
CS-GY 9223 I: Lecture 14
High Dimensional Geometry (+ finish up
compressed sensing)

NYU Tandon School of Engineering, Prof. Christopher Musco
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sparsity recovery/compressed sensing

Given A ∈ Rm×n with m < n, b ∈ Rm with b = Ax Recover x,
under the assumption that it is k-sparse.

What properties of A let us solve this problem efficiently.

• Measurement efficiency: Small m.
• Computational efficiency: polynomial in n, k. 2



basic result from last class

If A is matrix satisfying the (O(k),O(1))- Restricted Isometry
Property then x can be uniquely recovered from b = Ax in
polynomial time using the basis pursuit linear program:

x = argmin
z

∥z∥1 subject to Az = b.

Measurement complexity m ≈ O(k logn) for:

• Random matrices (JL matrices)
• Subsampled Fourier matrices

In other words, this is how many rows these matrices need to
satisfy (O(k),O(1))-RIP.
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applications

Random matrices used in algorithms. E.g. to solve the
heavy-hitters problem:

Subsampled Fourier matrices: b = Ax is the evaluation of the
Fourier transform Fx at a set of random frequencies
f1, . . . , fm ∈ {0, . . . ,n− 1}. If we had entirety of Fx could recover
x using inverse Fourier transform.
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boyer–moore majority vote algorithm

Input: Stream of number: 1, 2, 1, 5, 1, 1, 6, . . ..
Output: Majority element (if one exists)

• item = 0; count = 0;
• For each e in our stream:

• If count == 0, item = e; count = 1;
• Else if item == e; count = count+ 1;
• Else count = count− 1;

• Return item
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heavy-hitters

Misra-Gries algorithm

Slick generalization of this algorithm for finding any element e
which appears more than 1/k of the time. Uses O(k) space.
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faster methods

A lot of interest in developing even faster algorithms that
avoid using the “heavy hammer” of linear programming and
run in even faster than O(n3.5) time.

• Iterative Hard Thresholding: Looks a lot like projected
gradient descent. Solve minz ∥Az− b∥ while continually
projecting z back to the set of k-sparse vectors. Runs in
time ∼ O(nk logn) for Gaussian measurement matrices
and O(n logn) for subsampled Fourer matrices.

• Other “first order” type methods: Orthogonal Matching
Pursuit, CoSaMP, Subspace Pursuit, etc.

7



faster methods

When A is a subsampled Fourier matrix, there are now
methods that run in O(k logc n) time [Hassanieh, Indyk,
Kapralov, Katabi, Price, Shi, etc. 2012+].
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sparse fourier transform

Corollary: When x is k-sparse, we can compute the inverse
Fourier transform F∗Fx of Fx in O(k logc n) time!

• Randomly subsample Fx.
• Feed that input into our sparse recovery algorithm to
extract x.

Fourier and inverse Fourier transforms in sublinear time when
the output is sparse.

Applications in: Wireless communications, GPS, protein
imaging, radio astronomy, etc. etc. 9



high dimensional geometry
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unifying theme of the course

How do we deal with data in high dimensions?

• Randomized sketching + dimensionality reduction.
• Locality sensitive hashing for similarity search.
• Iterative methods for optimizing functions that depend on
many variables.

• SVD + low-rank approximation to find and visualize
low-dimensional structure.

• Convert large graphs to high dimensional vector data.
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visualizing high dimensional data

Often visualize algorithms in 1,2, or 3 dimensions.

This is not always a good thing to do: high-dimensional space
looks very different from low-dimensional space.
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orthogonal vectors

What is the largest set of mutually orthogonal unit vectors in
d-dimensional space?
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orthogonal vectors

What is the largest set of unit vectors in d-dimensional space
with inner product |xTy| ≤ ϵ?

1. d 2. Θ(d) 3. Θ(d2) 4. 2Θ(d)
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orthogonal vectors

Claim: There is an exponential number of nearly orthogonal
unit vectors in d dimensional space.

Proof: Let x1, . . . , xt all have independent random entries, each
set to ± 1√

d
with equal probability.

• ∥xi∥2 =

• E[xTi xj] =
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orthogonal vectors

For any i, j pair, Pr[|xTi xj| < ϵ] ≥ 1− 2e−ϵ2d/3.

By a union bound:

For all i, j pairs simultaneously, Pr[|xTi xj| < ϵ] ≥ 1− t2 · 2e−ϵ2d/3.
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orthogonal vectors

Final result: In d-dimensional space, there are 2θ(ϵ2d) unit
vectors with all pairwise inner products ≤ ϵ.

Corollary: Random vectors are all approximately the same
distance from each other.
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curse of dimensionality

Curse of dimensionality: Suppose we want to use e.g.
k-nearest neighbors to learn a function or classify points in
Rd. If our data distribution is truly random, we typically need
an exponential amount of data.

The existence of lower dimensional structure is our data is
often the only reason we can hope to learn.
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value of many orthogonal vectors

Definition ((q, ϵ)-Restricted Isometry Property)
A matrix A satisfies (q, ϵ)-RIP if, for all x with ∥x∥0 ≤ q,

(1− ϵ)∥x∥22 ≤ ∥Ax∥22 ≤ (1+ ϵ)∥x∥22.

Every subset of k columns U ∈ Rm×k is approximate isometry.

UTU ≈ I. 18



value of many orthogonal vectors

If UTU ≈ I, it better be that any two columns ui,uj are
approximately orthogonal.

Deduce: All pairs of columns in A are approximately
orthogonal.

Think of k as a constant: k = O(1). We have d nearly orthogonal
vectors living in O(k logd) = O(logd) dimensional space.
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unit ball in high dimensions

Let Bd be the unit ball in d dimensions:

Bd = {x ∈ Rd : ∥x∥2 ≤ 1}.

What percentage of volume of Bd falls with ϵ of its surface?

Volume of radius R ball is πd/2

(d/2)! · R
d.
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isoperimetric inequality

All but an eΘ(−ϵd) fraction of a unit ball’s volume is within ϵ of
its surface.

Isoperimetric Inequality:
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intuition

surface cubes
total cubes =
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intuition

surface cubes
total cubes =

• 1 dimension: 2/10 = .2
• 2 dimension: 38/100 = .38
• 3 dimension: 484/1000 = .484
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slices of the unit ball

What percentage of the volume of Bd falls within ϵ of its
equator?

S = {x ∈ Bd : |x(1)| ≤ ϵ} 24



slices of the unit ball

What percentage of the volume of Bd falls within ϵ of its
equator? Answer: all but a 2Θ(−ϵ2d) fraction.

By symmetry, this is true for any equator:
St = {x ∈ Bd : xTt ≤ ϵ}. 25



bizarre shape of unit ball

1. (1− eΘ(−ϵd)) fraction of volume lies ϵ close to surface.
2. (1− eΘ(−ϵ2d)) fraction of volume lies ϵ close to any equator.

High-dimensional ball looks nothing like 2D ball! 26



concentration at equator

Claim: All but a eΘ(−ϵ2d) fraction of the volume of the ball falls
within ϵ of its equator.

Equivalent: If we draw a point x randomly from the unit ball,
|x(1)| ≤ ϵ with probability ≥ 1− eΘ(−ϵ2d).
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concentration at equator

Let w = x
∥x∥2 .

Pr [|x(1)| ≤ ϵ] ≥ Pr [|w(1)| ≤ ϵ] .

How can we generate w, which is a random vector taken by
scaling a random x ∈ Bd?
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concentration at equator

Let g be a random Gaussian vector – each entry is N (0, 1). Set
w = g/∥g∥2.

• E[∥g∥22] =

• Pr
[
∥g∥ ≤ 1

2E[∥g∥22]
]
≤
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concentration at equator

For 1− 2Θ(d) fraction of vectors g, ∥g∥2 ≥
√
d/2. Condition on

even that we get a random vector in this set.

Pr [|w(1)| ≤ ϵ] = Pr
[
|w(1)| ·

√
d/2 ≤ ϵ ·

√
d/2

]
≥ Pr

[
|g(1)| ≤ ϵ ·

√
d/2

]
≥ 1− 2θ

(
−(ϵ·

√
d/2)2

)
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high dimensional cube

Let Cd be the d-dimensional cube:

Cd = {x ∈ Rd : |x(i)| ≤ 1 ∀i}.

In two dimensions, the cube is pretty similar to the ball.

But volume of Cd is 2d while volume of unit ball is πd/2

(d/2)! .

This is a huge gap!. 31



high dimensional cube

Some other ways to see these shapes are very different:

• maxx∈Bd ∥x∥22 =
• maxx∈Cd ∥x∥22 =
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high dimensional cube

Some other ways to see these shapes are very different:

• Ex∼Bd∥x∥22
• Ex∼Cd∥x∥22 =
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high dimensional cube

Almost all of the volume of the unit cube falls in its corners,
and these corners lie far outside the unit ball.
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connection to dimensionality reduction

If high dimensional geometry is so different from
low-dimensional geometry, why is dimensionality reduction
possible? Doesn’t Johnson-Lindenstrauss tell us that
high-dimensional geometry can be approximated in low
dimensions?
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connection to dimensionality reduction

Hard case: x1, . . . , xn ∈ Rd are all mutually orthogonal unit
vectors:

∥xi − xj∥22 = 2 for all i, j.

From our result earlier, in O(logn/ϵ2) dimensions, there exists
2O(ϵ2·log n/ϵ2) ≥ n unit vectors that are close to mutually
orthogonal.

O(logn/ϵ2) = just enough dimensions.
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thank your for a great semester!
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end of semester

Exam format:

• Can have 1 double sided sheet of notes/equations.
• Will be designed for 1.5 hours, but won’t cut off until 2
hours.

37



end of semester

Exam topics:

• Very end of convex optimization (preconditioning,
coordinate descent, + gradient descent for non-convex
functions).

• Singular value decomposition and low-rank
approximation.

• Spectral graph theory (stochastic block model, matrix
perturbation, etc).

• Randomized linear algebra (subspace embeddings,
approximate regression, ϵ-nets

• Sparse recovery (restricted isometry property, basis
pursuit)
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end of semester

Please write a course review!

• https://m.albert.nyu.edu/app/student/nyuCrseEval/
crseEval/1198/24247/Y_LEC/10
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