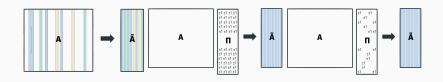
CS-GY 9223 I: Lecture 12 Randomized numerical linear algebra, fast Johnson-Lindenstrauss Transform

NYU Tandon School of Engineering, Prof. Christopher Musco

RANDOMIZED NUMERICAL LINEAR ALGEBRA

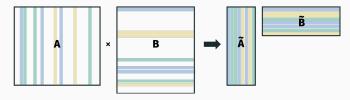
Main idea: If you want to compute singular vectors or eigenvectors, multiply two matrices, solve a regression problem, etc.:

- 1. Compress your matrices using a randomized method.
- 2. Solve the problem on the smaller or sparser matrix.
 - · Ã called a "sketch" or "coreset" for A.

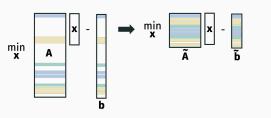


RANDOMIZED NUMERICAL LINEAR ALGEBRA

Approximate matrix multiplication:



Approximate regression:



SKETCHED REGRESSION

n using a || X + X + || 2 X - arsu = (| Ax + ||2 Randomized approximate regression using a Johnson-Lindenstrauss Matrix: Α some notrix. Input: $A \in \mathbb{R}^{n \times d}$, $b \in \mathbb{R}^n$. Algorithm: Let $\tilde{\mathbf{x}}^* = \arg\min_{\mathbf{x}} \|\mathbf{\Pi} \mathbf{A} \mathbf{x} - \mathbf{\Pi} \mathbf{b}\|_2^2$. Goal: Want $\|\mathbf{A}\tilde{\mathbf{x}}^* - \mathbf{b}\|_2^2 \le (1+\epsilon) \min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$

If $\Pi \in \mathbb{R}^{m \times n}$, how large does m need to be? Is it even clear this should work as $m \to \infty$?

TARGET RESULT

Theorem (Randomized Linear Regression)

Let Π be a properly scaled JL matrix (random Gaussian, sign, sparse random, etc.) with $m = O\left(\frac{d \log(1/\delta) + \log(1/\delta)}{\epsilon^2}\right)$ rows. Then with probability $(1-\delta)$, for any $\mathbf{A} \in \mathbb{R}^{n \times d}$ and $\mathbf{b} \in \mathbb{R}^n$,

$$\|\mathbf{A}\tilde{\mathbf{x}}^* - \mathbf{b}\|_2^2 \le (\underline{1 + \epsilon}) \min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$

where $\tilde{\mathbf{x}}^* = \operatorname{arg\,min}_{\mathbf{x}} \| \mathbf{\Pi} \mathbf{A} \mathbf{x} - \mathbf{\Pi} \mathbf{b} \|_2^2$.

$$m = O\left(\frac{d}{\epsilon^2}\right)$$
 When $\epsilon = O(1)$, $n = O(d)$

SKETCHED REGRESSION

Claim: Suffices to prove that for all $\mathbf{x} \in \mathbb{R}^d$,

$$(1 - \epsilon) \| \mathbf{A} \mathbf{x} - \mathbf{b} \|_2^2 \le \| \mathbf{\Pi} \mathbf{A} \mathbf{x} - \mathbf{\Pi} \mathbf{b} \|_2^2 \le (1 + \epsilon) \| \mathbf{A} \mathbf{x} - \mathbf{b} \|_2^2$$

Want to prove:
$$\|A\hat{x}^* - b\|_2^2 = (1+\epsilon) \|Ax^* - b\|_2^2$$
.

For small
$$E$$
, $\frac{1+\alpha}{1-\alpha} = (+0)(\alpha)$

$$\leq \frac{(1+4)}{(1-4)} ||Ax*-b||_{2}^{2}.$$
 For small ℓ , $\frac{1+4}{1-4} = (1004)$

$$\leq \frac{(1+4)}{(1-4)} ||Ax*-b||_{2}^{2}.$$

$$\epsilon^{1} = \frac{\epsilon}{(n+4)} - \frac{8i^{2}\epsilon}{(n+4)}$$

DISTRIBUTIONAL JOHNSON-LINDENSTRAUSS REVIEW

Lemma (Distributional JL)

If Π is chosen to a properly scaled random Gaussian matrix, sign matrix, sparse random matrix, etc., with $O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$ rows then for any fixed y,

$$(1 - \epsilon) \|\mathbf{y}\|_2^2 \le \|\mathbf{\Pi}\mathbf{y}\|_2^2 \le (1 + \epsilon) \|\mathbf{y}\|_2^2$$

with probability $(1 - \delta)$.

Corollary: For any fixed
$$\mathbf{x}$$
, with probability $(1 - \delta)$,

FOR ANY TO FOR ALL

How do we go from "for any fixed x" to "for all $x \in \mathbb{R}^d$ ".

This statement requires establishing a Johnson-Lindenstrauss type bound for an <u>infinity</u> of possible vectors (Ax - b), which obviously can't be tackled with a union bound argument.

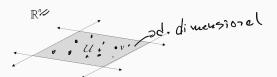
SUBSPACE EMBEDDINGS

Theorem (Subspace Embedding from JL)

Let $\mathcal{U} \subset \mathbb{R}^n$ be a d-dimensional linear subspace in \mathbb{R}^n . If $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ is chosen from any distribution \mathcal{D} satisfying the Distributional JL Lemma, then with probability $1 - \delta$,

$$(1 - \epsilon) \|\mathbf{v}\|_2^2 \le \|\Pi\mathbf{v}\|_2^2 \le (1 + \epsilon) \|\mathbf{v}\|_2^2$$

for all
$$\mathbf{v} \in \mathcal{U}$$
, as long as $m = O\left(\frac{\operatorname{disting} + \log(1/\delta)}{\epsilon^2}\right)^1$. $\approx O\left(\frac{1}{4}\right)^{-1}$



¹It's possible to obtain a slightly tighter bound of *p* challenge to try proving this.

 $\left(\frac{d+\log(1/\delta)}{\epsilon^2}\right)$. It's a nic

SUBSPACE EMBEDDING TO APPROXIMATE REGRESSION

Corollary: If we choose Π and properly scale, then with $O(d/\epsilon^2)$ rows,

$$\frac{\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} \leq \|\mathbf{\Pi}\mathbf{A}\mathbf{x} - \mathbf{\Pi}\mathbf{b}\|_{2}^{2} \leq (1 + \epsilon)\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2}}{\|\mathbf{for all x} \text{ and thus}}$$

$$\|\mathbf{A}\tilde{\mathbf{x}}^* - \mathbf{b}\|_2^2 \le (1 + \epsilon) \min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2.$$

I.e., our main theorem is proven.

Proof: Apply Subspace Embedding Thm. to the (d+1) dimensional subspace spanned by A's d columns and b. Every vector Ax - b lies in this subspace.

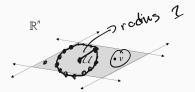
SUBSPACE EMBEDDINGS

Theorem (Subspace Embedding from JL)

Let $\mathcal{U} \subset \mathbb{R}^n$ be a d-dimensional linear subspace in \mathbb{R}^n . If $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ is chosen from any distribution \mathcal{D} satisfying the Distributional JL Lemma, then with probability $1 - \delta$,

$$(1 - \epsilon) \|\mathbf{v}\|_{2}^{2} \le \|\Pi\mathbf{v}\|_{2}^{2} \le (1 + \epsilon) \|\mathbf{v}\|_{2}^{2} \tag{1}$$

for all $\mathbf{v} \in \mathcal{U}$, as long as $m = O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon^2}\right)$



SUBSPACE EMBEDDING PROOF

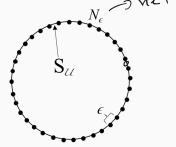
Observation: The theorem holds as long as (1) holds for all \mathbf{w} on the unit sphere in \mathcal{U} . Denote the sphere $S_{\mathcal{U}}$:

Follows from linearity: Any point $\mathbf{v} \in \mathcal{U}$ can be written as $\underline{c}\mathbf{w}$ for some scalar c and some point $\mathbf{w} \in S_{\mathcal{U}}$.

- If $(1 \epsilon) \|\mathbf{w}\|_2 \le \|\mathbf{\Pi}\mathbf{w}\|_2 \le (1 + \epsilon) \|\mathbf{w}\|_2$.
- then $c(1-\epsilon)\|\mathbf{w}\|_2 \le c\|\mathbf{\Pi}\mathbf{w}\|_2 \le c(1+\epsilon)\|\mathbf{w}\|_2$,
- and thus $(1-\epsilon)\|c\mathbf{w}\|_2 \le \|\mathbf{\Pi} c\mathbf{w}\|_2 \le (1+\epsilon)\|c\mathbf{w}\|_2$.

SUBSPACE EMBEDDING PROOF

Intuition: There are not too many "different" points on a *d*-dimensional sphere:



 N_{ϵ} is called an " ϵ "-net.

If we can prove

$$\|\mathbf{w}\|_{\mathbf{v}}(1-\epsilon) \le \|\mathbf{\Pi}\mathbf{w}\|_{2} \le (1+\epsilon)\|\mathbf{w}\|_{\mathbf{v}}$$

for all points $\mathbf{w} \in N_{\epsilon}$, we can hopefully extend to all of $S_{\mathcal{U}}$.

ϵ -NET FOR THE SPHERE

Lemma (ϵ -net for the sphere)

For any $\epsilon \leq 1$, there exists a set $N_{\epsilon} \subset S_{\mathcal{U}}$ with $|N_{\epsilon}| = \left(\frac{4}{\epsilon}\right)^d$ such that $\forall \mathbf{v} \in S_{\mathcal{U}}$,

$$\min_{\mathbf{w}\in N_{\epsilon}}\|\mathbf{v}-\mathbf{w}\|\leq \epsilon.$$

SUBSPACE EMBEDDING PROOF

1. Preserving norms of all points in net N_{ϵ} .

Set $\underline{\delta'} = \left(\frac{\epsilon}{4}\right)^d \cdot \delta$. By a union bound, with probability $\underline{1-\delta}$, for all $\mathbf{w} \in N_{\epsilon}$,

$$\|\mathbf{w}\|_{\mathbf{v}}(1-\epsilon) \leq \|\mathbf{\Pi}\mathbf{w}\|_{2} \leq (1+\epsilon)\|\mathbf{w}\|_{\mathbf{v}}$$

as long as
$$\Pi$$
 has $O\left(\frac{\log(1/\delta')}{\epsilon^2}\right) = O\left(\frac{d\log(1/\epsilon) + \log(1/\delta)}{\epsilon^2}\right)$ rows.

2. Writing any point in sphere as linear comb. of points in N_{ϵ} .

For some
$$w_0, w_1, w_2 \ldots \in N_{\epsilon}$$
, any $v \in S_{\mathcal{U}}$. can be written:
$$v = \underbrace{w_0 + c_1 w_1 + c_2 w_2 + \ldots}_{p_1 + c_1 w_1 + c_2 w_2 + \ldots}_{p_2 + c_1 w_1 + c_2 w_2 + \ldots}_{p_3 + c_4 w_3 + c_4 w_3 + c_5 w_4}_{p_4 + c_4 w_1 + c_5 w_1 + c_5 w_1 + c_5 w_2 + c_5 w_3 + c_6 w_3 + c_6$$

SUBSPACE EMBEDDING PROOF

$$(1-\epsilon) \leq \| T w_o \|_{r} \leq (1+\epsilon)$$
3. Preserving norm of v. for all $v_o \in \mathbb{N}_{\epsilon}$

Applying triangle inequality, we have
$$\| \mathbf{\Pi} \mathbf{w}_0 + \mathbf{\Pi} \mathbf{w}_0 + c_1 \mathbf{\Pi} \mathbf{w}_1 + c_2 \mathbf{\Pi} \mathbf{w}_2 + \dots \|$$

$$\leq \| \mathbf{\Pi} \mathbf{w}_0 \| + \epsilon \| \mathbf{\Pi} \mathbf{w}_1 \| + \epsilon^2 \| \mathbf{\Pi} \mathbf{w}_2 \| + \dots$$

$$\leq (1+\epsilon) + \epsilon (1+\epsilon) + \epsilon^2 (1+\epsilon) + \dots$$

$$\leq 1+O(\epsilon).$$

$$\leq 14$$

$$\leq 14$$

$$\leq 22$$

$$\Leftrightarrow 22$$

$$\Leftrightarrow 22$$

$$\Leftrightarrow 22$$

$$\Leftrightarrow 22$$

$$\Leftrightarrow 22$$

3. Preserving norm of v.

Similarly,

$$\|\mathbf{\Pi}\mathbf{v}\|_{2} = \|\mathbf{\Pi}\mathbf{w}_{0} + c_{1}\mathbf{\Pi}\mathbf{w}_{1} + c_{2}\mathbf{\Pi}\mathbf{w}_{2} + \dots \|$$

$$\geq \|\mathbf{\Pi}\mathbf{w}_{0}\| - \epsilon \|\mathbf{\Pi}\mathbf{w}_{1}\| - \epsilon^{2}\|\mathbf{\Pi}\mathbf{w}_{2}\| - \dots$$

$$\geq (1 - \epsilon) - \epsilon (1 + \epsilon) - \epsilon^{2}(1 + \epsilon) - \dots$$

$$\geq 1 - O(\epsilon).$$

SUBSPACE EMBEDDING PROOF

So we have proven

$$1 - O(\epsilon) \le \|\mathbf{\Pi}\mathbf{v}\|_2 \le 1 + O(\epsilon)$$

for all $\mathbf{v} \in S_{\mathcal{U}}$, which in turn implies for small ϵ ,

$$1 - O(\epsilon) \le \|\mathbf{\Pi}\mathbf{v}\|_2^2 \le 1 + O(\epsilon)$$

Adjusting ϵ proves the Subspace Embedding theorem.

SUBSPACE EMBEDDINGS

Theorem (Subspace Embedding from JL)

Let $\mathcal{U} \subset \mathbb{R}^n$ be a d-dimensional linear subspace in \mathbb{R}^n . If $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ is chosen from any distribution \mathcal{D} satisfying the Distributional JL Lemma, then with probability $1 - \delta$,

$$(1 - \epsilon) \|\mathbf{v}\|_2 \le \|\Pi \mathbf{v}\|_2 \le (1 + \epsilon) \|\mathbf{v}\|_2$$
 (2)

for all
$$\mathbf{v} \in \mathcal{U}$$
, as long as $m = O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon^2}\right)$

FINAL RESULT

Theorem (Randomized Linear Regression)

Let Π be a properly scaled JL matrix (random Gaussian, sign, sparse random, etc.) with $m = O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon^2}\right)$ rows. Then with probability $(1 - \delta)$, for any $\mathbf{A} \in \mathbb{R}^{n \times d}$ and $\mathbf{b} \in \mathbb{R}^n$,

$$\|\mathbf{A}\tilde{\mathbf{x}}^* - \mathbf{b}\|_2^2 \le (1 + \epsilon) \min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$

where $\tilde{\mathbf{x}}^* = \operatorname{arg\,min}_{\mathbf{x}} \| \mathbf{\Pi} \mathbf{A} \mathbf{x} - \mathbf{\Pi} \mathbf{b} \|_2^2$.

Subspace embeddings have many other applications!

For example, if $m = O(k/\epsilon)$ TA can be used to compute an approximate partial SVD, which leads to a $(1 + \epsilon)$ approximate low-rank approximation for A.

$\epsilon ext{-NET FOR THE SPHERE}$

Lemma (ϵ -net for the sphere)

For any $\epsilon \leq 1$, there exists a set $N_{\epsilon} \subset S_{\mathcal{U}}$ with $|N_{\epsilon}| = \left(\frac{4}{\epsilon}\right)^d$ such that $\forall \mathbf{v} \in S_{\mathcal{U}}$,

$$\min_{\mathbf{w} \in N_{\epsilon}} \|\mathbf{v} - \mathbf{w}\| \le \epsilon.$$

Imaginary algorithm for constructing N_{ϵ} :

- Set $N_{\epsilon} = \{\}$
- While such a point exists, choose an arbitrary point $\mathbf{v} \in S_{\mathcal{U}}$ where $\nexists \mathbf{w} \in N_{\epsilon}$ with $\|\mathbf{v} \mathbf{w}\| \le \epsilon$. Set $N_{\epsilon} = N_{\epsilon} \cup \{\mathbf{w}\}$.

After running this procedure, we have $N_{\epsilon} = \{\mathbf{w}_1, \dots, \mathbf{w}_{|N_{\epsilon}|}\}$ and $\min_{\mathbf{w} \in N_{\epsilon}} \|\mathbf{v} - \mathbf{w}\| \le \epsilon$ for all $\mathbf{v} \in S_{\mathcal{U}}$ as desired.

ϵ -NET FOR THE SPHERE

Can place a ball of radius $\epsilon/2$ around each \mathbf{w}_i without intersecting any other balls. All of these balls live in a ball of radius $1 + \epsilon/2$.

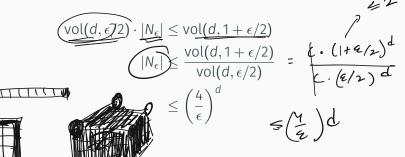
ϵ -NET FOR THE SPHERE

Volume of d dimensional ball of radius r is

$$\operatorname{vol}(d,r) = C r^{d}_{f},$$

where c is a constant that depends on d, but not r. From

previous slide we have:



RUNTIME CONSIDERATION

For $\epsilon, \delta = O(1)$, we need Π to have m = O(d) rows.

- Cost to solve $\|\mathbf{A}\mathbf{x} \mathbf{b}\|_2^2$:
 - $O(nd^2)$ time for direct method. Need to compute $(A^TA)^{-1}A^Tb$. $A^{\dagger}A > O(nd^2)$
 - $O(nd) \cdot (\# \text{ of iterations}) \text{ time for iterative method (GD, AGD, conjugate gradient method)}. 2A^TAX 2A^Tb

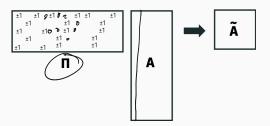
 <math>O(nd) \cdot (\# \text{ of iterations}) \text{ time for iterative method (GD, AGD, conjugate gradient method)}.$
- Cost to solve $\|\mathbf{\Pi}\mathbf{A}\mathbf{x} \mathbf{\Pi}\mathbf{b}\|_2^2$:
 - $O(d^3)$ time for direct method.
 - $O(d^2)$ · (# of iterations) time for iterative method.

RUNTIME CONSIDERATION

But time to compute ΠA is an $(m \times n) \times (n \times d)$ matrix multiply: $O(mnd) = O(nd^2)$ time.

to compute TA.

Goal: Develop faster Johnson-Lindenstrauss projections.



Typically using <u>sparse</u> and <u>structured</u> matrices.

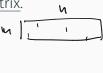
THE FAST JOHNSON-LINDENSTRAUSS TRANSFORM

Subsampled Randomized Hadamard Transform (SHRT)
(Ailon-Chazelle, 2006):

Construct $\Pi \in \mathbb{R}^{ \widehat{\mathcal{O}} \times \widehat{\mathcal{O}}}$ as follows:

$$\Pi = \sqrt{\frac{n}{m}} \cdot \hat{S}HD$$
, where

- $S \in \mathbb{R}^{m \times n}$ is a <u>row subsampling matrix</u>. Each row has a single 1 in a random column, all other entries 0.
- $D \in n \times n$ is a diagonal matrix with each entry uniform ± 1 .
- $H \in [n \times n]$ is a Hadamard matrix.



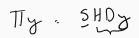
HADAMARD MATRICES

Assume for now that n is a power of 2. For $i = 0, 1, ..., H_i$ is a Hadamard matrix with dimension $2^i \times 2^i$.

$$H_0 = \frac{1}{\sqrt{2}} H_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \quad H_2 = \frac{1}{\sqrt{4}} \begin{bmatrix} \frac{1}{2} & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ \frac{1}{2} & 1 & -1 & -1 \\ \frac{1}{2} & -1 & -1 & 1 \end{bmatrix}$$

$$\underline{H_k} = \frac{1}{\sqrt{2}} \underbrace{\begin{bmatrix} H_{k-1} & H_{k-1} \\ H_{k-1} & -H_{k-1} \end{bmatrix}}_{H_{k-1}}$$

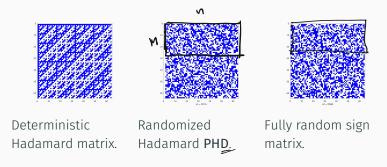
How long does it take to compute $\mathbf{H}\mathbf{x}$ for a vector $\mathbf{x} \in \mathbb{R}^n$?



HADAMARD MATRICES

Comprete: Hy-1 y1, Hu-1 yr

RANDOMIZED HADAMARD TRANSFORM



JOHNSON-LINDENSTRAUSS WITH SHRTS

Theorem (JL from SRHT)

Let $\Pi \in \mathbb{R}^{m \times n}$ be a subsampled randomized Hadamard transform with $m = O\left(\frac{\log(n/\delta)^2 \log(1/\delta)}{\epsilon^2}\right)$ rows. Then for any fixed \mathbf{y} , $\mathbf{y} = \mathbf{y}$ fixed \mathbf{y} , $\mathbf{y} = \mathbf{y}$ fixed $\mathbf{y} = \mathbf{y}$ for $\mathbf{y} = \mathbf{y}$

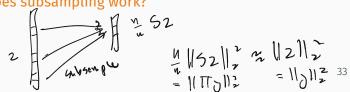
HADAMARD MATRICES ARE ORTHOGONAL

Property 2: For any k = 0, 1, ..., we have $\mathbf{H}_k^T \mathbf{H}_k = \mathbf{I}$.

We want to show that
$$\|\sqrt{\frac{\mathbf{1}}{m}}\mathbf{SHDy}\|_2^2 \approx \|\mathbf{y}\|_2^2$$
. Let $\underline{\mathbf{z}} \in \mathbb{R}^n = \mathbf{HDy}$.

- Claim: $\|\mathbf{z}\|_{2}^{2} = \|\mathbf{y}\|_{2}^{2}$, exactly. $\|\mathbf{p}_{0}\|_{2}^{2} = \mathbf{y}^{T}\|\mathbf{p}_{0}\|_{2}^{2} = \|\mathbf{y}\|_{2}^{2}$
 - $\|\mathsf{SHDy}\|_2^2 = \frac{n}{m}\|\mathsf{Sz}\|_2^2 = \text{subsample of z.}$
 - $\mathbb{E}\left[\frac{n}{m}\|\mathbf{S}\mathbf{z}\|_{2}^{2}\right] = \|\mathbf{z}\|_{2}^{2}$.

What would z have to look like for $\|Sz\|_2^2$ to look very different from $\|z\|_2^2$ with high probability? I.e. when does subsampling fail. When does subsampling work?



Lemma (SHRT mixing lemma)

Let $\underline{\mathbf{H}}$ be an $(n \times n)$ Hadamard matrix and \mathbf{D} a random ± 1 diagonal matrix. Let $\underline{z} = \underline{HDy}$ for some $y \in \mathbb{R}^n$. With probability $1 - \delta$,

$$(z_i) \le c \cdot \sqrt{\frac{\log(n/\delta)}{n}} ||\mathbf{y}||_2$$

for some fixed constant c. ||z|| = || || || ||

If all entries in **z** were uniform magnitude, we would have $|z_i| = \frac{1}{\sqrt{n}} ||y||_2$. So we are very close to uniform with high $z_1^2 = \frac{\|z\|_2^2}{y} = \frac{\|y\|_2^2}{y}$ $5z_1^2 = \|z\|_2^2 = \|y\|_2^2$ probability.

Let \mathbf{h}_{i}^{T} be the i^{th} row of \mathbf{H} . $\mathbf{z}_{i} = \mathbf{\underline{h}}_{i}^{T}\mathbf{D}\mathbf{\underline{y}}$ where:

$$\mathbf{h}_{i}^{\mathsf{T}}\mathbf{D} = \frac{1}{\sqrt{n}} \underbrace{\left(\begin{array}{cccc} 1 & 1 & -1 & -1 \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

where R_1, \dots, R_n are random ± 1 's. \rightarrow "Bodemacher This is equivalent to

$$\mathbf{h}_{i}^{\mathsf{T}}\mathbf{D} = \frac{1}{\sqrt{n}} \underbrace{\begin{bmatrix} R_{1} & R_{2} & R_{3} & R_{4} \end{bmatrix}}_{\mathbf{A}} \cdot \underbrace{\begin{bmatrix} \mathbf{J} \\ \mathbf{J} \\ \mathbf{J} \\ \mathbf{J} \end{bmatrix}}_{\mathbf{A}}$$

or all i,
$$\int \mathbf{y} \, \mathbf{z}_{i} = \mathbf{h}_{i}^{\mathsf{T}} \mathbf{D} \mathbf{y} = \int_{i=1}^{n} R_{i} \mathbf{y}_{i}$$

$$= \mathbf{0}$$
Voc [fin 2;] = $\mathbf{\Sigma}$ Voc [R; \mathbf{y}_{i}]
$$= \mathbf{Z}_{i}^{\mathsf{T}} \mathsf{Voc}[\mathbf{R}]$$

•
$$\sqrt{n} \cdot \mathbf{z}_i$$
 is a random variable with $\sqrt{mean 0}$ and variance = \mathbf{z}_{13} ?

 $\|\mathbf{y}\|_{2}^{2}$, which is a sum of independent random variables. = $\|\mathbf{z}_{13}\|_{2}^{2}$

$$\Pr[|\sqrt{n} \cdot \mathbf{z}_i| \ge t ||\mathbf{y}||_2] \le e^{-O(t^2)}$$
• Setting t gives $\Pr\left[|\mathbf{z}_i| \ge O\left(\sqrt{\frac{\log(n/\delta)}{n}} ||\mathbf{y}||_2\right)\right] \le \frac{\delta}{n}$.
• Applying a union bound to all n entries of \mathbf{z} gives the SHRT

mixing lemma.

RADEMACHER CONCENTRATION

Formally, need to use Bernstein type concentration inequality to prove the bound:

Lemma (Rademacher Concentration)

Let $R_1, ..., R_n$ be Rademacher random variables (i.e. uniform ± 1 's). Then for any vector $\mathbf{a} \in \mathbb{R}^n$,

$$\Pr\left(\sum_{i=1}^{n} R_{i}a_{i}\right) \geq t\|\mathbf{a}\|_{2} \leq e^{-t^{2}/2}.$$

$$\text{ Sion previous pose}$$

FINISHING UP

With probability $1-\delta$, we have that all $z_i \leq O\left(\sqrt{\frac{\log(n/\delta)}{n}}\|\mathbf{y}\|_2\right)$. We want to analyze:

$$\sqrt{\frac{n}{m}} \mathbf{SHD}_{j}|_{2}^{2} = \frac{1}{m} ||\sqrt{n}\mathbf{Sz}||_{2}^{2} = \frac{1}{m} \sum_{i=1}^{m} (\sqrt{n}\mathbf{z}_{j_{i}})^{2}$$
 where j_{i} is a random index in $\underline{1, \dots, n}$.

We have that $\mathbb{E}L = \|\mathbf{z}\|_2^2 = \|\mathbf{y}\|_2^2$ and L is a sum of random variables, each bounded by $O(\log(n/\delta))$, which means they have bounded variance. $2j_i \leq \sqrt{\log(n/\delta)} \cdot \log n$

Apply a Chernoff/Hoeffding bound to get that $|L| |y||_2^2 | \le \epsilon ||y||_2^2$ with probability $1 - \delta$ as long as:

$$m \ge O\left(\frac{\log^2(n/\delta)\log(1/\delta)}{\epsilon^2}\right).$$

JOHNSON-LINDENSTRAUSS WITH SHRTS

Theorem (JL from SRHT)

Let $\underline{\Pi} \in \mathbb{R}^{m \times n}$ be a subsampled randomized Hadamard transform with $m = O\left(\frac{\log(n/\delta) \log(1/\delta)}{\epsilon^2}\right)$ rows. Then for any fixed \mathbf{y} ,

$$(1 - \epsilon) \|\mathbf{y}\|_2^2 \le \|\mathbf{\Pi}\mathbf{y}\|_2^2 \le (1 + \epsilon) \|\mathbf{y}\|_2^2$$

with probability $(1 - \delta)$.

Can be improved to
$$m = O\left(\frac{\log(n/\delta)\log(1/\delta)}{\epsilon^2}\right)$$
.

Upshot for regression: Compute ΠA in $O(nd \log n)$ time instead of $O(nd^2)$ time. Compress problem down to A with $O(d^2)$ dimensions.

BRIEF COMMENT ON OTHER METHODS

 $O(nd \log n)$ is nearly linear in the size of A when A is dense.

Clarkson-Woodruff 2013, STOC Best Paper: Possible to compute
$$\tilde{A}$$
 with poly(d) rows in:

$$O(nnz(A)) \text{ time.}$$
 $\leq O(nd)$

 Π is chosen to be an ultra-sparse random matrix. Uses totally different techniques (you can't do JL + ϵ -net).

Lead to a whole close of matrix algorithms (for regression, SVD, etc.) which run in time:

$$O(\operatorname{nnz}(A)) \neq \operatorname{poly}(d, \epsilon)$$

 $O(\operatorname{nnz}(A)) \neq \operatorname{poly}(d, \epsilon)$
 $O(\operatorname{nnz}(A)) \neq \operatorname{poly}(d, \epsilon)$

WHAT WERE AILON AND CHAZELLE THINKING?

Simple, inspired algorithm that has been used for accelerating:

- Vector dimensionality reduction
- · Linear algebra
- Locality sensitive hashing (SimHash)
- Randomized kernel learning methods (we will discuss after Thanksgiving)

```
m = 20|;
c1 = (2*randi(2,1,n)-3).*y;
c2 = sqrt(n)*fwht(dy);
c3 = c2(randperm(n));
z = sqrt(n/m)*c3(1:m);
```

WHAT WERE AILON AND CHAZELLE THINKING?

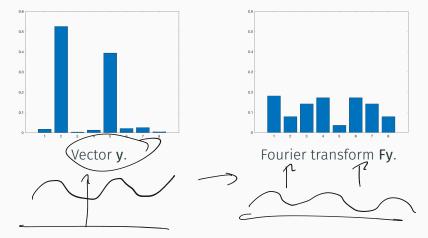
The Hadamard Transform is closely related to the Discrete 1=5-1 Fourier Transform. $F^*F = I$ |e=2#ijk |

Ey computes the Fourier-transform of the vector \underline{y} . Can be computed in $O(n \log n)$ time using a divide and conquer algorithm (the Fast Fourier Transform).

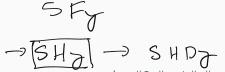
Real part of $\mathbf{F}_{i,k}$.

THE UNCERTAINTY PRINCIPAL

The Uncertainty Principal (informal): A function and it's Fourier transform cannot both be concentrated.



THE UNCERTAINTY PRINCIPAL



Sampling does not preserve norms, i.e. $\|\mathbf{S}\mathbf{y}\|_2 \not\approx \|\mathbf{y}\|_2$ when \mathbf{y} has a few large entries.

Taking a Fourier transform exactly eliminates this hard case, without changing \mathbf{y} 's norm.