CS-GY 9223 I: Lecture 2 Chernoff Bounds + Sketching and Streaming

NYU Tandon School of Engineering, Prof. Christopher Musco

Central question in randomized algorithms: How well does a random variable *X* concentrate around it's expectation $\mathbb{E}[X]$?

Two Concentration bounds:

- Markov's Inequality $\Pr[X > k\mathbb{E}[X]] \leq \frac{1}{k}$
 - Requires that X > 0 always.

Chebyshev's Inequality $\Pr[|X - \mathbb{E}[X]| > k\sigma] \leq \frac{1}{k^2}$

• Here $\sigma^2 = \operatorname{Var}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$

Applications: Space efficient hash table design, understanding randomized load balancing, many more.

New York University Tandon School of Engineering Computer Science and Engineering

CS-GY 9223I: Lecture 1 Coursework

Problem 1: Hash collisions are useful?

Your company is considering paying for a cloud service that provides CAPTCHA-like visual puzzles for verifying that users are human. The company providing the service claims to have a larger database of unique puzzles than any competitors, but you don't trust the salesperson.

- (a) The company has provided you with an API end-point which returns puzzles uniformly and independently at random from their database. Using this endpoint, describe a simple randomized estimator for the number of puzzles in the database, n.
- (b) The company claims their database has 1,000,000 unique CAPTCHAs in it. Using your estimator, roughly how many queries do you need to verify their claim with good probability (e.g. 9/10)? You should need far less than 1,000,000 queries!
- (c) More generally, how many samples are required to estimate the true number of CAPTCHAs, n, in the database up to additive error ±εn, with good probability?

Part (a):

Parts (b)/(c):

Parts (b)/(c):

Parts (b)/(c):

For small ϵ , $(1 - \epsilon) \approx 1/(1 + \epsilon)$ and $(1 + \epsilon) \approx 1/(1 - \epsilon)$.

Useful identities:

$$1 - \epsilon \le \frac{1}{1 + \epsilon} \le 1 - \epsilon/2$$
$$1 + \epsilon \le \frac{1}{1 - \epsilon} \le 1 + 2\epsilon$$

for all $0 \le \epsilon \le 1$

for all $0 \le \epsilon \le 1/2$

IN CLASS PROBLEM

Fun facts:

- · Known as the "mark-and-recapture" method in ecology.
- Can also be used by webcrawlers to estimate the size of the internet, a social network, etc.

BEYOND CHEBYSHEV

Motivating question: Is Chebyshev's Inequality tight?

68-95-99 rule for Gaussian bell-curve. $X \sim N(0, \sigma^2)$

Chebyshev's Inequality:

Truth:

$$\begin{aligned} & \Pr\left(|X - \mathbb{E}[X]| \geq 1\sigma\right) \leq 100\% \\ & \Pr\left(|X - \mathbb{E}[X]| \geq 2\sigma\right) \leq 25\% \\ & \Pr\left(|X - \mathbb{E}[X]| \geq 3\sigma\right) \leq 11\% \\ & \Pr\left(|X - \mathbb{E}[X]| \geq 4\sigma\right) \leq 6\%. \end{aligned}$$

$$\Pr(|X - \mathbb{E}[X]| \ge 1\sigma) \approx 32\%$$

$$\Pr(|X - \mathbb{E}[X]| \ge 2\sigma) \approx 5\%$$

$$\Pr(|X - \mathbb{E}[X]| \ge 3\sigma) \approx 1\%$$

$$\Pr(|X - \mathbb{E}[X]| \ge 4\sigma) \approx .01\%$$

10

220/

GAUSSIAN CONCENTRATION

For
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
:

$$\Pr[X = \mu \pm x] = \frac{1}{\sigma\sqrt{2\pi}} e^{-x^2/2\sigma^2}$$

Lemma (Guassian Tail Bound)

For $X \sim \mathcal{N}(\mu, \sigma^2)$: $\Pr[|X - \mathbb{E}X| \ge k\sigma] \le O(e^{-k^2/2}).$

Logarithmic y-scale.

Give an example of a random variable X with variance σ^2 for which Chebyshev's inequality is tight.

$$\Pr[|X - \mathbb{E}X| \ge k\sigma] \le \frac{1}{k^2}.$$

Takeaway: Gaussian random variables concentrate much tighter around their expectation than variance alone predicts.

Why does this matter for algorithm design?

Theorem (CLT - Informal)

Any sum of **independent**, **(identically distributed)** r.v.'s X_1, \ldots, X_n with mean μ and finite variance σ^2 converges to a Gaussian r.v. with mean $n \cdot \mu$ and variance $n \cdot \sigma^2$, as $n \to \infty$.

$$S = \sum_{i=1}^{n} X_i \Longrightarrow \mathcal{N}(n \cdot \mu, n \cdot \sigma^2).$$

(a) Distribution of # of heads after 10 coin flips, compared to a Gaussian.

(b) Distribution of # of heads after 50 coin flips, compared to a Gaussian.

Definition (Mutual Independence)

Random variables X_1, \ldots, X_n are <u>mutually independent</u> if, for all possible values v_1, \ldots, v_n ,

$$\Pr[X_1 = v_1, \dots, X_n = v_n] = \Pr[X_1 = v_1] \cdot \dots \cdot \Pr[X_n = v_n]$$

Strictly stronger than pairwise independence.

You have access to a coin and want to determine if it's ϵ -close to unbiased. To do so, you flip the coin repeatedly and check that the ratio of heads flips is between $1/2 - \epsilon$ and $1/2 + \epsilon$. If it is not, you reject the coin as overly biased.

(a) How many flips *n* are required so that, with probability $(1 - \delta)$, you do not accidentally reject a truly unbiased coin? You solution with depend on ϵ and δ .

For this problem, you can assume the CLT holds exactly for a sum of independent random variables – i.e., that this sum looks exactly like a Gaussian random variable.

Lemma (Guassian Tail Bound) For $X \sim \mathcal{N}(\mu, \sigma^2)$:

$$\Pr[|X - \mathbb{E}X| \ge k\sigma] \le O(e^{-k^2/2}).$$

These back-of-the-envelop calculations can be made rigorous! Lots of different "versions" of bound which do so.

- Chernoff bound
- Bernstein bound
- Hoeffding bound
- . . .

Different assumptions on random varibles (e.g. binary, bounded, i.i.d), different forms (additive vs. multiplicative error), etc. **Wikipedia is your friend.**

QUANTITATIVE VERSIONS OF THE CLT

Theorem (Bernstein Inequality)

Let $X_1, X_2, ..., X_n$ be independent random variables with each $X_i \in [-1, 1]$. Let $\mu_i = \mathbb{E}[X_i]$ and $\sigma_i^2 = var[X_i]$. Let $\mu = \sum_i \mu_i$ and $\sigma^2 = \sum_i \sigma_i^2$. Then, for $k \leq \frac{1}{2}\sigma$, $S = \sum_i X_i$ satisfies

$$\Pr[|\mathsf{S}-\mu| > k\sigma] \le 2\exp(-\frac{k^2}{4}).$$

Sample Application: Flip random coin *n* times. As long as $n \ge O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$,

 $\Pr[|\# \text{ heads} - n/2| \ge \epsilon n] \le \delta$

Pay very little for higher probability – if you increase the number of coin flips by 2x, δ goes from 1/10 \rightarrow 1/100 \rightarrow 1/0000

Theorem (Chernoff Bound)

Let $X_1, X_2, ..., X_n$ be independent $\{0, 1\}$ -valued random variables and let $p_i = \mathbb{E}[X_i]$, where $0 < p_i < 1$. Then the sum $S = \sum_{i=1}^{n} X_i$, which has mean $\mu = \sum_{i=1}^{n} p_i$, satisfies

$$\Pr[X \ge (1+\epsilon)\mu] \le e^{\frac{-\epsilon^2\mu}{3+3\epsilon}}.$$

Any guess for how these bounds are proven?

LOAD BALANCING

As in the previous lecture, we want to use concentration bounds to study the randomized load balancing problem. n jobs are distributed randomly to n servers using a hash function. Let S_i be the number of jobs sent to server i. What's the smallest **B** for which we can prove:

 $\Pr[max_iS_i \ge \mathbf{B}] \le 1/10$

Recall: Suffices to prove that, for any *i*, $Pr[S_i \ge B] \le 1/10n$:

$$\begin{split} \Pr[max_iS_i \geq \mathbf{B}] &= \Pr[S_1 \geq \mathbf{B} \text{ or } \dots \text{ or } S_1 \geq \mathbf{B}] \\ &\leq \Pr[S_1 \geq \mathbf{B}] + \dots + \Pr[S_n \geq \mathbf{B}] \quad (\text{union bound}). \end{split}$$

What do you expect the answer to be?

Theorem (Chernoff Bound)

Let $X_1, X_2, ..., X_n$ be independent $\{0, 1\}$ -valued random variables and let $p_i = \mathbb{E}[X_i]$, where $0 < p_i < 1$. Then the sum $S = \sum_{i=1}^{n} X_i$, which has mean $\mu = \sum_{i=1}^{n} p_i$, satisfies

$$\Pr[X \ge (1+\epsilon)\mu] \le e^{\frac{-\epsilon^2\mu}{3+3\epsilon}}.$$

Power of 2 Choices: Instead of assigning job to a random server, choose 2 random servers and assign to the least loaded. With probability 1/10 the maximum load is bounded by:

- (a) $O(\log n)$ (b) $O(\sqrt{\log n})$ (c) $O(\log \log n)$
- (d) O(1)

Power of 3 choices? $O(\log \log n / \log(3))$

STREAMING ALGORITHMS

Abstract architecture of a streaming algorithm:

- Given a dataset $D = d_1, \ldots, d_n$ with *n* pieces of data, we want to output f(D) for some function *f*.
- Maintain state S_t with $\ll |D|$ space at each time step t.
- Update phase: Receive d_1, \ldots, d_n in sequence, update $S_t \leftarrow U(S_{t-1}, d_t)$.
- **Process phase:** Using S_n , compute approximation to f(D).

Typical setup for training models in machine learning, required for large scale data monitoring (e.g. processing sensor data, time series, seismic data, satellite imagery, etc.)

Input: $d_1, \ldots, d_n \in \mathcal{U}$ where \mathcal{U} is a huge universe of items.

Output: Number of distinct inputs.

Example: $f(1, 10, 10, 4, 9, 1, 1, 4) \rightarrow 4$

Applications:

- In practice: Google (Sawzall, Dremel, PowerDrill), Yahoo, Twitter, Facebook Presto, etc. etc.
- Distinct users hitting a webpage.
- Distinct values in a database column (e.g. for estimating the size of group by queries)
- Number of distinct queries to a search engine.
- Distinct motifs in DNA sequence.

Input: $d_1, \ldots, d_n \in \mathcal{U}$ where \mathcal{U} is a huge universe of items.

Output: Number of <u>distinct</u> inputs.

Example: $f(1, 10, 10, 4, 9, 1, 1, 4) \rightarrow 4$

Flajolet-Martin (simplified):

- Choose random hash function $h: \mathcal{U} \to [0, 1]$.
- $S = \infty$
- For i = 1, ..., n
 - $S \leftarrow \min(S, h(d_i))$
- Return: $\frac{1}{5} 1$

FM ANALYSIS

Let *D* equal the number of distinct elements in our stream.

Lemma $\mathbb{E}S = \frac{1}{D+1}.$

$$\mathbb{E}S = \frac{1}{D+1}$$

Estimate: $\tilde{D} = \frac{1}{S} - 1$.

If
$$|S - \mathbb{E}S| \le \frac{\epsilon}{4} \cdot \mathbb{E}S$$
, then:
 $(1 - \epsilon)D \le \tilde{D} \le (1 + \epsilon)D$.

To show concentration, need a variance bound for S.

FM ANALYSIS

Lemma

$$Var[S] = \mathbb{E}[S^2] - \mathbb{E}[S]^2 = \frac{2}{(D+1)(D+2)} - \frac{1}{(D+1)^2} \le \frac{1}{(D+1)^2}.$$

Proof:

$$\mathbb{E}[S^{2}] = \int_{0}^{1} \Pr[S^{2} \ge \lambda] d\lambda \qquad \text{Exercise: Why?}$$
$$= \int_{0}^{1} \Pr[S \ge \sqrt{\lambda}] d\lambda$$
$$= \int_{0}^{1} (1 - \sqrt{\lambda})^{D} d\lambda$$
$$= \frac{2}{(D+1)(D+2)}$$

www.wolframalpha.com/input/?i=integral+from+0+to+1+
of+%281-sqrt%28x%29%29%5ED

- $\mathbb{E}[S] = \frac{1}{D+1} = \mu.$
- $Var[S] = \mu^2$
- Want to bound $\Pr[|S \mu| \le \epsilon \mu] \le \delta$.
- Won't get a good bound with one estimator alone...

Trick of the trade: Repeat many independent trials and use a Chebyshev bound or Chernoff/Bernstein bound.

FM ANALYSIS

Using independent hash functions, maintain k independent sketches S_1, \ldots, S_k .

Flajolet-Martin:

• Choose k random hash function $h_1, \ldots, h_k : \mathcal{U} \to [0, 1]$.

•
$$S_1 = \infty, \ldots, S_k = \infty$$

• For *i* = 1, ..., *n*

•
$$S_j \leftarrow \min(S, h_j(d_i))$$
 for all $j \in 1, \ldots, k$.

- $S = (S_1 + \ldots + S_k)/k$
- Return: $\frac{1}{S} 1$

FM ANALYSIS

1 estimator:

•
$$\mathbb{E}[S] = \frac{1}{D+1} = \mu$$
.
• Var[S] = μ^2

k estimators:

•
$$\mathbb{E}[S] = \frac{1}{D+1} = \mu.$$

• Var[S] =
$$(\mu^2 \cdot k)/k^2 = \mu^2/k$$

• By Chebyshev, $\Pr[|S - \mathbb{E}S| \ge c\mu/\sqrt{k}] \le \frac{1}{c^2}$.

Setting $c = 1/\sqrt{\delta}$ and $k = O\left(\frac{1}{\epsilon^2 \delta}\right)$ gives:

$$\Pr[|\mathsf{S}-\mu| \ge \epsilon\mu] \le \delta.$$

Total space complexity: $O\left(\frac{1}{\epsilon^2 \delta}\right)$ to estimate distinct elements up to error ϵ with success probability $1 - \delta$.