CS-GY 9223 I: Lecture 12
Randomized numerical linear algebra, fast
Johnson-Lindenstrauss Transform

NYU Tandon School of Engineering, Prof. Christopher Musco



RANDOMIZED NUMERICAL LINEAR ALGEBRA

Main idea: If you want to compute singular vectors or
eigenvectors, multiply two matrices, solve a regression
problem, etc.

1. Compress your matrices using a randomized method.
2. Solve the problem on the smaller or sparser matrix.
- A called a “sketch” or “coreset” for A.




RANDOMIZED NUMERICAL LINEAR ALGEBRA

Approximate matrix multiplication:

Approximate regression:
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SKETCHED REGRESSION

Randomized approximate regression using a “ Q" ¥ \\:
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Input: A € R™9 b e R".

Algorithm: Let X* = argmin, [MAx — Mb|f3.

Goal: Want [|AX* — b||3 < (1+ ¢€) miny H\A/x_;[)ﬂﬁ

—

If M e R™", how laggedoes m need to be? Is it even clear this
should work as m — oo?



TARGET RESULT

Theorem (Randomized Linear Regression)

Let M be a properly scaled JL matrix (random Gaussian, sign,
sparse random, etc.) with m = O (w) rows.

Then with probability (1 — 6), for any A € R"™9 and b € R",
IAZ —b|3 < (1+¢) min [|Ax — b]3
where X* = arg min, ||[MAX — Mb||5.
%"



SKETCHED REGRESSION

Claim: Suffices to prove that for all x € RY,
y
(1— €)lAx — b|j3 < [IMAX — A3 < (1+ ¢)||Ax — bJ|3
x¥ = O w1 \Ax -l
*
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DISTRIBUTIONAL JOHNSON-LINDENSTRAUSS REVIEW

Lemma (Distributional JL)

If N is chosen to a properly scaled random Gaussian matrix,

sign matrix, sparse random matrix, etc., with O (loiﬂ) rows
N/

then for any fixedy,
(1=e)llylls < IINyll3 < 1+ &)llyll3

with probability (1 — 6).

Corollary: with probability (1 —4),

[(1 — €)[[Ax = b|3 < [[IAX — AIb|3 < (1+ €)[|Ax — b]5. j

N
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FOR ANY TO FOR ALL

How do we go from “for any fixed x” to “for all x € R?".

This statement requires establishing a Johnson-Lindenstrauss
type bound for an infinity of possible vectors (Ax — b), which

obviously can’t be tackled with a union bound argument.
2 foloe
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SUBSPACE EMBEDDINGS

Theorem (Subspace Embedding from JL)

LetUd C R" be a d-dimensional linear subspace in R". If
N e R™*9 js chosen from any distribution D satisfying the
Distributional JL Lemma, then with probability 1 — 9,

(1= alvliz < INvliz < (1 + €)lIvli3
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"It's possible to obtain a slightly tighter bound of ¢ (% JIt's a nice
challenge to try proving this. 9




SUBSPACE EMBEDDING TO APPROXIMATE REGRESSION

Corollary: If we choose M and properly scale, then with
O (d/€®) rows,

IAx — b|3 < [MAX — Mb]f3 < (1+6)IIAX—sz

for all x and thus w- O C >

||AX* — b||2 (1+¢€) mm ||Ax — 4”2
l.e., our main theorem is proven.
Proof: Apply Subspace Embedding Thm. to the !d + 1)
dime@bspace spanned by A’s d columns and b. Every
vecto{ Ax — b }les in this subspace. et (N
& NPUTINC ZDL’\(DC ) \l \’ 0\' >\°;?o\ é\‘\’ S‘ﬂ._g‘l.
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SUBSPACE EMBEDDINGS

Theorem (Subspace Embedding from JL)

LetU c R" be a d-dimensional linear subspace in R". If
N e R™*4 js chosen from any distribution D satisfying the
Distributional JL Lemma, then with probability 1 — 6,

(1= elvIZ <INVl < (1+ €)lIvliz (1)

forallv € U, as long asmzo<w)

€
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SUBSPACE EMBEDDING PROOF

Observation: The theorem holds as long as (1) holds for all w
on the unit sphere in U. Denote the sphere Sy:

@ {w|w et and |wl|; =1}

Follows from linearity: Any point v € /4 can be written as cw
for some scalar c and some point w € Sy,.
i

I (1= ellwlla < [[Awlly < (04 €)|wlp.

—

- then c(1—¢€)|lw|, < c]|Awl|; < c(1+ €)|jw]|,
- and thus (1 —¢€)||cw]|; < [[Mew|; < (T4 €)|lcw]]s.

Lo
Wl el
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SUBSPACE EMBEDDING PROOF

Intuition: There are not too many “different” points on a

d-dimensional sphere: 5 vu-’\/

N,

€

u_n

N, is called an “€"-net.
If we can prove

lwll(1—¢) < Ml < (14 ) Yw

for all points w € N, we can hopefully extend to all of S,.

13



€-NET FOR THE SPHERE

Lemma (e-net for the sphere)

For any e < 1, there exists a set N, C Sy with |N¢| = (g)d such
that W € Sy, =

min [lv—wl <e.
weN,

14



SUBSPACE EMBEDDING PROOF

1. Preserving norms of all points in net N..
/N
Setd = (%)d -4. By a union bound, with probability 1— 4, for
allw e N,

3
_s'elle
(il (1 =€) < IMwlz < (1+ e)llw |, I- 5 - Thel

as long as M has O (%) o) w> rows.
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SUBSPACE EMBEDDING PROOF

2. Writing any point in sphere as linear comb. of points in N..

For some wqg, Wy, W5 ... € N, any v € Sy can be written:
v e L8 o’
V=Wqy+CW+CWy—+... -~ .

——

. |
for constants ¢y, ¢y, . .. where |¢j] <e. der
w &
/)f“-
V= W, + G
e Gl = £

—L= oW,
Il 0,

('Tw,uru D)

z f/ Nacw ‘.: @”

+ €,
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SUBSPACE EMBEDDING PROOF

(1-2) € WTwall, = C1x<)

3. Preserving norm of v. Coc ?;LL vs €Ne

Applying triangle inequality, we have MTFUJ fﬂr\)
[Av]2 = [[Mwo + ¢ilwq + oMwy + .. || AT
£ a0
< ||Mwg || + e|[Mwq]| + €| Mw,]|| + . .. HT
<(1+e)+e/2(1;u;+... C—
=100k ] l heeye?
2 eue tf-
£2le 472 n{‘{\‘ e

il < Ciroe) W,
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SUBSPACE EMBEDDING PROOF

Similarly,

3. Preserving norm of v.

|Nv]|2 = [|Mwo + cilwy + 0w, + ... |
> [|Mwol| — el wy || — €2[|Awy | — ...
2@—6(1+6)—62(1+e):...

>1—0(e).

18



SUBSPACE EMBEDDING PROOF

So we have proven

1009 < [Nl < 1+ 0(9) |

for all v e Sy, which in turn implies for small e,

1= 0(e) < [INV]|7 <1+ O(e)

Adjusting e proves the Subspace Embedding theorem.



SUBSPACE EMBEDDINGS

Theorem (Subspace Embedding from JL)
LetUd C R" be a d-dimensional linear subspace in R". If

N e R™*9 js chosen from any distribution D satisfying the
Distributional JL Lemma, then with probability 1 — 9,

(1= 9livllz < [INvllz < (T + &)llvll2 (2)

forallv e U, as long asm:O(M)

&
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FINAL RESULT

Theorem (Randomized Linear Regression)

Let M be a properly scaled JL matrix (random Gaussian, sign,
sparse random, etc.) with m = O (w) rows.

&

Then with probability (1 — &), for any A € R"™% and b € R,
IA%* — |3 < (1+ €) min [|Ax — b|3

where X* = arg min, ||[MAx — Mb||3.

For example, if m A can be used to compute an

approximate partial SVD, which leads to a (1+ €) approximate

low-rank approximation for A.
21



€-NET FOR THE SPHERE

Lemma (e-net for the sphere)
For any e < 1, there exists a set N, CS&_WI'U”I INe| = (g)d such
that Wv € Sy,

min v —wl| <e.
WEN

Imaginary algorithm for constructing N.:

- Set N ={}
- While such a point exists, choose an arbitrary pointv € Sy
where 3w € N, with |[v — w| < e Set N. = N U {w}.

After running this procedure, we have N = {ws,..., W} and

Minwen, ||V —w|| < e forall v € Sy as desired.
22



€-NET FOR THE SPHERE

How many steps does this procedure take?

/)r«&\‘” ey WO

Can place a ball of radius é/2 around each w; without
intersecting any other balls. All of these balls live in a ball of
radius 1+ ¢/2. 23



€-NET FOR THE SPHERE

Volume of d dimensional ball of radius ris

vol(d, r) 53 7%

where c is a constant that depends on d, but not r. From

previous slide we have:

2%
vol(d, 72) - |Ne| < vol(d. 1+ ¢/2) /
// —

[Ne|

Lz

. (IM—/:,)‘L

vol(d, 1+ €/2)
vol(d, e/2)
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RUNTIME CONSIDERATION

Fore,d = O(1), we need N to have m = O(d) rows.

- Cost to solve ||Ax — b||3:
: Wtime for direct method. Need to compute
(AA)'ATb. A4~ 0(ud™)
- O(nd) - (# of iterations) time for iterative method (GD, AGD,
conjugate gradient method).  2ATAx - 2ATL oY
- Cost to solve [[MMAx — Mb% - hw

+ O(d?) time for direct method.

- O(d?) - (# of iterations) time for iterative method.
~—

25



RUNTIME CONSIDERATION

But time to compute [1A is an (m x n) x (n x d) matrix
multiply: O(mnd) = Q(nd2) time.

——
Yo conpbe A -
Goal: Develop faster Johnson-Lindenstrauss projections.

1 £ g b 1 £ +1
£ ESI ] 11 ~
+1 tio? 17 1 ‘ A
+1 ErY +1
£ 1

+1 I

@ A

Typically using sparse and structured matrices.
— \/Y/
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THE FAST JOHNSON-LINDENSTRAUSS TRANSFORM

Subsampled Randomized Hadamard Transform (SHRT)
(Ailon-Chazelle, 2006): > |(/”—Wﬁr Du«
/

Construct N € Rﬁx@as follows: =2

n= \/ESHD, where
m =

=

7

- S e R™" is arow subsampling matrix. Each row has a
single 1in a random column, all other entries 0.

- D € n xnisadiagonal matrix with each entry uniform +1.
- H €n xT7lis a Hadamard matrix. "

B e




HADAMARD MATRICES

Assume for now that n is a power of 2. Fori=0,1,..., H;isa
Hadamard matrix with dimension 2/ x 2'. -
——

1 [1 1 1
HO@HF\&L —1] =7

How long does it take to compute Hx for a vector x € R"?

Ty - M0y 2



HADAMARD MATRICES
\'\\Q\uu {&%\tbm hwr.«

A B
Property 1: Can compute Mx = SHDx inZO(n logn) Kime.
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RANDOMIZED HADAMARD TRANSFORM

Deterministic Randomized Fully random sign
Hadamard matrix. Hadamard PHQ/ matrix.

30



JOHNSON-LINDENSTRAUSS WITH SHRTS

Theorem (JL from SRHT)

Let M € R™*" be a subsampled randomized Hadamard
transform with m = O (loi )2zlog(1/6)> rows. Then for any

&

ﬁXed y/ c,ml\ ok '~ t(u\u,i&; “76 A’(WY\ [ 3o}
(- 9l¥IB < Iy < 1+ lyIB )
. .. \=§ Vs
with probability (1 — ). L2, —Z-

()

J/—a"\"““u’m‘olﬂ 'fi SPyT \
"
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HADAMARD MATRICES ARE ORTHOGONAL

Property 2: For any k= 0,1,..., we have H'Hy, = I.

Hu -\THu—\ e Hv -t

58
- 0o 2% T
_l I
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RANDOMIZED HADAMARD ANALYSIS

We want to show that H\/%SHDyH% ~ |lylI3-
"

Let z€ R" = HDy. (I

g 2 < Iylg eacty, N9 7 DDy U
- |8HDy|3 = EZI‘SZ:JIZ = subsample of z. .
E [7lszl3] = lizll- W01

' D #Og - W0l

T A\l

What would z have to look like for ||Sz||3 to look very different

from ||z||5 with high probability? I.e. when does subsampling
fail. When does subsampling work?

/—aﬁ"\/(o’b

. %W tloal) > w120

(—rr “1 '1\\a“:' 33



RANDOMIZED HADAMARD ANALYSIS

Lemma (SHRT mixing lemma)
Let H be an (n x n) Hadamard matrix and D a random =1
diagonal matrix. Let z= HDy for somey € R". With

probability 1 — 4,
,‘
(log(n/é
(i ey,

for some fixed constant c. \l 2| : = “b Hf

If all entries in z were uniform magnitude, we would have

il = =yl .

v 2. F . lzlz Cliyls
i

\0® M

s e e coc CE S P e b 19
‘Zl] - (\/: )\D'H;. 34



RANDOMIZED HADAMARD ANALYSIS

SHRT mixing lemma proof: % = }’_‘/-f—;“ 0 i “

Let h! be the i row of H. = h’Dy whete: ¢

R
D = = D R,

: 0
where Ry, ..., R, are random £1's. — pm&wc‘d%/

This is equivalent to Pordoue yoayelle”

R,

1
h,TD:ﬁ Ri Ry Rs RL,}.a‘
><— 1

1y

N
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RANDOMIZED HADAMARD ANALYSIS

SHRT mixing lemma proof: rE [ﬂ\ 7;.3 . E 2B ik
=5 Bt g
"

So we have, for all j,

=0
@ hTDy %ZR Vo [ 2,3 = 5 var [Rig

- 231 \]"r{B}
- /n-z;is a random variable withjmean 0)and variance - ED%L
lyll3, which is a sum of independent random variables. :\]an:

* By Central Limit Theorem, we expectthat: z
, ﬁ— \-b(‘l/&)
Pri|vn -z > tlly|l2] < e~ - 5

—_

Vl
- Setting t gives Pr [|z,»| >0 ( log( n/5)||y\| ﬂ

- Applying a uniop bound to all n entries of z gives the SHRT

mixing lemma.\m\al) &‘f_"‘/\\l- »/ ({7"’\" \/& .




RADEMACHER CONCENTRATION

Formally, need to use Bernstein type concentration inequality
to prove the bound:

Lemma (Rademacher Concentration)

Let Ry,...,Rn, be Rademacher random variables (i.e. uniform
+1’s). Then for any vector a € R",

n
_ 2
P[> Rk tuanz] <e s

q Seen et
P
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FINISHING UP

With probability 1— 6, we have that all z; < O [ /82y,
We want to analyze: ootk |l % \|b|l" A | e

;. @
@Sy Iy Sy = IVASZE = S (/g
Ta v don
where j; is a rand 1Fr?mdex in1,. m:\,&m
We have that EL = ||z||5 = ||y||3 and L is a sum of random
variables, each bounded by O (log(n/d)), which means they
have bounded variance. | 255 < loyu/s) My

Apply a Chernoff/Hoeffding bound to get that
|L# ||y||3| < €lly||3 with probability 1— 4 as long as:

H{] mz0 (logz(”/5)210g(1/5)> | Zﬁ

€



JOHNSON-LINDENSTRAUSS WITH SHRTS

Theorem (JL from SRHT)

Let N e R™" bea subsample;j randomized Hadamard
transform withm =0 (M) rows. Then for any
fixedy,

(1= alyllz < INylz < 1+ o)llyllz

d
with probability (1 — 6).

| 3-5u0]

Can be improved to m = O <w>

Upshot for regression: Compute MA in A

instead of Ogndzl time. Compress problem down toj;vvith
0(d?) dimensions.

YL (g [0/ ) leg (V)
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BRIEF COMMENT ON OTHER METHODS

O(ndlogn) is nearly linear in the size of A when A is dense.
ARSI

Clarkson-Woodruff 2013, STOC Best Paper: Possible to
compute A with poly(d) rows in: \ ;;_f

o(nna) time. U [t
nnz ime.

M is chosen to be an ultra-sparse random matrix. Uses totally
different techniques (you can't do JL + e-net).

Lead to a whole close of matrix algorithms (for regression, SVD,
etc.) which run in time:

O (nnz(A))

V\VLZ(/A'D 0 (i& r(‘df&\’lbﬁ&)
- (’K) )
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WHAT WERE AILON AND CHAZELLE THINKING?

Simple, inspired algorithm that has been used for accelerating:

- Vector dimensionality reduction

- Linear algebra m = 20f;
- Locality sensitive hashing cl = (2xrandi(2,1,n)-3).x*y;
(SimHash) c2 = sqrt(n)*xfwht(dy);
c3 = c2(randperm(n));
- Randomized kernel learning z = sqrt(n/m)*c3(1:m);

methods (we will discuss after
Thanksgiving) 41



WHAT WERE AILON AND CHAZELLE THINKING?

The Hadamard Transform is closely related to the Discrete
Fourier Transform. e

}k F'F=1.

Real part of Fj

Ey.computes the Fourier-transform of the vector y. Can be
computed in O(nlogn) time using a divide and conquer
algorithm (the Fast Fourier Transform). .



THE UNCERTAINTY PRINCIPAL

The Uncertainty Principal (informal): A function and it’s
Fourier transform cannot both be concentrated.

_H._. UI-..!l.!
Fourier transfclkrﬂm Fy.

— T

A 2N
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THE UNCERTAINTY PRINCIPAL

%Iﬁ?f
~7(§H£\ — S HUDy

Sampling does not preserve norms, i.e. ||Sy|l2 # |ly|l. when'y
has a few large entries.

Taking a Fourier transform exactly eliminates this hard case,
without changing y's norm.
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