
CS-GY 9223 I: Lecture 12
Randomized numerical linear algebra, fast
Johnson-Lindenstrauss Transform

NYU Tandon School of Engineering, Prof. Christopher Musco

1

randomized numerical linear algebra

Main idea: If you want to compute singular vectors or
eigenvectors, multiply two matrices, solve a regression
problem, etc.:

1. Compress your matrices using a randomized method.
2. Solve the problem on the smaller or sparser matrix.

• Ã called a “sketch” or “coreset” for A.

2

randomized numerical linear algebra

Approximate matrix multiplication:

Approximate regression:

3

sketched regression

Randomized approximate regression using a
Johnson-Lindenstrauss Matrix:

Input: A ∈ Rn×d, b ∈ Rn.

Algorithm: Let x̃∗ = argminx ∥ΠAx−Πb∥22.

Goal: Want ∥Ax̃∗ − b∥22 ≤ (1+ ϵ)minx ∥Ax− b∥22

If Π ∈ Rm×n, how large does m need to be? Is it even clear this
should work as m→ ∞?

4

target result

Theorem (Randomized Linear Regression)
Let Π be a properly scaled JL matrix (random Gaussian, sign,
sparse random, etc.) with m = O

(
d log(1/ϵ)+log(1/δ)

ϵ2

)
rows.

Then with probability (1− δ), for any A ∈ Rn×d and b ∈ Rn,

∥Ax̃∗ − b∥22 ≤ (1+ ϵ)min
x

∥Ax− b∥22

where x̃∗ = argminx ∥ΠAx−Πb∥22.

5

sketched regression

Claim: Suffices to prove that for all x ∈ Rd,

(1− ϵ)∥Ax− b∥22 ≤ ∥ΠAx−Πb∥22 ≤ (1+ ϵ)∥Ax− b∥22

6

distributional johnson-lindenstrauss review

Lemma (Distributional JL)
If Π is chosen to a properly scaled random Gaussian matrix,
sign matrix, sparse random matrix, etc., with O

(
log(1/δ

ϵ2

)
rows

then for any fixed y,

(1− ϵ)∥y∥22 ≤ ∥Πy∥22 ≤ (1+ ϵ)∥y∥22

with probability (1− δ).

Corollary: For any fixed x, with probability (1− δ),

(1− ϵ)∥Ax− b∥22 ≤ ∥ΠAx−Πb∥22 ≤ (1+ ϵ)∥Ax− b∥22.

7

for any to for all

How do we go from “for any fixed x” to “for all x ∈ Rd”.

This statement requires establishing a Johnson-Lindenstrauss
type bound for an infinity of possible vectors (Ax− b), which
obviously can’t be tackled with a union bound argument.

8

subspace embeddings

Theorem (Subspace Embedding from JL)
Let U ⊂ Rn be a d-dimensional linear subspace in Rn. If
Π ∈ Rm×d is chosen from any distribution D satisfying the
Distributional JL Lemma, then with probability 1− δ,

(1− ϵ)∥v∥22 ≤ ∥Πv∥22 ≤ (1+ ϵ)∥v∥22

for all v ∈ U , as long as m = O
(
d log(1/ϵ)+log(1/δ)

ϵ2

)
1.

1It’s possible to obtain a slightly tighter bound of O
(
d+log(1/δ)

ϵ2

)
. It’s a nice

challenge to try proving this. 9

subspace embedding to approximate regression

Corollary: If we choose Π and properly scale, then with
O
(
d/ϵ2

)
rows,

∥Ax− b∥22 ≤ ∥ΠAx−Πb∥22 ≤ (1+ ϵ)∥Ax− b∥22

for all x and thus

∥Ax̃∗ − b∥22 ≤ (1+ ϵ)min
x

∥Ax− b∥22.

I.e., our main theorem is proven.

Proof: Apply Subspace Embedding Thm. to the (d+ 1)
dimensional subspace spanned by A’s d columns and b. Every
vector Ax− b lies in this subspace.

10

subspace embeddings

Theorem (Subspace Embedding from JL)
Let U ⊂ Rn be a d-dimensional linear subspace in Rn. If
Π ∈ Rm×d is chosen from any distribution D satisfying the
Distributional JL Lemma, then with probability 1− δ,

(1− ϵ)∥v∥22 ≤ ∥Πv∥22 ≤ (1+ ϵ)∥v∥22 (1)

for all v ∈ U , as long as m = O
(
d log(1/ϵ)+log(1/δ)

ϵ2

)

11

subspace embedding proof

Observation: The theorem holds as long as (1) holds for all w
on the unit sphere in U . Denote the sphere SU :

SU = {w |w ∈ U and ∥w∥2 = 1}.

Follows from linearity: Any point v ∈ U can be written as cw
for some scalar c and some point w ∈ SU .

• If (1− ϵ)∥w∥2 ≤ ∥Πw∥2 ≤ (1+ ϵ)∥w∥2.
• then c(1− ϵ)∥w∥2 ≤ c∥Πw∥2 ≤ c(1+ ϵ)∥w∥2,
• and thus (1− ϵ)∥cw∥2 ≤ ∥Πcw∥2 ≤ (1+ ϵ)∥cw∥2.

12

subspace embedding proof

Intuition: There are not too many “different” points on a
d-dimensional sphere:

Nϵ is called an “ϵ”-net.

If we can prove

(1− ϵ) ≤ ∥Πw∥2 ≤ (1+ ϵ)

for all points w ∈ Nϵ, we can hopefully extend to all of SU . 13

ϵ-net for the sphere

Lemma (ϵ-net for the sphere)

For any ϵ ≤ 1, there exists a set Nϵ ⊂ SU with |Nϵ| =
(4
ϵ

)d such
that ∀v ∈ SU ,

min
w∈Nϵ

∥v− w∥ ≤ ϵ.

14

subspace embedding proof

1. Preserving norms of all points in net Nϵ.

Set δ′ =
(
ϵ
4
)d · δ. By a union bound, with probability 1− δ, for

all w ∈ Nϵ,

(1− ϵ) ≤ ∥Πw∥2 ≤ (1+ ϵ).

as long as Π has O
(
log(1/δ′)

ϵ2

)
= O

(
d log(1/ϵ)+log(1/δ)

ϵ2

)
rows.

15

subspace embedding proof

2. Writing any point in sphere as linear comb. of points in Nϵ.

For some w0,w1,w2 . . . ∈ Nϵ, any v ∈ SU . can be written:

v = w0 + c1w1 + c2w2 + . . .

for constants c1, c2, . . . where |ci| ≤ ϵi.

16

subspace embedding proof

3. Preserving norm of v.

Applying triangle inequality, we have

∥Πv∥2 = ∥Πw0 + c1Πw1 + c2Πw2 + . . . ∥
≤ ∥Πw0∥+ ϵ∥Πw1∥+ ϵ2∥Πw2∥+ . . .

≤ (1+ ϵ) + ϵ(1+ ϵ) + ϵ2(1+ ϵ) + . . .

≤ 1+ O(ϵ).

17

subspace embedding proof

3. Preserving norm of v.

Similarly,

∥Πv∥2 = ∥Πw0 + c1Πw1 + c2Πw2 + . . . ∥
≥ ∥Πw0∥ − ϵ∥Πw1∥ − ϵ2∥Πw2∥ − . . .

≥ (1− ϵ)− ϵ(1+ ϵ)− ϵ2(1+ ϵ)− . . .

≥ 1− O(ϵ).

18

subspace embedding proof

So we have proven

1− O(ϵ) ≤ ∥Πv∥2 ≤ 1+ O(ϵ)

for all v ∈ SU , which in turn implies for small ϵ,

1− O(ϵ) ≤ ∥Πv∥22 ≤ 1+ O(ϵ)

Adjusting ϵ proves the Subspace Embedding theorem.

19

subspace embeddings

Theorem (Subspace Embedding from JL)
Let U ⊂ Rn be a d-dimensional linear subspace in Rn. If
Π ∈ Rm×d is chosen from any distribution D satisfying the
Distributional JL Lemma, then with probability 1− δ,

(1− ϵ)∥v∥2 ≤ ∥Πv∥2 ≤ (1+ ϵ)∥v∥2 (2)

for all v ∈ U , as long as m = O
(
d log(1/ϵ)+log(1/δ)

ϵ2

)

20

final result

Theorem (Randomized Linear Regression)
Let Π be a properly scaled JL matrix (random Gaussian, sign,
sparse random, etc.) with m = O

(
d log(1/ϵ)+log(1/δ)

ϵ2

)
rows.

Then with probability (1− δ), for any A ∈ Rn×d and b ∈ Rn,

∥Ax̃∗ − b∥22 ≤ (1+ ϵ)min
x

∥Ax− b∥22

where x̃∗ = argminx ∥ΠAx−Πb∥22.

Subspace embeddings have many other applications!

For example, if m = O(k/ϵ), ΠA can be used to compute an
approximate partial SVD, which leads to a (1+ ϵ) approximate
low-rank approximation for A.

21

ϵ-net for the sphere

Lemma (ϵ-net for the sphere)

For any ϵ ≤ 1, there exists a set Nϵ ⊂ SU with |Nϵ| =
(4
ϵ

)d such
that ∀v ∈ SU ,

min
w∈Nϵ

∥v− w∥ ≤ ϵ.

Imaginary algorithm for constructing Nϵ:

• Set Nϵ = {}
• While such a point exists, choose an arbitrary point v ∈ SU
where ∄w ∈ Nϵ with ∥v− w∥ ≤ ϵ. Set Nϵ = Nϵ ∪ {w}.

After running this procedure, we have Nϵ = {w1, . . . ,w|Nϵ|} and
minw∈Nϵ ∥v− w∥ ≤ ϵ for all v ∈ SU as desired.

22

ϵ-net for the sphere

How many steps does this procedure take?

Can place a ball of radius ϵ/2 around each wi without
intersecting any other balls. All of these balls live in a ball of
radius 1+ ϵ/2. 23

ϵ-net for the sphere

Volume of d dimensional ball of radius r is

vol(d, r) = c · rd,

where c is a constant that depends on d, but not r. From

previous slide we have:

vol(d, ϵ/2) · |Nϵ| ≤ vol(d, 1+ ϵ/2)

|Nϵ| ≤
vol(d, 1+ ϵ/2)
vol(d, ϵ/2)

≤
(
4
ϵ

)d

24

runtime consideration

For ϵ, δ = O(1), we need Π to have m = O(d) rows.

• Cost to solve ∥Ax− b∥22:
• O(nd2) time for direct method. Need to compute
(ATA)−1ATb.

• O(nd) · (# of iterations) time for iterative method (GD, AGD,
conjugate gradient method).

• Cost to solve ∥ΠAx−Πb∥22:
• O(d3) time for direct method.
• O(d2) · (# of iterations) time for iterative method.

25

runtime consideration

But time to compute ΠA is an (m× n)× (n× d) matrix
multiply: O(mnd) = O(nd2) time.

Goal: Develop faster Johnson-Lindenstrauss projections.

Typically using sparse and structured matrices.

26

the fast johnson-lindenstrauss transform

Subsampled Randomized Hadamard Transform (SHRT)
(Ailon-Chazelle, 2006):

Construct Π ∈ Rm×n as follows:

Π =

√
n
m · SHD, where

• S ∈ Rm×n is a row subsampling matrix. Each row has a
single 1 in a random column, all other entries 0.

• D ∈ n× n is a diagonal matrix with each entry uniform ±1.
• H ∈ n× n is a Hadamard matrix.

27

hadamard matrices

Assume for now that n is a power of 2. For i = 0, 1, . . . , Hi is a
Hadamard matrix with dimension 2i × 2i.

H0 = 1 H1 =
1√
2

[
1 1
1 −1

]
H2 =

1√
4

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

Hk =
1√
2

[
Hk−1 Hk−1
Hk−1 −Hk−1

]

How long does it take to compute Hx for a vector x ∈ Rn?

28

hadamard matrices

Property 1: Can compute Πx = SHDx in O(n logn) time.

Compare to O(nm) time for random Gaussian or ±1 Π ∈ Rm×n.

29

randomized hadamard transform

Deterministic
Hadamard matrix.

Randomized
Hadamard PHD.

Fully random sign
matrix.

30

johnson-lindenstrauss with SHRTs

Theorem (JL from SRHT)
Let Π ∈ Rm×n be a subsampled randomized Hadamard
transform with m = O

(
log(n/δ)2 log(1/δ)

ϵ2

)
rows. Then for any

fixed y,

(1− ϵ)∥y∥22 ≤ ∥Πy∥22 ≤ (1+ ϵ)∥y∥22

with probability (1− δ).

31

hadamard matrices are orthogonal

Property 2: For any k = 0, 1, . . ., we have HTkHk = I.

32

randomized hadamard analysis

We want to show that ∥
√

1
mSHDy∥22 ≈ ∥y∥22.

Let z ∈ Rn = HDy.

• Claim: ∥z∥22 = ∥y∥22, exactly.
• ∥SHDy∥22 = n

m∥Sz∥22 = subsample of z.
• E

[n
m∥Sz∥22

]
= ∥z∥22.

What would z have to look like for ∥Sz∥22 to look very different
from ∥z∥22 with high probability? I.e. when does subsampling
fail. When does subsampling work?

33

randomized hadamard analysis

Lemma (SHRT mixing lemma)
Let H be an (n× n) Hadamard matrix and D a random ±1
diagonal matrix. Let z = HDy for some y ∈ Rn. With
probability 1− δ,

|zi| ≤ c ·
√
log(n/δ)

n ∥y∥2

for some fixed constant c.

If all entries in z were uniform magnitude, we would have
|zi| = 1√

n∥y∥2. So we are very close to uniform with high
probability.

34

randomized hadamard analysis

SHRT mixing lemma proof:

Let hTi be the ith row of H. zi = hTi Dy where:

hTi D =
1√
n

[
1 1 −1 −1

]
R1

R2
R3

R4

where R1, . . . ,Rn are random ±1’s.

This is equivalent to

hTi D =
1√
n

[
R1 R2 R3 R4

]
.

35

randomized hadamard analysis

SHRT mixing lemma proof:

So we have, for all i,

zi = hTi Dy =
1√
n

n∑
i=1

Riyi.

•
√
n · zi is a random variable with mean 0 and variance

∥y∥22, which is a sum of independent random variables.
• By Central Limit Theorem, we expect that:

Pr[|
√
n · zi| ≥ t∥y∥2] ≤ e−O(t2).

• Setting t gives Pr
[
|zi| ≥ O

(√
log(n/δ)

n ∥y∥2
)]

≤ δ
n .

• Applying a union bound to all n entries of z gives the SHRT
mixing lemma.

36

rademacher concentration

Formally, need to use Bernstein type concentration inequality
to prove the bound:

Lemma (Rademacher Concentration)
Let R1, . . . ,Rn be Rademacher random variables (i.e. uniform
±1’s). Then for any vector a ∈ Rn,

Pr
[n∑
i=1

Riai ≥ t∥a∥2

]
≤ e−t2/2.

37

finishing up

With probability 1− δ, we have that all zi ≤ O
(√

log(n/δ)
n ∥y∥2

)
.

We want to analyze:

L = ∥
√
n
mSHD∥22 =

1
m∥

√
nSz∥22 =

1
m

m∑
i=1

(
√
nzji)

2

where ji is a random index in 1, . . . ,n.

We have that EL = ∥z∥22 = ∥y∥22 and L is a sum of random
variables, each bounded by O (log(n/δ)), which means they
have bounded variance.

Apply a Chernoff/Hoeffding bound to get that∣∣L = ∥y∥22
∣∣ ≤ ϵ∥y∥22 with probability 1− δ as long as:

m ≥ O
(
log2(n/δ) log(1/δ)

ϵ2

)
.

38

johnson-lindenstrauss with SHRTs

Theorem (JL from SRHT)
Let Π ∈ Rm×n be a subsampled randomized Hadamard
transform with m = O

(
log(n/δ)2 log(1/δ)

ϵ2

)
rows. Then for any

fixed y,

(1− ϵ)∥y∥22 ≤ ∥Πy∥22 ≤ (1+ ϵ)∥y∥22

with probability (1− δ).

Can be improved to m = O
(
log(n/δ) log(1/δ)

ϵ2

)
.

Upshot for regression: Compute ΠA in O(nd logn) time
instead of O(nd2) time. Compress problem down to Ã with
O(d2) dimensions.

39

brief comment on other methods

O(nd logn) is nearly linear in the size of A when A is dense.

Clarkson-Woodruff 2013, STOC Best Paper: Possible to
compute Ã with poly(d) rows in:

O (nnz(A)) time.

Π is chosen to be an ultra-sparse random matrix. Uses totally
different techniques (you can’t do JL + ϵ-net).

Lead to a whole close of matrix algorithms (for regression, SVD,
etc.) which run in time:

O (nnz(A)) + poly(d, ϵ).

40

what were ailon and chazelle thinking?

Simple, inspired algorithm that has been used for accelerating:

• Vector dimensionality reduction

• Linear algebra

• Locality sensitive hashing
(SimHash)

• Randomized kernel learning
methods (we will discuss after
Thanksgiving) 41

what were ailon and chazelle thinking?

The Hadamard Transform is closely related to the Discrete
Fourier Transform.

Fj,k = e−2πi
j·k
n , F∗F = I.

Real part of Fj,k.

Fy computes the Fourier-transform of the vector y. Can be
computed in O(n logn) time using a divide and conquer
algorithm (the Fast Fourier Transform). 42

the uncertainty principal

The Uncertainty Principal (informal): A function and it’s
Fourier transform cannot both be concentrated.

Vector y. Fourier transform Fy.

43

the uncertainty principal

Sampling does not preserve norms, i.e. ∥Sy∥2 ̸≈ ∥y∥2 when y
has a few large entries.

Taking a Fourier transform exactly eliminates this hard case,
without changing y’s norm.

44

