CS-GY 9223 I: Lecture 11

Spectral graph theory + randomized numerical
linear algebra.

NYU Tandon School of Engineering, Prof. Christopher Musco



ENCODING GRAPH SIMILARITY

Often data is represented as a graph and similarities can be
obtained from that graph:
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ENCODING GRAPH SIMILARITY

(a) Zachary Karate Club

Spectral graph theory lets us formalize this heuristic idea.




CUT MINIMIZATION

Goal: Partition nodes along a cut that:

- Has few crossing edges: |{(u,v) € E: u € S,v e T} is small.
- Separates large partitions: |S|, |T| are not too small.
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(a) Zachary Karate Club Graph



THE LAPLACIAN VIEW

For a graph with adjacency matrix A and degree matrix D,

L=D—Aisthe \Hbcl{;= Jle
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L= BTBlvvhere B is the “edge-vertex incidence” matrix.
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THE LAPLACIAN VIEW
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(a) Zachary Karate Club Graph

For a cut indicator vector ¢ € {—1,1}" with ¢(i) = =1forie S
andc(i)=1forieT:

- ¢'Lc = 4 - cut(S,T).

Rl
c =T =5 =~ “ubbleuw ook

Want to minimize both ¢’Lc (cut size) and ¢’1 (imbalance).



SMALLEST LAPLACIAN EIGENVECTOR

Courant-Fischer min-max principle

LetV = [v1,...,Vp] be the eigenvectors of L. gj{/snﬂ;
w2

v, = arg maxv'Lv
lIlvi|=1

v, = argmax v'Lv
[[v||=1,vLv

v3 = argmax V'Lv
[[V||[=1,vLvq,vy

Vo= argmax V/Lv
IV][=1,v LV, .V



SMALLEST LAPLACIAN EIGENVECTOR

Courant-Fischer min-max principle

LetV = [v1,...,Vp] be the eigenvectors of L.

vy, = argminv’Lv
fIvi|=1

Vp_1 = argmin v'Lv
[[v||[=1,vLvn

Vp_y = argmin Vv'Lv
[IV[|=1,vLvn, V1

vi= argmin V'Lv
[[V[|[=1,vLvn,...,vo



SMALLEST LAPLACIAN EIGENVECTOR

. . %
The smallest eigenvector/singular vector v, satlsﬁes:f oF
1 -
Vp=—-1= argmin V'Lv 1.
N % yernwith |v|=1 An

with v]Lv, = 0.
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SECOND SMALLEST LAPLACIAN EIGENVECTOR

VV| g \//A.i Uo\ubg—b‘(

By Courant-Fischer, v, is given by: > c)r “&_Mk,cs
(=

Vo1 = argmin abd ket “

V=T, viv=0 Uy, 5 W, - Y/RE

If vo_q were binary, i.e. € {—1,1}", scaled by ﬁ it would have:

- vl . Lvy_1 = cut(S,T) as small as possible given that
Vi1 =T - 18] =

n— “(l//

- Vo would indicate the smallest perfectly balanced cut.

——>

’

vp—1 € R" is not generally binary, but still satisfies a ‘relaxed
version of this property.



CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

Find a good partition of the graph by using an
eigendecomposition to compute

Vp—1 =

veR" with |lv||=1, vI1=0

argmin

VUIRY,

Set S to be all nodes with v,_4(i) < 0, and T to be all with a’

Vo_1(i) = 0.
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CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

Find a good partition of the graph by using an
eigendecomposition to compute

V1= argmin viLv
veR" with |lv||=1, vI1=0

Set S to be all nodes with v,_4(i) < 0, and T to be all with
V(i) > 0.

1



SPECTRAL PARTITIONING IN PRACTICE

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the
normalized Laplacian L = D~"/2LD~"/2.

Important consideration: What to do when we want to split “
the graph into more than two parts?
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SPECTRAL PARTITIONING IN PRACTICE

Spectral Clustering:

- Compute smallest k eigenvectors v,_1,...,V,_p Of L.

- Represent each node by its corresponding row in V € R7*k
whose rows are vp_1,...Vy_p.

- Cluster these rows using k-means clustering (or really any
clustering method).

13



LAPLACIAN EMBEDDING
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k-Nearest Neighbors Graph:
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LAPLACIAN EMBEDDING
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LAPLACIAN EMBEDDING

Embedding with eigenvectors v,_1,v,_: (linearly separable)
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GENERATIVE MODELS

So far: Spectral clustering partitions a graph along a small cut
between large pieces.

- No formal guarantee on the ‘quality’ of the partitioning.

- Would be difficult to analyze for general input graphs.

Common approach: Give a natural generative model for which
produces random but realistic inputs and analyze how the
algorithm performs on inputs drawn from this model.

- Very common in algorithm design for data
analysis/machine learning (can be used to justify ¢, linear
regression, k-means clustering, PCA, etc.)
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STOCHASTIC BLOCK MODEL

Ideas for a generative model for graphs that would allow us to
understand partitioning? .
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STOCHASTIC BLOCK MODEL

Stochastic Block Model (Planted Partition Model):

Let Gn(p, g) be a distribution over graphs on n nodes, split
equally into two groups B and C, each with %nodes.

- Any two nodes in the same group are connected with
probability p (including self-loops). ¢~ * \

- Any two nodes in different groups are connected with
prob. g < p. '
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LINEAR ALGEBRAIC VIEW

Let G be a stochastic block model graph drawn from G, (p, q).

- Let A € R™" be the adjacency matrix of G. What is E[A]?

B C

(nlzw
—_—

B -
(n/2 nodes)

C
(n/2 nodes) ]
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EXPECTED ADJACENCY SPECTRUM

Letting G be a stochastic block model graph drawn from
Gn(p,q) and A € R™" be its adjacency matrix. (E[A]);; = p for
I,j in same group, (E[A]);; = g otherwise.

B C
(n/2 nodes)  (n/2 nodes)
1

. Y
. W
(n/2 nodes) ] p q
- [—/E[]k]\_/z
C

(n/2 nodes) q p

What are the
eigenvectors and
eigenvalues of E[A]?

21



EXPECTED ADJACENCY SPECTRUM

Letting G be a stochastic block model graph drawn from
Gn(p,q) and A € R"™" be its adjacency matrix, what are the

eigenvectors and eigenvalues of E[A]? P13 v
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EXPECTED ADJACENCY SPECTRUM

B C
(n/2 nodes)  (n/2 nodes) VT
171111111
p q 17111-1-1-1-41
E[A] -
q p

- v = vq with eigenvalue A\ = M_
* V2 = xpc With eigenvalue X, = w_
- xg,c(i)=1ifi e Band xg (i) = —1forieC.
If we compute v, then we recover the communities B and C!
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EXPECTED LAPLACIAN SPECTRUM

Letting G be a stochastic block model graph drawn from
Gn(p,q), A € R™" be its adjacency matrix and L be its
Laplacian, what are the eigenvectors and eigenvalues of E[L]?
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EXPECTED LAPLACIAN SPECTRUM

Upshot: The second small eigenvector of E[L] is xp,c — the
indicator vector for the cut between the communities.

- If the random graph G (equivilantly A and L) were exactly
equal to its expectation, partitioning using this
eigenvector would exactly recover communities B and C.

How do we show that a matrix (e.g., A) is close to its
expectation? Matrix concentration inequalities.

- Analogous to scalar concentration inequalities like
Markovs, Chebyshevs, Bernsteins.
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MATRIX CONCENTRATION

Matrix Concentration Inequality: If p > O (log;”>, then
with high probability » -
/,)(\gvuép

1A — E[All@< O(vpn).

where || - || is the matrix spectral norm (operator norm).

~ \'(_'-ll—‘ (
v

For X e RnXd, ||X||2 = maxzeRd:”Z‘bﬁ HXZHZ MG X (7TA 7/\
—_—

Exercise: Show that ||X||; is equal to the largest singular value
of X. For symmetric X (like A — E[A]) show that it is equal to the
magnitude of the largest magnitude eigenvalue.

For the stochastic block model application, we want to show
that the second eigenvectors of A and E[A] are close. How
does this relate to their difference in spectral norm?



EIGENVECTOR PERTURBATION

wa

v
Davis-Kahan Eigenvector Perturbation Theorem: Sup-

pose A,A € RY*Y are symmetric with |[A — Al, < e
and eigenvectors vy, Vvp,..., Vg and V4, vy, ..., Vg4 Letting

6(vj, v;) denote the angle between v; and v;, for all i:
\opeed? e VU
[\

)( . _ €
o o(v, V)] < —————
Wm%ﬁ,v — sin[0(v;, vj)] < i A=)
where A1, ..., \q are the eigenvalues of A.

The error gets larger if there are eigenvalues with similar
magnitudes.
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EIGENVECTOR PERTURBATION
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APPLICATION TO STOCHASTIC BLOCK MODEL

Claim 1 (Matrix Concentration): Forp > O ( log'n ),

IA—E[A]]l, < O(vPN). = %«
Claim 2 (Davis-Kahan): Forp > O ( og n)'

O(yv/pn)
mln/;g.‘)\g,— )\j| -
IE2%
Recall: E[A], has eigenvalues A\ =

min |\ — | = min (qn W) .
J#I

B —
Assume (=91 q W|ll be the minimum of these two gaps. )
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APPLICATION TO STOCHASTIC BLOCK MODEL

So Far: smf)gvg@ < O(

) What does this give us?

- Can show that this implie% lva =%l <0 (ﬁ) (exercise).

- s %XB,C: the community indicator vector.

B C

(n/2 nodes) (n/2 nodes)

4
] ) e
T 0]91&!'-?@1
- Every i where v, (i), Vo (i contrlbutes > 1 to

[va — B 2. vw ) - v, 6) ll

- So they differ in sign in at most O <( ) positions.
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APPLICATION TO STOCHASTIC BLOCK MODEL

Upshot: If G is a stochastic block model graph with adjacency
matrix A, if we compute its second large eigenvector v, and
assign nodes to communities according to the sign pattern of
this vector, we will correctly assign all but O (ﬁ) nodes.

(n/2 nodes) (n/2 nodes) (n/2 nodes) (n/2 nodes)
r ) Y ] 1 J . T ! 1
.03 .—.01.02 .01 —.04 —.03 —.01 —.03 ‘ \/iﬁ - % % —in _v_lﬁ —Jiﬁ —\/iﬁ
V2 ~ XB,C

- Why does the error increase as g gets close to p?

- Even when p—g = 0(1/+/n), assign all but an O(n) fraction
of nodes correctly. E.g, assignh 99% of nodes correctly.

F’Af)// ()/r> af)z}» ~ <01 4 31



RANDOMIZED NUMERICAL LINEAR ALGEBRA

Forget about the previous problem, but still consider the
matrix M = E[A].

- Dense n x n matrix.

- Computing top eigenvectors takes ~ O(n?//€) time.

If someone asked you to speed this up and return
approximate top eigenvectors, what could you do?.
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RANDOMIZED NUMERICAL LINEAR ALGEBRA

Main idea: If you want to compute singular vectors or
eigenvectors, multiply two matrices, solve a regression

problem, etc.: . ‘),w)')\‘, —»2/

1. Compress your matrices using a ragrrdomized method.
2. Solve the problem on the smalter or sparser matrix.

- A called a “sketch” or “coreset” for A. s 5\/.«
. " —_— 5 L,V-, d\\\(g
O I /
A = | A @ A
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RANDOMIZED NUMERICAL LINEAR ALGEBRA

| o )
Approximate matrix multlpllcatlon:/)
b &

>
Y

W A x B =)
w

Approximate regression:

H_ L(; min

7 = =

mink
x A
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COMPARISON

Method:

Speed:

Accuracy:

Direct __&F Iterative Randomized
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SKETCHED REGRESSION
1

Randomized approximate regression using a ’ it
Johnson-Lindenstrauss Matrix: YAy
N & @/b" 2 % ——=>>
- | A |° -
b 2T b
A Y z
(i
- V b
W‘“’\ \\ A¥ ’\,9 \\7

Input: A € R0, b & R". T aryman Uhx - TLIL

Goal: Want piig/JA¢# S 7/ ¥ a2

2 é ¢ _
{"D (]9{0\1{,'. “ AX/* ’\a“; < U‘\’f’ “ X \4“:
Claim: Suffices to prove that for all x € RY, vl x% = "

( win Y-
(M\IIAX—%S INAX — b2 < (14 €)||Ax — b|]2 9 oy LR i




DISTRIBUTIONAL JOHNSON-LINDENSTRAUSS REVIEW

Lemma (Distributional JL)
If N is chosen to a properly scaled random Gaussian matrix,
sign matrix, sparse random matrix, etc., with O (loiﬂ) rows

then for any fixedy,
() &) Hsz < |||'|sz (1+9)llyll3

with probability (1 — 5).

= AX Y
ne 9
Corollary: For an;.x, with probability (1 — 4),

(1-£) IAx — b2 < [MAX — MIb[3 < (1 + )[|Ax — b.
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FOR ANY TO FOR ALL

How do we go from “for any fixed x” to

This statement requires establishing a Johnson-Lindenstrauss
type bound for an infinity of possible vectors (Ax — b), which
obviously can’t be tackled with a union bound argument.

X( XO’ T X\ea = @ 2

0 (lOD\/£> '[Levl S‘b(' c,&oLp X,
e e, 7 = (€ UT A 7N
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SUBSPACE EMBEDDINGS

Theorem (Subspace Embedding from JL)
LetUd C R" be a d-dimensional linear subspace in R". If

N e R™*9 js chosen from any distribution D satisfying the
Dist. JL Lemma, then with probability 1 — 9,

(1 —llvilo < [[Mllz < (1 + &)lIvi2

forallv e U, as longasm =0 ( log(1®1.

1 ' — — ,»«v
"It's possible to obtain a slightly tighter bound of |0 (M) It's a nice
challenge to try proving this. 39



SUBSPACE EMBEDDING TO APPROXIMATE REGRESSION

Corollary: If we choose M and properly scale then, with
O (d/€*) rows, then with high probability,

(1 -4)IIAx — b3 < [[MAX — AbI|3 < (1+ €)[|Ax — b|3 |

forllaand sy oy, ot (Il < 751

k:D p@nganAx—an; < (1+e)min[Ax — b]Z. 4((%)%1\,
W

St
U . A A ‘
\\»e( l.e. we can solve linear regression approximately using the

O (d/e?) x d matrix MA in place of A.
-

Proof: Apply Subspace Embedding Thm. to the (d + 1)
dimensional subspace spanned by A's d columns and b. Every
vector Ax — b lies in this subspace.
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SUBSPACE EMBEDDINGS

Theorem (Subspace Embedding from JL)
LetUd C R" be a d-dimensional linear subspace in R". If

N e R™*9 js chosen from any distribution D satisfying the
Dist. JL Lemma, then with probability 1 — 9,

(1=e)llvll2 < [Nvlla < (1 + €)flv] @

forallv e, as longas m = 0O (M)z.

€2

R"

2|t's possible to obtain a slightly tighter bound of O (M) It's a nice

challenge to try proving this. 41



SUBSPACE EMBEDDING PROOF

Observation: The theorem holds as long as (1) holds for all w
on the unit sphere in U. Denote the sphere

Su={w|w et and ||w| =1}

Follows from linearity: Any point v € U_can be written as cw

for some scalar c and some point w € Sy,. O
- vl
CIF (1= o)llwle < [IMw]l> < (1+ )lwll. V= wlv
- then c(1— €)||wl)z < ¢||NMwl|; < c(1+¢) —
- and thus (1 —¢)||cw]|; < ||[Acwl; < (14 e)|]cw||2 £S5

v A\l )
Nd \Vad
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SUBSPACE EMBEDDING PROOF

Intuition: There are not too many “different” points on a
d-dimensional sphere:

v ok
o)

o (%J)
o

=y

N

u_n

N, is called an “€"-net.
If we can prove
lwll (1= ¢) < Iwll, < 1+ €) Nl

for all points w € N, we can hopefully extend to all of S,. 43



€-NET FOR THE SPHERE

Lemma (e-net for the sphere)

For any e < 1, there exists a set N, C Sy with |N¢| = (g)d such
that W € Sy, ——

min [lv—wl <e.
weN,

Losp () N wll,” 2ol < vl o Cree)

o leld e ol we Ko

Cob g_!_/ \%(‘/3) ob(((\h,l)
Nl C(/QAJ

_ ¢ o [\(/ L) 44



SUBSPACE EMBEDDING PROOF

1. Set 5 = (£)?. By a union bound, with high probability, for
allw e N,

(1—¢) <|Mwllz < (1+¢).

as longas MhasO (M) =0 (%) rows.

€
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SUBSPACE EMBEDDING PROOF

2. Consider any v € Sy. You can check that, for some
Wo, W1, W5 ... € N, v can be written:

V =Wy + CiWq + CoWy + . ..

for constants ¢, ¢y, ... where |¢j| < €.

3. Applying triangle inequality, we have

INv|; = [[Mwo + ¢ Mwy + Mwy + .. |

< ||Mwo]| + €]|Mw|| + €2(|Mw;|| + ...

§(1+6)+6(1+e)+62(1+e)+...
<14 O(e).
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SUBSPACE EMBEDDING PROOF

4. Similarly,

NV, = ||Mwo + cilwy + cMNwy + .. ||
> [ wol| — ¢ Mwa| — | ..
>(1—€)—e(1+e)—(1+¢€) —...
>1—0(e).

So we have proven
1—0(e) < ||Nv]] <1+ O(e)
forall vin Sy.

Adjusting e proves the Subspace Embedding theorem.

47



