CS-GY 9223 I: Lecture 12
Randomized numerical linear algebra, fast
Johnson-Lindenstrauss Transform

NYU Tandon School of Engineering, Prof. Christopher Musco



RANDOMIZED NUMERICAL LINEAR ALGEBRA

Main idea: If you want to compute singular vectors or
eigenvectors, multiply two matrices, solve a regression
problem, etc.

1. Compress your matrices using a randomized method.
2. Solve the problem on the smaller or sparser matrix.
- A called a “sketch” or “coreset” for A.




RANDOMIZED NUMERICAL LINEAR ALGEBRA

Approximate matrix multiplication:

Approximate regression:
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SKETCHED REGRESSION

Randomized approximate regression using a
Johnson-Lindenstrauss Matrix:
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Input: A€ R™9 b e R".
Algorithm: Let X* = argmin, ||[MAXx — Mb||3.
Goal: Want ||AX* — b3 < (1+ €) miny [|Ax — b||3
If M e R™*", how large does m need to be? Is it even clear this

should work as m — oo?



TARGET RESULT

Theorem (Randomized Linear Regression)

Let M be a properly scaled JL matrix (random Gaussian, sign,
sparse random, etc.) with m = O (W) rows.

Then with probability (1 — &), for any A € R"*9 and b € R,
1A%* — |3 < (1+€) min [|Ax — b3

where X* = arg min, |[MAX — Mb||3.



SKETCHED REGRESSION

Claim: Suffices to prove that for all x € RY,

(1= €)llAx — b|3 < [[MAx — NbJ| < (1+ €)||Ax — b]|3



DISTRIBUTIONAL JOHNSON-LINDENSTRAUSS REVIEW

Lemma (Distributional JL)
If Tl is chosen to a properly scaled random Gaussian matrix,
sign matrix, sparse random matrix, etc., with O (logeﬂ) rows

then for any fixedy,

(1= a)llyl3 < Iyl < (1 + €)llyl3

with probability (1 — 6).

Corollary: For any fixed x, with probability (1 — ¢),
(1—)l[Ax = b3 < [[NAX — Ab|3 < (1+ €)||Ax — b3.



FOR ANY TO FOR ALL

How do we go from “for any fixed x” to “for all x € R9".

This statement requires establishing a Johnson-Lindenstrauss
type bound for an infinity of possible vectors (Ax — b), which
obviously can't be tackled with a union bound argument.



SUBSPACE EMBEDDINGS

Theorem (Subspace Embedding from JL)

LetU ¢ R" be a d-dimensional linear subspace in R". If
N e R™*9 js chosen from any distribution D satisfying the
Distributional JL Lemma, then with probability 1 — ¢,

(1= e)lvIZ < INv]3 < (1+ €)lIvIiZ

forallv eu, as longas m =0 <w)1.

"It's possible to obtain a slightly tighter bound of O (M> It's a nice
challenge to try proving this. 9



SUBSPACE EMBEDDING TO APPROXIMATE REGRESSION

Corollary: If we choose N and properly scale, then with
O (d/e*) rows,

IAX — bl|3 < [[MAX — Mb||3 < (1+ €)[|Ax — b||5
for all x and thus

|AX* — b3 < (1+e)min[|Ax — b 3.
l.e., our main theorem is proven.

Proof: Apply Subspace Embedding Thm. to the (d + 1)
dimensional subspace spanned by A’s d columns and b. Every
vector Ax — b lies in this subspace.
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SUBSPACE EMBEDDINGS

Theorem (Subspace Embedding from JL)

LetU Cc R" be a d-dimensional linear subspace in R". If
N e R™*4 s chosen from any distribution D satisfying the
Distributional JL Lemma, then with probability 1 —§,

(1= a)lvliz < INv]lz < (1 + €)lIvii3 (1)

forallv e U, as long asm:O(M)

"



SUBSPACE EMBEDDING PROOF

Observation: The theorem holds as long as (1) holds for all w
on the unit sphere in U. Denote the sphere Sy:

Su=A{w|w e U and ||wl|j; = 1}.

Follows from linearity: Any point v € U/ can be written as cw
for some scalar c and some pointw € Sy,.

(T =) llwllz < [[Mw(lz < (14 €)|[w][2.
- then c(1—€)|jwl|, < c||Mw|z < c(1+ €)|lw||2,
- and thus (1—¢€)[Jcw|, < |[Mcwll; < (1+ €)||cw||.
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SUBSPACE EMBEDDING PROOF

Intuition: There are not too many “different” points on a
d-dimensional sphere:

N. is called an “€"-net.
If we can prove
(1—e) < Nwl < (1+¢)

for all points w € N, we can hopefully extend to all of Sy. 13



€-NET FOR THE SPHERE

Lemma (e-net for the sphere)

For any e < 1, there exists a set Ne C Sy with [N¢| = (g)d such
that VW € Sy,

min [|[v—w| <e.
WeN



SUBSPACE EMBEDDING PROOF

1. Preserving norms of all points in net N..

Set & = (£) - 5. By a union bound, with probability 1 — 6, for
allw e N,

(1= ) < [Mwll2 < (1 + ).

€2

as longasMhas O (M) =0 <w> rows.
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SUBSPACE EMBEDDING PROOF

2. Writing any point in sphere as linear comb. of points in N..

For some wg, W1, W, ... € N, any v € Sy;. can be written:
V =Wy + CiWq + CoWy + . ..
for constants ¢, ¢y, ... where |¢j| < €.

N,

€



SUBSPACE EMBEDDING PROOF

3. Preserving norm of v.

Applying triangle inequality, we have

NV, = ||[Mwg + ciMwy + cMNwy + .. ||
< [ Pwol| + ¢ Mwa] + My + ...
<(1+e)+e(1+e)+e(1+¢€)+...
<14 O(e).



SUBSPACE EMBEDDING PROOF

3. Preserving norm of v.

Similarly,

NV, = ||[Mwg + ciMwy + cMNwy + .. ||
> [ Pwo|| — el | — €[ FIw || ..
= (=) — (I ef—<(1Fe) =0
>1—0(e).



SUBSPACE EMBEDDING PROOF

So we have proven
1—0(e) < ||Nv]] <14 O(e)
for all v e Sy, which in turn implies for small ¢,

1—0(e) < |NV]|3 <1+ 0(e)

Adjusting e proves the Subspace Embedding theorem.
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SUBSPACE EMBEDDINGS

Theorem (Subspace Embedding from JL)
LetU c R" be a d-dimensional linear subspace in R". If

N e R™*4 js chosen from any distribution D satisfying the
Distributional JL Lemma, then with probability 1 — ¢,

(1= a)llvllz < [Nvllz < (1 + €)Iv]2 (2)

forallv e U, as long asmzo(w)

20



FINAL RESULT

Theorem (Randomized Linear Regression)

Let N be a properly scaled JL matrix (random Gaussian, sign,
sparse random, etc.) with m = O (M) rows.

&

Then with probability (1 — &), for any A € R"*% and b € R,
IA%* — |3 < (1+ €) min [|Ax — b]|3

where X* = arg min, ||[MAx — Mb||3.

For example, if m = O(R/e¢), MA can be used to compute an
approximate partial SVD, which leads to a (1+ €) approximate

low-rank approximation for A.
21



€-NET FOR THE SPHERE

Lemma (e-net for the sphere)
For any e < 1, there exists a set N, C Sy with |N¢| = (%)d such
that Vv € Sy,

min |lv—wl|| <e.
weN,

Imaginary algorithm for constructing N.:

- Set N, ={}
- While such a point exists, choose an arbitrary pointv € Sy
where #w € N with |[v — w|| < e. Set N. = N U {w}.

After running this procedure, we have N, = {w;,...,w_} and

Minwen, [[V—w| < eforallv e Sy as desired.
2



€-NET FOR THE SPHERE

How many steps does this procedure take?

Can place a ball of radius €/2 around each w; without
intersecting any other balls. All of these balls live in a ball of
radius 1+ €/2. 23



€-NET FOR THE SPHERE

Volume of d dimensional ball of radius r is
vol(d,r)y=c-r4,
where c is a constant that depends on d, but not r. From

previous slide we have:

vol(d, €/2) - [Ne| < vol(d, 1+ ¢/2)
vol(d, 1+ ¢/2)
< — 7 ! 7

N < —older2)

-t

2%



RUNTIME CONSIDERATION

Fore,d = O(1), we need M to have m = O(d) rows.

- Cost to solve [|Ax — b]|3:
- O(nd”) time for direct method. Need to compute
(ATA)~"ATb.
- O(nd) - (# of iterations) time for iterative method (GD, AGD,
conjugate gradient method).
- Cost to solve ||[MAx — Mbj3:

- O(d’) time for direct method.
- O(d?) - (# of iterations) time for iterative method.
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RUNTIME CONSIDERATION

But time to compute MA is an (m x n) x (n x d) matrix
multiply: O(mnd) = O(nd?) time.

Goal: Develop faster Johnson-Lindenstrauss projections.

+ A S *
¥ S E3 ~

a  w oA 4 =) | A
Ey * +

+ + g

Typically using sparse and structured matrices.
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THE FAST JOHNSON-LINDENSTRAUSS TRANSFORM

Subsampled Randomized Hadamard Transform (SHRT)
(Ailon-Chazelle, 2006):

Construct M € R™" as follows:
n
M =,/—-SHD, where
m

- S e R™" s arow subsampling matrix. Each row has a
single 1in a random column, all other entries 0.

- D € nxnisadiagonal matrix with each entry uniform +1.
- Hen xnisaHadamard matrix.

27



HADAMARD MATRICES

Assume for now that n is a power of 2. Fori =0,1,..., H;isa
Hadamard matrix with dimension 2/ x 2!.

o 1 |He—1  Hg—g
p= —=
V2 |Heor —Hg
How long does it take to compute Hx for a vector x € R"?

28



HADAMARD MATRICES

Property 1: Can compute NMx = SHDx in O(n logn) time.

Compare to O(nm) time for random Gaussian or +1 M € R™*",

29



RANDOMIZED HADAMARD TRANSFORM

P

2 P {'e
. c¥:

Deterministic Randomized Fully random sign
Hadamard matrix. Hadamard PHD. matrix.
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JOHNSON-LINDENSTRAUSS WITH SHRTS

Theorem (JL from SRHT)

Let M € R™*" be a subsampled randomized Hadamard

2
transform with m = O (W) rows. Then for any
fixedy,

(1= a)llyll3 < Iyl < (1 + €)llyli3

with probability (1 — 6).
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HADAMARD MATRICES ARE ORTHOGONAL

Property 2: For any k= 0,1,..., we have H'H, = I.
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RANDOMIZED HADAMARD ANALYSIS

We want to show that H\/%SHDVH% ~ |ly[I3-

Letz € R" = HDy.

- Claim: ||z||2 = |ly||3, exactly.
- ||ISHDy||? = £Sz||? = subsample of z.

- E[Flsz3] = llzl3.

What would z have to look like for ||Sz||5 to look very different
from ||z/|3 with high probability? I.e. when does subsampling
fail. When does subsampling work?
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RANDOMIZED HADAMARD ANALYSIS

Lemma (SHRT mixing lemma)

Let H be an (n x n) Hadamard matrix and D a random =1
diagonal matrix. Let z= HDy for somey € R". With
probability 1 — 6,

o) < 5O

1y[l2

for some fixed constant c.

If all entries in z were uniform magnitude, we would have

2] = Ll

34



RANDOMIZED HADAMARD ANALYSIS

SHRT mixing lemma proof:

Let h] be the i row of H. z; = h]Dy where:

R
1 R
hD=— 111 -1 —1 ’
vn R3
Rs

where Ry, ...,R, are random =£1's.
This is equivalent to

hD=—_[R R Rs R ]

35



RANDOMIZED HADAMARD ANALYSIS

SHRT mixing lemma proof:

So we have, for all j,
,I n
Zi = h,TDy = — Z R,y,-.
Vik=

- v/n-z;is arandom variable with mean 0 and variance
ly||3, which is a sum of independent random variables.
- By Central Limit Theorem, we expect that:

Prilvn - zi| > tlly|2] < e 9®).

- Setting t gives Pr [Z,-I >0 ( WHwb)] <?$
- Applying a union bound to all n entries of z gives the SHRT

mixing lemma. %



RADEMACHER CONCENTRATION

Formally, need to use Bernstein type concentration inequality
to prove the bound:

Lemma (Rademacher Concentration)

Let Ry, ...,R, be Rademacher random variables (i.e. uniform
+1’s). Then for any vector a € R”,

n
I [Z Ria; = tllab] <et,

=1
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FINISHING UP

With probability 1 — &, we have that all z; < O ( log(n/d) |1y, )
We want to analyze:

L= Iy ol = LSl = 15 (v

where j; is a random indexin1,...,n.

We have that EL = ||z||3 = |ly||3 and L is a sum of random
variables, each bounded by O (log(n/é)), which means they
have bounded variance.

Apply a Chernoff/Hoeffding bound to get that
IL=|ly|I3] < ellyl|3 with probability 14 as long as:

0 (tog (n/s) logm/a))

€2
38



JOHNSON-LINDENSTRAUSS WITH SHRTS

Theorem (JL from SRHT)

Let M € R™*" be a subsampled randomized Hadamard

2
transform with m = O (W) rows. Then for any
fixedy,

(1= alyl3 < Inyl3 < (1 +o)llvl3
with probability (1 — 6).
Can be improvedtom =0 (W)
Upshot for regression: Compute MA in

instead of O(nd?) time. Compress problem down to A with
0(d?) dimensions.
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BRIEF COMMENT ON OTHER METHODS

O(ndlogn) is nearly linear in the size of A when A is dense.
Clarkson-Woodruff 2013, STOC Best Paper: Possible to
compute A with poly(d) rows in:

O (nnz(A)) time.

M is chosen to be an ultra-sparse random matrix. Uses totally
different techniques (you can’'t do JL + e-net).

Lead to a whole close of matrix algorithms (for regression, SVD,
etc.) which run in time:

O (nnz(A)) + poly(d,e).
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WHAT WERE AILON AND CHAZELLE THINKING?

Simple, inspired algorithm that has been used for accelerating:

- Vector dimensionality reduction

- Linear algebra m = 20;
- Locality sensitive hashing cl = (2xrandi(2,1,n)-3).xy;
(SimHash) c2 = sqrt(n)*xfwht(dy);
c3 = c2(randperm(n));
- Randomized kernel learning z = sqrt(n/m)*c3(1:m);

methods (we will discuss after
Thanksgiving) 41



WHAT WERE AILON AND CHAZELLE THINKING?

The Hadamard Transform is closely related to the Discrete
Fourier Transform.

R
Fip=e?"r, FF=1.

E)

Real part of Fj .

Fy computes the Fourier-transform of the vectory. Can be
computed in O(nlogn) time using a divide and conquer
algorithm (the Fast Fourier Transform). 0



THE UNCERTAINTY PRINCIPAL

The Uncertainty Principal (informal): A function and it's
Fourier transform cannot both be concentrated.

1 2 s 4 5 s 7 s

Vectory.

02
01 I II II
]

1 2 3 4 5 [ 7 8

Fourier transform Fy.
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THE UNCERTAINTY PRINCIPAL

Sampling does not preserve norms, i.e. ||Sy|2 # ||y|l when'y
has a few large entries.

Taking a Fourier transform exactly eliminates this hard case,
without changing y’s norm.
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