The Fast Johnson-Lindenstrauss
Transform]
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fast johnson-lindenstrauss (time permitting)

Deterministic
Hadamard matrix.

Randomized
Hadamard HD.

Fully random sign
matrix.
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fast johnson-lindenstrauss (time permitting)
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