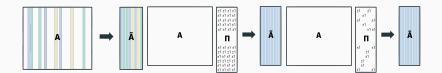
CS-GY 9223 I: Lecture 12 Randomized numerical linear algebra, fast Johnson-Lindenstrauss Transform

NYU Tandon School of Engineering, Prof. Christopher Musco

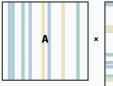
Main idea: If you want to compute singular vectors or eigenvectors, multiply two matrices, solve a regression problem, etc.:

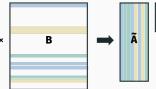
- 1. Compress your matrices using a randomized method.
- 2. Solve the problem on the smaller or sparser matrix.
 - Ã called a "sketch" or "coreset" for A.



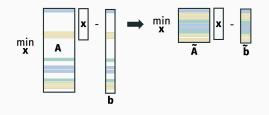
RANDOMIZED NUMERICAL LINEAR ALGEBRA

Approximate matrix multiplication:

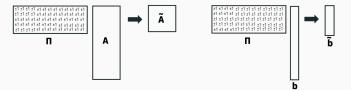




Approximate regression:



Randomized approximate regression using a Johnson-Lindenstrauss Matrix:



Input: $A \in \mathbb{R}^{n \times d}$, $b \in \mathbb{R}^{n}$.

Algorithm: Let $\tilde{\mathbf{x}}^* = \arg \min_{\mathbf{x}} \|\mathbf{\Pi} \mathbf{A} \mathbf{x} - \mathbf{\Pi} \mathbf{b}\|_2^2$.

Goal: Want $\|\mathbf{A}\tilde{\mathbf{x}}^* - \mathbf{b}\|_2^2 \le (1 + \epsilon) \min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$

If $\Pi \in \mathbb{R}^{m \times n}$, how large does *m* need to be? Is it even clear this should work as $m \to \infty$?

TARGET RESULT

Theorem (Randomized Linear Regression)

Let Π be a properly scaled JL matrix (random Gaussian, sign, sparse random, etc.) with $m = O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon^2}\right)$ rows. Then with probability $(1 - \delta)$, for any $\mathbf{A} \in \mathbb{R}^{n \times d}$ and $\mathbf{b} \in \mathbb{R}^{n}$,

$$\|\mathbf{A}\mathbf{\tilde{x}}^* - \mathbf{b}\|_2^2 \le (1 + \epsilon) \min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$

where $\tilde{\mathbf{x}}^* = \arg \min_{\mathbf{x}} \|\mathbf{\Pi} \mathbf{A} \mathbf{x} - \mathbf{\Pi} \mathbf{b}\|_2^2$.

Claim: Suffices to prove that for all $\mathbf{x} \in \mathbb{R}^d$, $(1 - \epsilon) \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 \le \|\mathbf{\Pi}\mathbf{A}\mathbf{x} - \mathbf{\Pi}\mathbf{b}\|_2^2 \le (1 + \epsilon) \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$

Lemma (Distributional JL)

If **Π** is chosen to a properly scaled random Gaussian matrix, sign matrix, sparse random matrix, etc., with $O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$ rows then for any fixed **y**,

$$(1 - \epsilon) \|\mathbf{y}\|_2^2 \le \|\mathbf{\Pi}\mathbf{y}\|_2^2 \le (1 + \epsilon) \|\mathbf{y}\|_2^2$$

with probability $(1 - \delta)$.

Corollary: For any fixed **x**, with probability $(1 - \delta)$,

$$(1-\epsilon) \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 \le \|\mathbf{\Pi}\mathbf{A}\mathbf{x} - \mathbf{\Pi}\mathbf{b}\|_2^2 \le (1+\epsilon) \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2.$$

How do we go from "for any fixed **x**" to "for all $\mathbf{x} \in \mathbb{R}^{d}$ ".

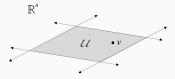
This statement requires establishing a Johnson-Lindenstrauss type bound for an <u>infinity</u> of possible vectors (Ax - b), which obviously can't be tackled with a union bound argument.

Theorem (Subspace Embedding from JL)

Let $\mathcal{U} \subset \mathbb{R}^n$ be a d-dimensional linear subspace in \mathbb{R}^n . If $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ is chosen from any distribution \mathcal{D} satisfying the Distributional JL Lemma, then with probability $1 - \delta$,

$$(1-\epsilon) \|\mathbf{v}\|_2^2 \le \|\Pi \mathbf{v}\|_2^2 \le (1+\epsilon) \|\mathbf{v}\|_2^2$$

for all
$$\mathbf{v} \in \mathcal{U}$$
, as long as $m = O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon^2}\right)^{\frac{1}{2}}$



¹It's possible to obtain a slightly tighter bound of $O\left(\frac{d+\log(1/\delta)}{\epsilon^2}\right)$. It's a nice challenge to try proving this.

SUBSPACE EMBEDDING TO APPROXIMATE REGRESSION

Corollary: If we choose Π and properly scale, then with $O\left(d/\epsilon^2\right)$ rows,

$$\|Ax - b\|_2^2 \le \|\Pi Ax - \Pi b\|_2^2 \le (1 + \epsilon) \|Ax - b\|_2^2$$

for all **x** and thus

$$\|\mathbf{A}\tilde{\mathbf{x}}^* - \mathbf{b}\|_2^2 \le (1+\epsilon) \min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2.$$

I.e., our main theorem is proven.

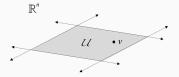
Proof: Apply Subspace Embedding Thm. to the (d + 1) dimensional subspace spanned by A's *d* columns and **b**. Every vector Ax - b lies in this subspace.

for all

Theorem (Subspace Embedding from JL)

Let $\mathcal{U} \subset \mathbb{R}^n$ be a d-dimensional linear subspace in \mathbb{R}^n . If $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ is chosen from any distribution \mathcal{D} satisfying the Distributional JL Lemma, then with probability $1 - \delta$,

$$(1 - \epsilon) \|\mathbf{v}\|_{2}^{2} \leq \|\mathbf{\Pi}\mathbf{v}\|_{2}^{2} \leq (1 + \epsilon) \|\mathbf{v}\|_{2}^{2}$$
(1)
$$\mathbf{v} \in \mathcal{U}, \text{ as long as } m = O\left(\frac{d\log(1/\epsilon) + \log(1/\delta)}{\epsilon^{2}}\right)$$



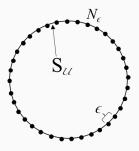
Observation: The theorem holds as long as (1) holds for all **w** on the unit sphere in \mathcal{U} . Denote the sphere $S_{\mathcal{U}}$:

$$S_{\mathcal{U}} = \{ \mathbf{w} \mid \mathbf{w} \in \mathcal{U} \text{ and } \|\mathbf{w}\|_2 = 1 \}.$$

Follows from linearity: Any point $v \in U$ can be written as cw for some scalar c and some point $w \in S_U$.

- If $(1 \epsilon) \|\mathbf{w}\|_2 \le \|\mathbf{\Pi}\mathbf{w}\|_2 \le (1 + \epsilon) \|\mathbf{w}\|_2$.
- then $c(1-\epsilon) \|\mathbf{w}\|_2 \le c \|\mathbf{\Pi}\mathbf{w}\|_2 \le c(1+\epsilon) \|\mathbf{w}\|_2$,
- and thus $(1 \epsilon) \|c\mathbf{w}\|_2 \le \|\mathbf{\Pi} c\mathbf{w}\|_2 \le (1 + \epsilon) \|c\mathbf{w}\|_2$.

Intuition: There are not too many "different" points on a *d*-dimensional sphere:



 N_{ϵ} is called an " ϵ "-net.

If we can prove

$$(1-\epsilon) \le \|\Pi \mathbf{w}\|_2 \le (1+\epsilon)$$

for all points $\mathbf{w} \in N_{\epsilon}$, we can hopefully extend to all of $S_{\mathcal{U}}$.

$\epsilon\text{-}\mathsf{NET}$ for the sphere

Lemma (ϵ -net for the sphere)

For any $\epsilon \leq 1$, there exists a set $N_{\epsilon} \subset S_{\mathcal{U}}$ with $|N_{\epsilon}| = \left(\frac{4}{\epsilon}\right)^{d}$ such that $\forall \mathbf{v} \in S_{\mathcal{U}}$,

$$\min_{\mathbf{w}\in N_{\epsilon}}\|\mathbf{v}-\mathbf{w}\|\leq\epsilon.$$

1. Preserving norms of all points in net N_{ϵ} .

Set $\delta' = \left(\frac{\epsilon}{4}\right)^d \cdot \delta$. By a union bound, with probability $1 - \delta$, for all $\mathbf{w} \in N_{\epsilon}$,

$$(1 - \epsilon) \le \|\Pi \mathbf{w}\|_2 \le (1 + \epsilon).$$

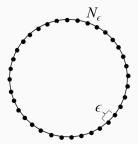
as long as Π has $O\left(\frac{\log(1/\delta')}{\epsilon^2}\right) = O\left(\frac{d\log(1/\epsilon) + \log(1/\delta)}{\epsilon^2}\right)$ rows.

2. Writing any point in sphere as linear comb. of points in N_{ϵ} .

For some $\mathbf{w}_0, \mathbf{w}_1, \mathbf{w}_2 \dots \in N_{\epsilon}$, any $\mathbf{v} \in S_{\mathcal{U}}$. can be written:

 $\mathbf{V} = \mathbf{W}_0 + c_1 \mathbf{W}_1 + c_2 \mathbf{W}_2 + \dots$

for constants c_1, c_2, \ldots where $|c_i| \leq \epsilon^i$.



3. Preserving norm of v.

Applying triangle inequality, we have

$$\| \mathbf{\Pi} \mathbf{v} \|_{2} = \| \mathbf{\Pi} \mathbf{w}_{0} + c_{1} \mathbf{\Pi} \mathbf{w}_{1} + c_{2} \mathbf{\Pi} \mathbf{w}_{2} + \dots \|$$

$$\leq \| \mathbf{\Pi} \mathbf{w}_{0} \| + \epsilon \| \mathbf{\Pi} \mathbf{w}_{1} \| + \epsilon^{2} \| \mathbf{\Pi} \mathbf{w}_{2} \| + \dots$$

$$\leq (1 + \epsilon) + \epsilon (1 + \epsilon) + \epsilon^{2} (1 + \epsilon) + \dots$$

$$\leq 1 + O(\epsilon).$$

3. Preserving norm of v.

Similarly,

$$\| \mathbf{\Pi} \mathbf{v} \|_{2} = \| \mathbf{\Pi} \mathbf{w}_{0} + c_{1} \mathbf{\Pi} \mathbf{w}_{1} + c_{2} \mathbf{\Pi} \mathbf{w}_{2} + \dots \|$$

$$\geq \| \mathbf{\Pi} \mathbf{w}_{0} \| - \epsilon \| \mathbf{\Pi} \mathbf{w}_{1} \| - \epsilon^{2} \| \mathbf{\Pi} \mathbf{w}_{2} \| - \dots$$

$$\geq (1 - \epsilon) - \epsilon (1 + \epsilon) - \epsilon^{2} (1 + \epsilon) - \dots$$

$$\geq 1 - O(\epsilon).$$

So we have proven

$$1 - O(\epsilon) \le \|\mathbf{\Pi} \mathbf{v}\|_2 \le 1 + O(\epsilon)$$

for all $\mathbf{v} \in S_{\mathcal{U}}$, which in turn implies for small ϵ ,

$$1 - O(\epsilon) \le \|\mathbf{\Pi}\mathbf{v}\|_2^2 \le 1 + O(\epsilon)$$

Adjusting ϵ proves the Subspace Embedding theorem.

Theorem (Subspace Embedding from JL)

Let $\mathcal{U} \subset \mathbb{R}^n$ be a d-dimensional linear subspace in \mathbb{R}^n . If $\mathbf{\Pi} \in \mathbb{R}^{m \times d}$ is chosen from any distribution \mathcal{D} satisfying the Distributional JL Lemma, then with probability $1 - \delta$,

$$(1 - \epsilon) \|\mathbf{v}\|_{2} \le \|\Pi \mathbf{v}\|_{2} \le (1 + \epsilon) \|\mathbf{v}\|_{2}$$
(2)

for <u>all</u> $\mathbf{v} \in \mathcal{U}$, as long as $m = O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon^2}\right)$

FINAL RESULT

Theorem (Randomized Linear Regression)

Let Π be a properly scaled JL matrix (random Gaussian, sign, sparse random, etc.) with $m = O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon^2}\right)$ rows. Then with probability $(1 - \delta)$, for any $\mathbf{A} \in \mathbb{R}^{n \times d}$ and $\mathbf{b} \in \mathbb{R}^{n}$,

$$\|\mathbf{A}\mathbf{\tilde{x}}^* - \mathbf{b}\|_2^2 \le (1 + \epsilon) \min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$

where
$$\tilde{\mathbf{x}}^* = \arg \min_{\mathbf{x}} \|\mathbf{\Pi} \mathbf{A} \mathbf{x} - \mathbf{\Pi} \mathbf{b}\|_2^2$$
.

Subspace embeddings have many other applications!

For example, if $m = O(k/\epsilon)$, **ΠA** can be used to compute an approximate partial SVD, which leads to a $(1 + \epsilon)$ approximate low-rank approximation for **A**.

$\epsilon\text{-}\mathsf{NET}$ for the sphere

Lemma (ϵ -net for the sphere)

For any $\epsilon \leq 1$, there exists a set $N_{\epsilon} \subset S_{\mathcal{U}}$ with $|N_{\epsilon}| = \left(\frac{4}{\epsilon}\right)^{d}$ such that $\forall \mathbf{v} \in S_{\mathcal{U}}$,

$$\min_{\mathbf{v}\in N_{\epsilon}}\|\mathbf{v}-\mathbf{w}\|\leq\epsilon.$$

Imaginary algorithm for constructing N_{ϵ} :

- Set $N_{\epsilon} = \{\}$
- While such a point exists, choose an arbitrary point $\mathbf{v} \in S_{\mathcal{U}}$ where $\nexists \mathbf{w} \in N_{\epsilon}$ with $\|\mathbf{v} - \mathbf{w}\| \le \epsilon$. Set $N_{\epsilon} = N_{\epsilon} \cup \{\mathbf{w}\}$.

After running this procedure, we have $N_{\epsilon} = {\mathbf{w}_1, \dots, \mathbf{w}_{|N_{\epsilon}|}}$ and $\min_{\mathbf{w} \in N_{\epsilon}} \|\mathbf{v} - \mathbf{w}\| \le \epsilon$ for all $\mathbf{v} \in S_{\mathcal{U}}$ as desired.

How many steps does this procedure take?

Can place a ball of radius $\epsilon/2$ around each \mathbf{w}_i without intersecting any other balls. All of these balls live in a ball of radius $1 + \epsilon/2$.

Volume of *d* dimensional ball of radius *r* is

$$\operatorname{vol}(d,r) = c \cdot r^d,$$

where c is a constant that depends on d, but not r. From

previous slide we have:

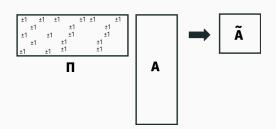
$$\begin{aligned} \operatorname{vol}(d, \epsilon/2) \cdot |N_{\epsilon}| &\leq \operatorname{vol}(d, 1 + \epsilon/2) \\ |N_{\epsilon}| &\leq \frac{\operatorname{vol}(d, 1 + \epsilon/2)}{\operatorname{vol}(d, \epsilon/2)} \\ &\leq \left(\frac{4}{\epsilon}\right)^{d} \end{aligned}$$

For $\epsilon, \delta = O(1)$, we need Π to have m = O(d) rows.

- Cost to solve $\|\mathbf{A}\mathbf{x} \mathbf{b}\|_2^2$:
 - $O(nd^2)$ time for direct method. Need to compute $(A^TA)^{-1}A^Tb$.
 - O(nd) (# of iterations) time for iterative method (GD, AGD, conjugate gradient method).
- Cost to solve $\|\Pi Ax \Pi b\|_2^2$:
 - $O(d^3)$ time for direct method.
 - $O(d^2) \cdot (\# \text{ of iterations})$ time for iterative method.

But time to compute **ΠA** is an $(m \times n) \times (n \times d)$ matrix multiply: $O(mnd) = O(nd^2)$ time.

Goal: Develop faster Johnson-Lindenstrauss projections.



Typically using <u>sparse</u> and <u>structured</u> matrices.

Subsampled Randomized Hadamard Transform (SHRT) (Ailon-Chazelle, 2006):

Construct $\mathbf{\Pi} \in \mathbb{R}^{m \times n}$ as follows:

$$\mathbf{\Pi} = \sqrt{\frac{n}{m}} \cdot \mathbf{SHD}, \text{ where}$$

- $S \in \mathbb{R}^{m \times n}$ is a <u>row subsampling matrix</u>. Each row has a single 1 in a random column, all other entries 0.
- $\mathbf{D} \in n \times n$ is a diagonal matrix with each entry uniform ± 1 .
- $H \in n \times n$ is a <u>Hadamard matrix</u>.

Assume for now that *n* is a power of 2. For $i = 0, 1, ..., H_i$ is a Hadamard matrix with dimension $2^i \times 2^i$.

$$H_{k} = \frac{1}{\sqrt{2}} \begin{bmatrix} H_{k-1} & H_{k-1} \\ H_{k-1} & -H_{k-1} \end{bmatrix}$$

How long does it take to compute Hx for a vector $x \in \mathbb{R}^n$?

Property 1: Can compute $\Pi x = SHDx$ in $O(n \log n)$ time.

Compare to O(nm) time for random Gaussian or $\pm 1 \Pi \in \mathbb{R}^{m \times n}$.

RANDOMIZED HADAMARD TRANSFORM

Deterministic Hadamard matrix. Hadamard **PHD**.

Randomized

Fully random sign matrix.

Theorem (JL from SRHT)

Let $\mathbf{\Pi} \in \mathbb{R}^{m \times n}$ be a subsampled randomized Hadamard transform with $m = O\left(\frac{\log(n/\delta)^2 \log(1/\delta)}{\epsilon^2}\right)$ rows. Then for any fixed **y**,

$$(1-\epsilon)\|\mathbf{y}\|_2^2 \le \|\mathbf{\Pi}\mathbf{y}\|_2^2 \le (1+\epsilon)\|\mathbf{y}\|_2^2$$

with probability $(1 - \delta)$.

Property 2: For any $k = 0, 1, \ldots$, we have $\mathbf{H}_{k}^{T}\mathbf{H}_{k} = \mathbf{I}$.

We want to show that $\|\sqrt{\frac{1}{m}}SHDy\|_2^2 \approx \|y\|_2^2$.

Let $\mathbf{z} \in \mathbb{R}^n = HDy$.

- Claim: $\|z\|_{2}^{2} = \|y\|_{2}^{2}$, exactly.
- $\|\mathbf{SHDy}\|_2^2 = \frac{n}{m}\|\mathbf{Sz}\|_2^2 = \text{subsample of } \mathbf{z}.$
- $\mathbb{E}\left[\frac{n}{m}\|\mathbf{S}\mathbf{z}\|_2^2\right] = \|\mathbf{z}\|_2^2.$

What would z have to look like for $||Sz||_2^2$ to look very different from $||z||_2^2$ with high probability? I.e. when does subsampling fail. When does subsampling work?

Lemma (SHRT mixing lemma)

Let **H** be an $(n \times n)$ Hadamard matrix and **D** a random ± 1 diagonal matrix. Let $\mathbf{z} = \mathbf{HDy}$ for some $\mathbf{y} \in \mathbb{R}^n$. With probability $1 - \delta$,

$$|\mathbf{z}_i| \leq c \cdot \sqrt{\frac{\log(n/\delta)}{n}} \|\mathbf{y}\|_2$$

for some fixed constant c.

If all entries in z were uniform magnitude, we would have $|z_i| = \frac{1}{\sqrt{n}} ||y||_2$. So we are very close to uniform with high probability.

SHRT mixing lemma proof: Let \mathbf{h}_i^T be the *i*th row of H. $\mathbf{z}_i = \mathbf{h}_i^T \mathbf{D} \mathbf{y}$ where:

$$\mathbf{h}_{i}^{T}\mathbf{D} = \frac{1}{\sqrt{n}} \begin{bmatrix} 1 & 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} R_{1} & & & \\ & R_{2} & & \\ & & R_{3} & \\ & & & R_{4} \end{bmatrix}$$

where R_1, \ldots, R_n are random ± 1 's.

This is equivalent to

$$\mathbf{h}_i^T \mathbf{D} = \frac{1}{\sqrt{n}} \begin{bmatrix} R_1 & R_2 & R_3 & R_4 \end{bmatrix}.$$

SHRT mixing lemma proof:

So we have, for all *i*,

$$\mathbf{z}_i = \mathbf{h}_i^T \mathbf{D} \mathbf{y} = \frac{1}{\sqrt{n}} \sum_{i=1}^n R_i y_i.$$

- $\sqrt{n} \cdot \mathbf{z}_i$ is a random variable with mean 0 and variance $\|\mathbf{y}\|_2^2$, which is a sum of independent random variables.
- By Central Limit Theorem, we expect that:

$$\Pr[|\sqrt{n} \cdot \mathbf{z}_i| \ge t \|\mathbf{y}\|_2] \le e^{-O(t^2)}.$$

- Setting t gives $\Pr\left[|\mathbf{z}_i| \ge O\left(\sqrt{\frac{\log(n/\delta)}{n}} \|\mathbf{y}\|_2\right)\right] \le \frac{\delta}{n}$.
- Applying a union bound to all *n* entries of \vec{z} gives the SHRT mixing lemma.

Formally, need to use Bernstein type concentration inequality to prove the bound:

Lemma (Rademacher Concentration)

Let R_1, \ldots, R_n be Rademacher random variables (i.e. uniform ± 1 's). Then for any vector $\mathbf{a} \in \mathbb{R}^n$,

$$\Pr\left[\sum_{i=1}^n R_i a_i \ge t \|\mathbf{a}\|_2\right] \le e^{-t^2/2}.$$

FINISHING UP

With probability $1 - \delta$, we have that all $\mathbf{z}_i \leq O\left(\sqrt{\frac{\log(n/\delta)}{n}} \|\mathbf{y}\|_2\right)$. We want to analyze:

$$L = \|\sqrt{\frac{n}{m}} \mathbf{SHD}\|_2^2 = \frac{1}{m} \|\sqrt{n}\mathbf{Sz}\|_2^2 = \frac{1}{m} \sum_{i=1}^m (\sqrt{n}\mathbf{z}_{i_i})^2$$

where j_i is a random index in $1, \ldots, n$.

We have that $\mathbb{E}L = \|\mathbf{z}\|_2^2 = \|\mathbf{y}\|_2^2$ and *L* is a sum of random variables, <u>each bounded by $O(\log(n/\delta))$ </u>, which means they have bounded variance.

Apply a Chernoff/Hoeffding bound to get that $|L = \|\mathbf{y}\|_2^2 | \le \epsilon \|\mathbf{y}\|_2^2$ with probability $1 - \delta$ as long as:

$$m \ge O\left(\frac{\log^2(n/\delta)\log(1/\delta)}{\epsilon^2}\right)$$

Theorem (JL from SRHT)

Let $\mathbf{\Pi} \in \mathbb{R}^{m \times n}$ be a subsampled randomized Hadamard transform with $m = O\left(\frac{\log(n/\delta)^2 \log(1/\delta)}{\epsilon^2}\right)$ rows. Then for any fixed **y**,

$$(1-\epsilon)\|\mathbf{y}\|_2^2 \le \|\mathbf{\Pi}\mathbf{y}\|_2^2 \le (1+\epsilon)\|\mathbf{y}\|_2^2$$

with probability $(1 - \delta)$.

Can be improved to
$$m = O\left(\frac{\log(n/\delta)\log(1/\delta)}{\epsilon^2}\right)$$
.

Upshot for regression: Compute ΠA in $O(nd \log n)$ time instead of $O(nd^2)$ time. Compress problem down to \tilde{A} with $O(d^2)$ dimensions.

 $O(nd \log n)$ is nearly linear in the size of **A** when **A** is dense.

Clarkson-Woodruff 2013, STOC Best Paper: Possible to compute \tilde{A} with poly(*d*) rows in:

O(nnz(A)) time.

 Π is chosen to be an ultra-sparse random matrix. Uses totally different techniques (you can't do JL + ϵ -net).

Lead to a whole close of matrix algorithms (for regression, SVD, etc.) which run in time:

 $O(nnz(A)) + poly(d, \epsilon).$

WHAT WERE AILON AND CHAZELLE THINKING?

Simple, inspired algorithm that has been used for accelerating:

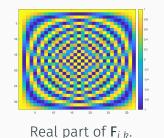
- Vector dimensionality reduction
- Linear algebra
- Locality sensitive hashing (SimHash)
- Randomized kernel learning methods (we will discuss after Thanksgiving)

```
m = 20;
c1 = (2*randi(2,1,n)-3).*y;
c2 = sqrt(n)*fwht(dy);
c3 = c2(randperm(n));
z = sqrt(n/m)*c3(1:m);
```

WHAT WERE AILON AND CHAZELLE THINKING?

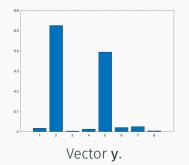
The <u>Hadamard Transform</u> is closely related to the <u>Discrete</u> <u>Fourier Transform</u>.

$$\mathsf{F}_{j,k} = e^{-2\pi i \frac{j \cdot k}{n}}, \qquad \qquad \mathsf{F}^*\mathsf{F} = \mathsf{I}.$$



Fy computes the Fourier-transform of the vector y. Can be computed in $O(n \log n)$ time using a divide and conquer algorithm (the Fast Fourier Transform).

The Uncertainty Principal (informal): A function and it's Fourier transform cannot both be concentrated.



Sampling does not preserve norms, i.e. $\|Sy\|_2 \not\approx \|y\|_2$ when y has a few large entries.

Taking a Fourier transform exactly eliminates this hard case, without changing **y**'s norm.