
CS-GY 9223 I: Lecture 3
Sketching, the Johnson-Lindenstrauss lemma +
applications

NYU Tandon School of Engineering, Prof. Christopher Musco

1

streaming algorithms

Abstract architecture of a streaming algorithm:

• Given a dataset D = d1, . . . ,dn with n pieces of data, we
want to output f(D) for some function f.

• Maintain state St with≪ |D| space at each time step t.
• Update phase: Receive d1, . . . ,dn in sequence, update
St ← U(St−1,dt).

• Process phase: Using Sn, compute approximation to f(D).

Typical setup for training models in machine learning, required
for large scale data monitoring (e.g. processing sensor data,
time series, seismic data, satellite imagery, etc.)

2

distinct elements problem

Input: d1, . . . ,dn ∈ U where U is a huge universe of items.

Output: Number of distinct inputs, D.

Example: f(1, 10, 10, 4, 9, 1, 1, 4)→ 4

Naive solution takes O(D) space and is exact. We want
something that uses much less space, but is approximate.

In practice: Approximate COUNT(DISTINCT) in huge databases
(of weblogs, biological data, etc.).

3

distinct elements problem

Input: d1, . . . ,dn ∈ U where U is a huge universe of items.

Output: Number of distinct inputs.

Example: f(1, 10, 10, 4, 9, 1, 1, 4)→ 4

Basic estimator:

E[S] = 1
D+1 . Estimate D ≈

1
S − 1.

4

repeat to boost accuracy

• Choose k random hash function h1, . . . ,hk : U → [0, 1].
• Maintain k estimators S1, . . . , Sk.
• Set: S′ = 1

k
∑k

i=1 Sk.
• Estimate: D ≈ 1

S′ − 1.

If Var[S] = σ2, Var[S′] =?

5

final bound

Applying Chebyshev’s inequality: Need O(1/ϵ2) estimators to
return D̃ satisfying:

(1− ϵ)D ≤ D̃ ≤ (1+ ϵ)D

with probability 9/10.

6

distinct elements in practice

In practice, we cannot hash to real numbers on [0, 1]. Instead,
map to bit vectors.

Real Flajolet-Martin / HyperLogLog:

• Estimate # distinct elements
based on maximum number of
trailing zeros m.

• The more distinct hashes we see,
the higher we expect this
maximum to be.

7

loglog space

Flajolet-Durand / HyperLogLog:

• Estimate # distinct elements
based on maximum number of
trailing zeros m.

• The more distinct hashes we see,
the higher we expect this
maximum to be.

With D distinct elements what do we expect m to be?

Pr(h(xi) has x logD trailing zeros) =
1

2x logD
=
1
D .

So with D distinct hashes, expect to see 1 with logD trailing
zeros. Expect m ≈ logD. m takes O(log logD) bits to store.

8

loglog space

Total Space: O
(
log logD

ϵ2
+ logD

)
for an ϵ approximate count.

“Using an auxiliary memory smaller than the size of this abstract, the
LogLog algorithm makes it possible to estimate in a single pass and
within a few percents the number of different words in the whole of
Shakespeare’s works.” – Flajolet, Durand.

Using HyperLogLog to count 1 billion distinct items with 2% accuracy:

space used = O
(
log logD

ϵ2
+ logD

)
=
1.04 · ⌈log2 log2 D⌉

ϵ2
+ ⌈log2 D⌉ bits

=
1.04 · 5
.022 + 30 = 13030 bits ≈ 1.6 kB!

9

distributed distinct elements

10

hyperloglog in practice

Implementations: Google PowerDrill, Facebook Presto, Twitter
Algebird, Amazon Redshift.

Use Case: Exploratory SQL-like queries on tables with 100’s of
billions of rows.

• Count number of distinct users in Germany that made at least
one search containing the word ‘auto’ in the last month.

• Count number of distinct subject lines in emails sent by users
that have registered in the last week, in comparison to number
of emails sent overall (to estimate rates of spam accounts).

Answering a query requires a (distributed) linear scan over the
database: 2 seconds in Google’s distributed implementation.

11

hyperloglog in practice

“The system has been in production since end of 2008 and was
made available for internal users across all of Google mid
2009. Each month it is used by more than 800 users sending
out about 4 million SQL queries. After a hard day’s work, one
of our top users has spent over 6 hours in the UI, triggering
up to 12 thousand queries. When using our column-store as a
backend, this may amount to scanning as much as 525 trillion
cells in (hypothetical) full scans.”

12

sketching algorithms

Abstract architecture of a sketching algorithm:

• Given a dataset D = d1, . . . ,dn with n pieces of data, we
want to output f(D) for some function f.

• Sketch phase: For each i ∈ 1, . . . ,n, compute si = C(di),
where C is some compression function and |si| ≪ di.

• Process phase: Using (lower dimensional) dataset
s1, . . . , sn, compute an approximation to f(D).

Sketching phase is easily
distributed, parallelized, etc.
Better space complexity,
communication complexity,
runtime, all at once.

13

similarity estimation

How does Shazam match a song clip against a library of 8
million songs (32 TB of data) in a fraction of a second?

Spectrogram extracted
from audio clip.

Processed spectrogram:
used to construct audio
“fingerprint” q ∈ {0, 1}d.

Each clip is represented by a high dimensional binary vector q.

14

similarity estimation

Given q, find any nearby “fingerprint” y in a database – i.e. any
y with dist(y,q) small.

Challenges:

• Database is possibly huge: O(nd) bits.
• Expensive to compute dist(y,q): O(d) time.

15

similarity estimation

Goal: Design a more compact sketch for comparing
q, y ∈ {0, 1}d. Ideally≪ d space/time complexity.

C(q) ∈ Rk

C(y) ∈ Rk

Homomorphic Compression:

C(q) should be similar to C(y) if q is similar to y.

16

jaccard similarity

Definition (Jaccard Similarity)

J(q, y) = |q ∩ y|
|q ∪ y| =

of non-zero entries in common
total # of non-zero entries

Natural similarity measure for binary vectors. 0 ≤ J(q, y) ≤ 1.

Other applications:

• Change detection in documents (high speed web caches).
• Analyzing seismic data (matching signatures of
earthquakes).

• User recommendations on social networking sites.

17

jaccard similarity for document comparison

“Bag-of-words” model:

How many wordsbigramstrigrams do a pair of documents have
in common?

18

jaccard similarity for seismic data

Feature extract pipeline for earthquake data.

19

similarity estimation

Goal: Design a compact sketch C : {0, 1} → Rk:

Homomorphic Compression: Want to use C(q), C(y) to
approximately compute the Jaccard similarity J(q, y).

20

minhash

MinHash (Broder, ’97):

• Choose k random hash functions
h1, . . . ,hk : {1, . . . ,n} → [0, 1].

• For i ∈ 1, . . . , k, let ci = minj,qj=1 hi(j).
• C(q) = [c1, . . . , ck].

21

minhash

• Choose k random hash functions
h1, . . . ,hk : {1, . . . ,n} → [0, 1].

• For i ∈ 1, . . . , k, let ci = minj,qj=1 hi(j).
• C(q) = [c1, . . . , ck].

22

minhash analysis

Claim: Pr[ci(q) = ci(y)] = J(q, y).

23

minhash analysis

Return: J̃ = 1
k
∑k

i=1 1[ci(q) = ci(y)].

Unbiased estimate for Jaccard similarity: ẼJ = J(q, y).

24

minhash analysis

Chernoff bound: Analysis is the same as summing random
coin flips. As long as k = O

(
log(1/δ)

ϵ2

)
, then with prob. 1− δ,

J(q, y)− ϵ ≤ J̃ (C(q), C(y)) ≤ J(q, y) + ϵ.

And J̃ only takes O(k) time to compute! Independent of
original fingerprint dimension d.

25

minhash analysis

J̃ = 1
k
∑k

i=1 1[ci(q) = ci(y)]

Suffices to prove:

• J̃ ≤ J+ ϵ with probability (1− δ/2).
• J̃ ≥ J− ϵ with probability (1− δ/2).

26

minhash analysis

Theorem (Chernoff Bound, 1)
Let X1, X2, . . . , Xk be independent {0, 1}-valued random variables
and let pi = E[Xi], where 0 < pi < 1. Then the sum S =

∑k
i=1 Xi,

which has mean µ =
∑k

i=1 pi, satisfies

Pr[S ≥ (1+∆)µ] ≤ e
−δ2µ
3+3∆ .

27

minhash analysis

Theorem (Chernoff Bound, 2)
Let X1, X2, . . . , Xk be independent {0, 1}-valued random variables
and let pi = E[Xi], where 0 < pi < 1. Then the sum S =

∑k
i=1 Xi,

which has mean µ =
∑k

i=1 pi, satisfies

Pr[S ≤ (1−∆)µ] ≤ e
−∆2µ

3 .

for all 0 < δ < 1.

28

remainder of class

One incredibly powerful theorem:

The Johnson-Lindenstrauss Lemma.

29

euclidean dimensionality reduction

30

euclidean dimensionality reduction

Euclidean norm / distance:

• Given q ∈ Rd, ∥q∥2 =
√∑d

i=1 q(i)2.
• Given q, y ∈ Rd, distance defined as ∥q− y∥2.

Can we find compact sketches that preserve Euclidean
distance, just as we did for Jaccard similarity?

31

euclidean dimensionality reduction

Lemma (Johnson-Lindenstrauss, 1984)
For any set of n data points q1, . . . ,qn ∈ Rd there exists a
linear map Π : Rd → Rk where k = O

(
log n
ϵ2

)
such that for all

i, j,

(1− ϵ)∥qi − qj∥2 ≤ ∥Πqi −Πqj∥2 ≤ (1+ ϵ)∥qi − qj∥2.

32

euclidean dimensionality reduction

Remarkably, Π can be chosen completely at random!

One possible construction: Random Gaussian.

Πi,j =
1√
k
N (0, 1)

The map Π is oblivious to the data set. This stands in
constrast to e.g. PCA, amoungst other differences.

[Indyk, Motwani 1998] [Arriage, Vempala 1999] [Achlioptas 2001]
[Dasgupta, Gupta 2003].

Many other possible choices suffice – you can use random
{+1,−1} variables, sparse random matrices, pseudorandom Π.
Each with different advantages. We should have time to
discuss a few examples next lecture.

33

euclidean dimensionality reduction

Intermediate result: (which we already know how to prove)
Lemma (Distributional JL Lemma)
Let Π ∈ Rk×d be chosen so that each entry equals 1√

k
N (0, 1),

where N (0, 1) denotes a standard Gaussian random variable.

If we choose k = O
(
log(1/δ)

ϵ2

)
, then for any vector q, with

probability (1− δ):

(1− ϵ)∥q∥2 ≤ ∥Πq∥2 ≤ (1+ ϵ)∥q∥2

In class exercise: Given this lemma, prove the
Johnson-Lindenstrauss lemma.

34

in class exercise

35

in class exercise

36

proof of distributional jl

Want to argue that with high probability, ∥Πq∥2 = (1± ϵ)∥q∥2.
It suffices to prove that, with probability (1− δ),

(1− ϵ)∥q∥22 ≤ |Πq∥22 ≤ (1+ ϵ)∥q∥22

Claim: E∥Πq∥22 = ∥q∥22.

∥Πq∥22 =
k∑
i=1

[Πq]2i

E∥Πq∥22 =
k∑
i=1

E
(
[Πq]2i

)

37

proof of distributional jl

Goal: Let Y =
√
k · [Πq]i. Evaluate E[Y2].

38

stable random variables

What type of random variable is [Πq]2i ?

Fact (Stability of Gaussian random variables)

N (µ1, σ
2
1) +N (µ2, σ

2
2) = N (µ1 + µ2, σ

2
1 + σ22)

[Πq]2i is the square of a Gaussian random variable and ∥Πx∥22
is a sum of k squared Gaussian random variables.

“Chi-squared random variable with k degrees of freedom.”

39

concentration of chi-squared random variables

Lemma
Let X be a chi-squared random variable with k degrees of
freedom.

Pr[|EX− X| ≥ ϵEX] ≤ 2e−kϵ2/8

40

sample application

k-means clustering: Give data points X1, . . . , Xn, find centers
µ1, . . . , µk to minimize:

Cost(µ1, . . . , µk) =
n∑
i=1

min
j=1,...,k

∥µj − Xi∥22

41

k-means clustering

Equivalent formulation: Find clusters C1, . . . , Ck ⊆ {1, . . . ,n} to
minimize:

Cost(C1, . . . , Ck) =
k∑
j=1

1
2|Cj|

∑
u,v∈Cj

∥Xu − Xv∥22.

42

k-means clustering

Approximation algorithm: Find optimal clusters C̃1, . . . , C̃k for
the k = O(log n

ϵ2
) dimension data set ΠX1, . . . ,ΠXn.

43

k-means clustering

Cost(C1, . . . , Ck) =
k∑
j=1

1
2|Cj|

∑
u,v∈Cj

∥Xu − Xv∥22.

44

