
CS-GY 9223 I: Lecture 4
Near neighbor search + locality sensitive
hashing

NYU Tandon School of Engineering, Prof. Christopher Musco

1

administrative

• Problem set 1.
• Reading group.

2

euclidean dimensionality reduction

Lemma (Johnson-Lindenstrauss, 1984)
For any set of n data points q1, . . . ,qn ∈ Rd there exists a
linear map Π : Rd → Rm where m = O

(
log n
ϵ2

)
such that for all

i, j,

(1− ϵ)∥qi − qj∥2 ≤ ∥Πqi −Πqj∥2 ≤ (1+ ϵ)∥qi − qj∥2.

3

randomized jl constructions

Π ∈ Rk×d be chosen so that each entry equals 1√
mN (0, 1).

... or each entry equals 1√
m ± 1 with equal probability.

Often called “random projections”. Why?

4

randomized jl constructions

5

k-means clustering

k-means objective: Find clusters C1, . . . , Ck ⊆ {1, . . . ,n} to
minimize:

Cost(C1, . . . , Ck) =
k∑
j=1

1
2|Cj|

∑
u,v∈Cj

∥Xu − Xv∥22.

6

k-means clustering

Approximation algorithm: Find optimal clusters C̃∗1 , . . . , C̃∗k for
the k dimension data set ΠX1, . . . ,ΠXn.

7

k-means clustering

Cost(C1, . . . , Ck) =
k∑
j=1

1
2|Cj|

∑
u,v∈Cj

∥Xu − Xv∥22.

C̃ost(C1, . . . , Ck) =
k∑
j=1

1
2|Cj|

∑
u,v∈Cj

∥ΠXu − ΠXv∥22.

For any C1, . . . , Ck,

(1− ϵ)Cost(C1, . . . , Ck) ≤ C̃ost(C1, . . . , Ck) ≤ (1+ ϵ)Cost(C1, . . . , Ck)

8

k-means clustering

Let C∗1 , . . . , C∗k = argmin Cost(C1, . . . , Ck) and
C̃∗1 , . . . , C̃∗k = argmin C̃ost(C1, . . . , Ck)

Want to prove: Cost(C̃∗1 , . . . , C̃∗k) ≤ (1+ O(ϵ))Cost(C∗1 , . . . , C∗k)

9

similarity sketching

Goal: Given input vectors q and y, C(q) and C(y) should be
similar if q and y are similar.

10

similarity sketching

Other Example: Binary valued vectors.

Definition (Jaccard Similarity)

J(q, y) = |q ∩ y|
|q ∪ y| =

of non-zero entries in common
total # of non-zero entries

0 ≤ J(q, y) ≤ 1.

11

minhash

• Choose k random hash functions
h1, . . . ,hk : {1, . . . ,n} → [0, 1].

• For i ∈ 1, . . . , k, let ci = minj,qj=1 hi(j).
• C(q) = [c1, . . . , ck].

12

similarity sketching

Example 1: Binary valued vectors.

If J(q, y) = v then the expected number of common entries
between C(q) and C(y) is v.

Using a Chernoff bound, we proved that if Cmaps to dimension
O
(
log(1/δ)

ϵ2

)
, we can approximate the Jaccard similarity between

any two binary vectors to accuracy ϵ with probability 1− δ.

13

near neighbor search

Common goal: Find all fingerprints in database q1, . . . ,qn ∈ Rd

that are close to some input finger print y ∈ Rd.

• Audio + video search.
• Finding duplicate or near duplicate documents.
• Seismic applications (here they want all pairs of close
fingerprints).

Does similarity sketching help in these applications?

14

beyond a linear scan

New goal: Sublinear o(n) time to find near neighbors.

15

locality sensitive hash functions

Let h : Rd → {1, . . . ,m} be a random hash function.

We call h locality sensitive if Pr [h(q) == h(y)] is:

• Higher when q and y are more similar.
• Lower when q and y differ substantially.

16

locality sensitive hash functions

LSH for Jaccard similarity:

• Let c : {0, 1}d → [0, 1] be a single instantiation of MinHash.
• Let g : [0, 1] → {1, . . . ,m} be a fully random hash function.
• Let h(x) = g(c(x)).

If J(q, y) = v,

Pr [h(q) == h(y)] =

17

locality sensitive hash functions

LSH for Jaccard similarity:

• Let c : {0, 1}d → [0, 1] be a single instantiation of MinHash.
• Let g : [0, 1] → {1, . . . ,m} be a fully random hash function.
• Let h(x) = g(c(x)).

If J(q, y) = v,

Pr [h(q) == h(y)] =

17

near neighbor search

Basic approach for near neighbor search in a database.

Pre-processing:

• Select random LSH function h : {0, 1}d → 1, . . . ,m.
• Create table T with m slots.
• For i = 1, . . . ,n, insert qi into T(h(qi)).

Query:

• Want to find near neighbors of input y ∈ {0, 1}d.
• Linear scan through all vectors in T(h(y)).

18

near neighbor search

Basic approach for near neighbor search in a database.

Pre-processing:

• Select random LSH function h : {0, 1}d → 1, . . . ,m.
• Create table T with m slots.
• For i = 1, . . . ,n, insert qi into T(h(qi)).

Query:

• Want to find near neighbors of input y ∈ {0, 1}d.
• Linear scan through all vectors in T(h(y)).

18

near neighbor search

Basic approach for near neighbor search in a database.

Pre-processing:

• Select random LSH function h : {0, 1}d → 1, . . . ,m.
• Create table T with m slots.
• For i = 1, . . . ,n, insert qi into T(h(qi)).

Query:

• Want to find near neighbors of input y ∈ {0, 1}d.
• Linear scan through all vectors in T(h(y)).

18

near neighbor search

19

near neighbor search

Two main considerations:

• False Negative Rate: What’s the probability we do not find
a vector that is close to y?

• False Positive Rate: What’s the probability we need to
scan over vectors that are not close to y?

20

reducing false negative rate

Suppose the nearest database point q has J(y,q) = .4.

What’s the probability we do not find q?

21

reducing false negative rate

Pre-processing:

• Select t independent LSH’s h1, . . . ,ht : {0, 1}d → 1, . . . ,m.
• Create tables T1, . . . , Tt, each with m slots.
• For i = 1, . . . ,n, j = 1, . . . , t, insert qi into Tj(hj(qi)).

22

reducing false negative rate

Query:

• Want to find near neighbors of input y ∈ {0, 1}d.
• Linear scan through all vectors in
T1(h1(y)), T2(h2(y)), . . . , Tt(ht(y)).

Suppose the nearest database point q has J(y,q) = .4.

What’s the probability we find q?

23

reducing false negative rate

Query:

• Want to find near neighbors of input y ∈ {0, 1}d.
• Linear scan through all vectors in
T1(h1(y)), T2(h2(y)), . . . , Tt(ht(y)).

Suppose the nearest database point q has J(y,q) = .4.

What’s the probability we find q?

23

what happens to false positives?

Suppose there is some other database point qj with
J(y,qj) = .2? What is the probability we will consider that point
in our original scheme?

In the new scheme?

24

reducing false positives

Change our locality sensitive hash function.

Tunable LSH for Jaccard similarity:

• Choose parameter s ∈ Z+.
• Let c1, . . . , cs : {0, 1}d → [0, 1] be random MinHashs.
• Let g : [0, 1]s → {1, . . . ,m} be a fully random hash function.
• Let h(x) = g(c1(x), . . . , cs(x)).

If J(q, y) = v,

Pr [h(q) == h(y)] =

25

reducing false positives

Change our locality sensitive hash function.

Tunable LSH for Jaccard similarity:

• Choose parameter s ∈ Z+.
• Let c1, . . . , cs : {0, 1}d → [0, 1] be random MinHashs.
• Let g : [0, 1]s → {1, . . . ,m} be a fully random hash function.
• Let h(x) = g(c1(x), . . . , cs(x)).

If J(q, y) = v,

Pr [h(q) == h(y)] =

25

tunable lsh

26

some examples

Parameter: S = 1.

Chance we find qi with J(y,qi) = .8:

Chance we need to scan qj with J(y,qj) = .4:

27

some examples

Parameter: S = 2.

Chance we find qi with J(y,qi) = .8:

Chance we need to scan qj with J(y,qj) = .4:

28

some examples

Parameter: S = 5.

Chance we find qi with J(y,qi) = .8:

Chance we need to scan qj with J(y,qj) = .4:

29

s-curve tuning

Probability we see q when querying y if J(q, y) = v:

1− (1− vs)t

s = 5, t = 5
30

s-curve tuning

Probability we see q when querying y if J(q, y) = v:

1− (1− vs)t

s = 5, t = 40
31

s-curve tuning

Probability we see q when querying y if J(q, y) = v:

≈ 1− (1− vs)t

s = 40, t = 5
32

s-curve tuning

Probability we see q when querying y if J(q, y) = v:

1− (1− vs)t

Increasing both s and t gives a steeper curve.

Better for search, but worse space complexity. 33

fixed threshold

Use Case 1: Fixed threshold.

• Shazam wants to find match to audio clip y in a database of 10
million clips.

• There are 10 true matches with J(y,q) > .9.

• There are 10,0000 near matches with J(y,q) ∈ [.7, .9].

With s = 25 and t = 40,

• Hit probability for J(y,q) > .9 is ≳ 1− (1− .925)40 = .95

• Hit probability for J(y,q) ∈ [.7, .9] is ≲ 1− (1− .925)40 = .95

• Hit probability for J(y,q) < .7 is ≲ 1− (1− .725)40 = .005

Total number of items scanned:

.95 · 10+ .95 · 10, 000+ .005 · 9, 989, 990 ≈ 60, 000≪ 10, 000, 000.
34

fixed threshold

Space complexity: 40 hash tables ≈ 40 · O(n).

Directly trade space for fast search.

35

fixed threshold r

Concrete worst case result:
Theorem (Indyk, Motwani, 1998)
If there exists some q with ∥q− y∥0 ≤ R, return a vector q̃
with ∥q̃− y∥0 ≤ C · R in:

• Time: O
(
n1/C

)
.

• Space: O
(
n1+1/C

)
.

∥q− y∥0 = ”hamming distance” = number of elements that
differ between q and y.

36

approximate nearest neighbor search

Theorem (Indyk, Motwani, 1998)
Let q be the closest database vector to y. Return a vector q̃
with ∥q̃− y∥0 ≤ C · ∥q− y∥0 in:

• Time: Õ
(
n1/C

)
.

• Space: Õ
(
n1+1/C

)
.

Any ideas for how this is done?

37

other lsh functions

Good locality sensitive hash functions exists for many other
similarity measures.

Cosine similarity cos (θ(x, y)) = ⟨x,y⟩
∥x∥2∥y∥2 :

−1 ≤ cos (θ(x, y)) ≤ 1.

38

other lsh functions

Good locality sensitive hash functions exists for many other
similarity measures.

Cosine similarity cos (θ(x, y)) = ⟨x,y⟩
∥x∥2∥y∥2 :

−1 ≤ cos (θ(x, y)) ≤ 1.

38

cosine similarity

Cosine similarity is natural “ inverse” for Euclidean distance.

Euclidean distance ∥x− y∥22:

• Suppose for simplicity that ∥x∥22 = ∥y∥22 = 1.

39

simhash

Locality sensitive hash for cosine similarity:

• Let g ∈ Rd be randomly chosen with each entry N (0, 1).
• h : Rd → {−1, 1} is definied h(x) = sign(⟨g, x⟩).

If cos(θ(x, y)) = v, what is Pr[h(x == h(y)]?

40

simhash

Inspired by Johnson-Lindenstrauss sketching

41

simhash

Locality sensitive hash for cosine similarity:

• Let g ∈ Rd be randomly chosen with each entry N (0, 1).
• h : Rd → {−1, 1} is definied h(x) = sign(⟨g, x⟩).

If cos(θ(x, y)) = v, what is Pr[h(x == h(y)]?

42

simhash analysis

43

simhash analysis

44

simhash to speedup neural networks

Work of Anshumali Shrivastava at Rice University and
coauthors.

• Number of multiplications to evaluate N (x):
|x| · |layer 1|+ |layer 1| · |layer 2|+ |layer 2| · |layer 3|+

• For an approximate solution, only consider neurons on
each each with high activation.

45

simhash to speedup neural networks

Work of Anshumali Shrivastava at Rice University and
coauthors.

• High activation = large value of σ(⟨wi, x⟩).
• Typically σ(⟨wi, x⟩) increases as ⟨wi, x⟩ increases.
• Use LSH/SimHash to quickly find all wi for which ⟨wi, x⟩ is
large and only include these terms in the sum.

46

fast johnson-lindenstrauss (time permitting)

Why can’t we just sample entries from vectors?

47

fast johnson-lindenstrauss (time permitting)

[Ailon, Chazelle, 2009 – The Fast Johnson-Lindenstrauss
Transform]

48

fast johnson-lindenstrauss (time permitting)

[Ailon, Chazelle, 2009 – The Fast Johnson-Lindenstrauss
Transform]

49

fast johnson-lindenstrauss (time permitting)

Deterministic
Hadamard matrix.

Randomized
Hadamard HD.

Fully random sign
matrix.

50

fast johnson-lindenstrauss (time permitting)

51

