
CS-GY 9223 I: Lecture 2
Chernoff Bounds + Sketching and Streaming

NYU Tandon School of Engineering, Prof. Christopher Musco
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last class

Central question in randomized algorithms: How well does a
random variable X concentrate around it’s expectation E[X]?

Two Concentration bounds:

Markov’s Inequality Pr[X > kE[X]] ≤ 1
k

• Requires that X > 0 always.
Chebyshev’s Inequality Pr[|X− E[X]| > kσ] ≤ 1

k2

• Here σ2 = Var[X] = E[(X− E[X])2]

Applications: Space efficient hash table design, understanding
randomized load balancing, many more.
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in-class exercise
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in-class exercise

Part (a):

4



in-class exercise

Parts (b)/(c):
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in-class exercise

Parts (b)/(c):
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in-class exercise

Parts (b)/(c):
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in-class exercise

For small ϵ, (1− ϵ) ≈ 1/(1+ ϵ) and (1+ ϵ) ≈ 1/(1− ϵ).

Useful identities:

1− ϵ ≤ 1
1+ ϵ

≤ 1− ϵ/2 for all 0 ≤ ϵ ≤ 1

1+ ϵ ≤ 1
1− ϵ

≤ 1+ 2ϵ for all 0 ≤ ϵ ≤ 1/2
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in class problem

Fun facts:

• Known as the “mark-and-recapture” method in ecology.
• Can also be used by webcrawlers to estimate the size of
the internet, a social network, etc.
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beyond chebyshev

Motivating question: Is Chebyshev’s Inequality tight?

68-95-99 rule for Gaussian bell-curve. X ∼ N(0, σ2)

Chebyshev’s Inequality:

Pr (|X− E[X]| ≥ 1σ) ≤ 100%
Pr (|X− E[X]| ≥ 2σ) ≤ 25%
Pr (|X− E[X]| ≥ 3σ) ≤ 11%
Pr (|X− E[X]| ≥ 4σ) ≤ 6%.

Truth:

Pr (|X− E[X]| ≥ 1σ) ≈ 32%
Pr (|X− E[X]| ≥ 2σ) ≈ 5%
Pr (|X− E[X]| ≥ 3σ) ≈ 1%
Pr (|X− E[X]| ≥ 4σ) ≈ .01% 10



gaussian concentration

For X ∼ N (µ, σ2):

Pr[X = µ± x] = 1
σ
√
2π
e−x2/2σ2

Lemma (Guassian Tail Bound)
For X ∼ N (µ, σ2):

Pr[|X− EX| ≥ kσ] ≤ O(e−k2/2).

Standard y-scale. Logarithmic y-scale. 11



in class exercise

Give an example of a random variable X with variance σ2 for
which Chebyshev’s inequality is tight.

Pr[|X− EX| ≥ kσ] ≤ 1
k2 .
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gaussian concentration

Takeaway: Gaussian random variables concentrate much
tighter around their expectation than variance alone predicts.

Why does this matter for algorithm design?
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central limit theorem

Theorem (CLT – Informal)
Any sum of independent, (identically distributed) r.v.’s
X1, . . . , Xn with mean µ and finite variance σ2 converges to a
Gaussian r.v. with mean n · µ and variance n · σ2, as n→∞.

S =
n∑
i=1

Xi =⇒ N (n · µ,n · σ2).
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independence

Definition (Mutual Independence)
Random variables X1, . . . , Xn are mutually independent if, for
all possible values v1, . . . , vn,

Pr[X1 = v1, . . . , Xn = vn] = Pr[X1 = v1] · . . . · Pr[Xn = vn]

Strictly stronger than pairwise independence.
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in-class exercise

You have access to a coin and want to determine if it’s ϵ-close to
unbiased. To do so, you flip the coin repeatedly and check that the
ratio of heads flips is between 1/2− ϵ and 1/2+ ϵ. If it is not, you
reject the coin as overly biased.

(a) How many flips n are required so that, with probability (1− δ),
you do not accidentally reject a truly unbiased coin? You
solution with depend on ϵ and δ.

For this problem, you can assume the CLT holds exactly for a sum of
independent random variables – i.e., that this sum looks exactly like
a Gaussian random variable.
Lemma (Guassian Tail Bound)
For X ∼ N (µ, σ2):

Pr[|X− EX| ≥ kσ] ≤ O(e−k
2/2).
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in-class exercise
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quantitative versions of the clt

These back-of-the-envelop calculations can be made
rigorous! Lots of different “versions” of bound which do so.

• Chernoff bound
• Bernstein bound
• Hoeffding bound
• . . .

Different assumptions on random varibles (e.g. binary,
bounded, i.i.d), different forms (additive vs. multiplicative

error), etc. Wikipedia is your friend.
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quantitative versions of the clt

Theorem (Bernstein Inequality)
Let X1, X2, . . . , Xn be independent random variables with each
Xi ∈ [−1, 1]. Let µi = E[Xi] and σ2i = var[Xi]. Let µ =

∑
i µi and

σ2 =
∑

i σ
2
i . Then, for k ≤

1
2σ, S =

∑
i Xi satisfies

Pr[|S− µ| > kσ] ≤ 2 exp(−k
2

4 ).

Sample Application: Flip random coin n times. As long as
n ≥ O

(
log(1/δ)

ϵ2

)
,

Pr[|# heads− n/2| ≥ ϵn] ≤ δ

Pay very little for higher probability – if you increase the
number of coin flips by 2x, δ goes from 1/10→ 1/100→ 1/0000
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quantitative versions of the clt

Theorem (Chernoff Bound)
Let X1, X2, . . . , Xn be independent {0, 1}-valued random
variables and let pi = E[Xi], where 0 < pi < 1. Then the sum
S =

∑n
i=1 Xi, which has mean µ =

∑n
i=1 pi, satisfies

Pr[X ≥ (1+ ϵ)µ] ≤ e
−ϵ2µ
3+3ϵ .

Any guess for how these bounds are proven?
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load balancing

As in the previous lecture, we want to use concentration bounds to
study the randomized load balancing problem. n jobs are distributed
randomly to n servers using a hash function. Let Si be the number of
jobs sent to server i. What’s the smallest B for which we can prove:

Pr[maxiSi ≥ B] ≤ 1/10

Recall: Suffices to prove that, for any i, Pr[Si ≥ B] ≤ 1/10n:

Pr[maxiSi ≥ B] = Pr[S1 ≥ B or . . . or S1 ≥ B]
≤ Pr[S1 ≥ B] + . . .+ Pr[Sn ≥ B] (union bound).

What do you expect the answer to be?
21



load balancing

Theorem (Chernoff Bound)
Let X1, X2, . . . , Xn be independent {0, 1}-valued random
variables and let pi = E[Xi], where 0 < pi < 1. Then the sum
S =

∑n
i=1 Xi, which has mean µ =

∑n
i=1 pi, satisfies

Pr[X ≥ (1+ ϵ)µ] ≤ e
−ϵ2µ
3+3ϵ .
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power of two choices

Power of 2 Choices: Instead of assigning job to a random
server, choose 2 random servers and assign to the least
loaded. With probability 1/10 the maximum load is bounded
by:

(a) O(logn)
(b) O(

√
logn)

(c) O(log logn)
(d) O(1)

Power of 3 choices? O(log logn/ log(3))
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streaming algorithms

Abstract architecture of a streaming algorithm:

• Given a dataset D = d1, . . . ,dn with n pieces of data, we
want to output f(D) for some function f.

• Maintain state St with≪ |D| space at each time step t.
• Update phase: Receive d1, . . . ,dn in sequence, update
St ← U(St−1,dt).

• Process phase: Using Sn, compute approximation to f(D).

Typical setup for training models in machine learning, required
for large scale data monitoring (e.g. processing sensor data,
time series, seismic data, satellite imagery, etc.)

24



distinct elements problem

Input: d1, . . . ,dn ∈ U where U is a huge universe of items.

Output: Number of distinct inputs.

Example: f(1, 10, 10, 4, 9, 1, 1, 4)→ 4

Applications:

• In practice: Google (Sawzall, Dremel, PowerDrill), Yahoo,
Twitter, Facebook Presto, etc. etc.

• Distinct users hitting a webpage.
• Distinct values in a database column (e.g. for estimating
the size of group by queries)

• Number of distinct queries to a search engine.
• Distinct motifs in DNA sequence.
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distinct elements problem

Input: d1, . . . ,dn ∈ U where U is a huge universe of items.

Output: Number of distinct inputs.

Example: f(1, 10, 10, 4, 9, 1, 1, 4)→ 4

Flajolet–Martin (simplified):

• Choose random hash function h : U → [0, 1].
• S =∞
• For i = 1, . . . ,n

• S← min(S,h(di))
• Return: 1S − 1
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fm analysis

What is ES?

Let D equal the number of distinct elements in our stream.

Lemma
ES = 1

D+1 .
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fm analysis

ES = 1
D+1

Estimate: D̃ = 1
S − 1.

If |S− ES| ≤ ϵ
4 · ES, then:

(1− ϵ)D ≤ D̃ ≤ (1+ ϵ)D.

To show concentration, need a variance bound for S.
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fm analysis

Lemma
Var[S] = E[S2]− E[S]2 = 2

(D+1)(D+2) −
1

(D+1)2 ≤
1

(D+1)2 .

Proof:

E[S2] =
∫ 1

0
Pr[S2 ≥ λ]dλ Exercise: Why?

=

∫ 1

0
Pr[S ≥

√
λ]dλ

=

∫ 1

0
(1−

√
λ)Ddλ

=
2

(D+ 1)(D+ 2)

www.wolframalpha.com/input/?i=integral+from+0+to+1+
of+%281-sqrt%28x%29%29%5ED 29

www.wolframalpha.com/input/?i=integral+from+0+to+1+of+%281-sqrt%28x%29%29%5ED
www.wolframalpha.com/input/?i=integral+from+0+to+1+of+%281-sqrt%28x%29%29%5ED


fm analysis

• E[S] = 1
D+1 = µ.

• Var[S] = µ2

• Want to bound Pr[|S− µ| ≤ ϵµ] ≤ δ.
• Won’t get a good bound with one estimator alone...

Trick of the trade: Repeat many independent trials and use a
Chebyshev bound or Chernoff/Bernstein bound.
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fm analysis

Using independent hash functions, maintain k independent
sketches S1, . . . , Sk.

Flajolet–Martin:

• Choose k random hash function h1, . . . ,hk : U → [0, 1].
• S1 =∞, . . . , Sk =∞
• For i = 1, . . . ,n

• Sj ← min(S,hj(di)) for all j ∈ 1, . . . , k.
• S = (S1 + . . .+ Sk)/k
• Return: 1S − 1 31



fm analysis

1 estimator:

• E[S] = 1
D+1 = µ.

• Var[S] = µ2

k estimators:

• E[S] = 1
D+1 = µ.

• Var[S] = (µ2 · k)/k2 = µ2/k
• By Chebyshev, Pr[|S− ES| ≥ cµ/

√
k] ≤ 1

c2 .

Setting c = 1/
√
δ and k = O

( 1
ϵ2δ

)
gives:

Pr[|S− µ| ≥ ϵµ] ≤ δ.

Total space complexity: O
( 1
ϵ2δ

)
to estimate distinct elements

up to error ϵ with success probability 1− δ.
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