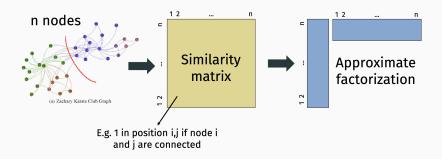
CS-GY 9223 I: Lecture 11 Spectral graph theory + randomized numerical linear algebra.

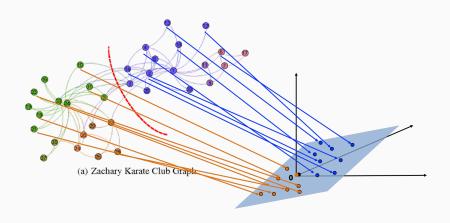
NYU Tandon School of Engineering, Prof. Christopher Musco

ENCODING GRAPH SIMILARITY

Often data is represented as a graph and similarities can be obtained from that graph:



ENCODING GRAPH SIMILARITY

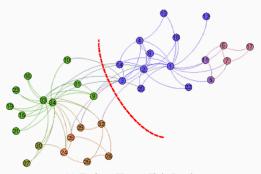


Spectral graph theory lets us formalize this heuristic idea.

CUT MINIMIZATION

Goal: Partition nodes along a cut that:

- Has few crossing edges: $|\{(u, v) \in E : u \in S, v \in T\}|$ is small.
- Separates large partitions: |S|, |T| are not too small.



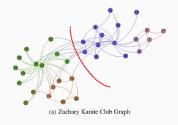
(a) Zachary Karate Club Graph

THE LAPLACIAN VIEW

For a graph with adjacency matrix A and degree matrix D, L = D - A is the graph Laplacian.

$$\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\$$

THE LAPLACIAN VIEW



For a <u>cut indicator vector</u> $\mathbf{c} \in \{-1, 1\}^n$ with $\mathbf{c}(i) = -1$ for $i \in S$ and $\mathbf{c}(i) = 1$ for $i \in T$:

Want to minimize both $\mathbf{c}^T L \mathbf{c}$ (cut size) and $\mathbf{c}^T \mathbf{1}$ (imbalance).

SMALLEST LAPLACIAN EIGENVECTOR

Courant-Fischer min-max principle

Let $V = [v_1, \dots, v_n]$ be the eigenvectors of L.

for symmetric water

$$\begin{aligned} \mathbf{v}_1 &= \underset{\|\mathbf{v}\|=1}{\text{arg max}} \, \mathbf{v}^T \mathbf{L} \mathbf{v} \\ \mathbf{v}_2 &= \underset{\|\mathbf{v}\|=1, \mathbf{v} \perp \mathbf{v}_1}{\text{arg max}} \, \mathbf{v}^T \mathbf{L} \mathbf{v} \\ \mathbf{v}_3 &= \underset{\|\mathbf{v}\|=1, \mathbf{v} \perp \mathbf{v}_1, \mathbf{v}_2}{\text{arg max}} \, \mathbf{v}^T \mathbf{L} \mathbf{v} \\ &\vdots \\ \mathbf{v}_n &= \underset{\|\mathbf{v}\|=1, \mathbf{v} \perp \mathbf{v}_1, \dots, \mathbf{v}_{n-1}}{\text{arg max}} \, \mathbf{v}^T \mathbf{L} \mathbf{v} \end{aligned}$$

SMALLEST LAPLACIAN EIGENVECTOR

Courant-Fischer min-max principle

Let $V = [v_1, \dots, v_n]$ be the eigenvectors of L.

$$\mathbf{v}_{n} = \underset{\|\mathbf{v}\|=1}{\text{arg min }} \mathbf{v}^{\mathsf{T}} \mathbf{L} \mathbf{v}$$

$$\mathbf{v}_{n-1} = \underset{\|\mathbf{v}\|=1, \mathbf{v} \perp \mathbf{v}_{n}}{\text{arg min }} \mathbf{v}^{\mathsf{T}} \mathbf{L} \mathbf{v}$$

$$\mathbf{v}_{n-2} = \underset{\|\mathbf{v}\|=1, \mathbf{v} \perp \mathbf{v}_{n}, \mathbf{v}_{n-1}}{\text{arg min }} \mathbf{v}^{\mathsf{T}} \mathbf{L} \mathbf{v}$$

$$\vdots$$

$$\mathbf{v}_{1} = \underset{\|\mathbf{v}\|=1, \mathbf{v} \perp \mathbf{v}_{n}, \dots, \mathbf{v}_{2}}{\text{arg min }} \mathbf{v}^{\mathsf{T}} \mathbf{L} \mathbf{v}$$

SMALLEST LAPLACIAN EIGENVECTOR

The smallest eigenvector/singular vector
$$\mathbf{v}_n$$
 satisfies:
$$\mathbf{v}_n = \frac{1}{\sqrt{n}} \cdot \mathbf{1} = \underset{\mathbf{v} \in \mathbb{R}^n \text{ with } \|\mathbf{v}\| = 1}{\text{arg min}} \mathbf{v}^T L \mathbf{v}$$
 with $\mathbf{v}_n^T L \mathbf{v}_n = 0$.

with
$$\mathbf{v}_n' L \mathbf{v}_n = 0$$
.

BIB

SECOND SMALLEST LAPLACIAN EIGENVECTOR

By Courant-Fischer, \mathbf{v}_{n-1} is given by:

$$V_{n-1}$$
 is given by:

 $V_{n-1} = \underset{\|\mathbf{v}\|=1}{\text{arg min}} (\mathbf{v}^T L \mathbf{v})$
 $v_{n-1} = \underset{\|\mathbf{v}\|=1}{\text{arg min}} (\mathbf{v}^T L \mathbf{v})$
 $v_{n-1} \in \S$ $V_{n-1} \in \S$

If \mathbf{v}_{n-1} were binary, i.e. $\in \{-1,1\}^n$, scaled by $\frac{1}{\sqrt{n}}$, it would have:

- $\mathbf{v}_{n-1}^T L \mathbf{v}_{n-1} = cut(S,T)$ as small as possible given that $\mathbf{v}_{n-1}^T \mathbf{1} = |T| |S| = \underline{\mathbf{0}}$.
- \cdot v_{n-1} would indicate the smallest perfectly balanced cut.

 $\mathbf{v}_{n-1} \in \mathbb{R}^n$ is not generally binary, but still satisfies a 'relaxed' version of this property.

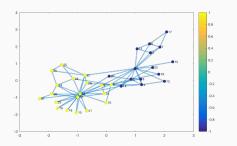
CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

Find a good partition of the graph by using an eigendecomposition to compute

$$\mathbf{v}_{n-1} = \underset{\mathbf{v} \in \mathbb{R}^n \text{ with } \|\mathbf{v}\| = 1, \ \mathbf{v}^T \mathbf{1} = 0}{\text{arg min}} \mathbf{v}^T L \mathbf{v}$$

Set S to be all nodes with $\mathbf{v}_{n-1}(i) < 0$, and T to be all with

 $v_{n-1}(i) \ge 0.$



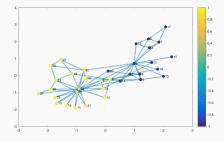
CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

Find a good partition of the graph by using an eigendecomposition to compute

$$\mathbf{v}_{n-1} = \underset{\mathbf{v} \in \mathbb{R}^n \text{ with } \|\mathbf{v}\| = 1, \ \mathbf{v}^T \mathbf{1} = \mathbf{0}}{\text{arg min}} \mathbf{v}^T L \mathbf{v}$$

Set S to be all nodes with $\mathbf{v}_{n-1}(i) < 0$, and T to be all with

 $v_{n-1}(i) \ge 0.$

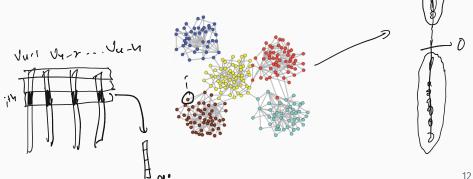


SPECTRAL PARTITIONING IN PRACTICE

The Shi-Malik normalized cuts algorithm is one of the most commonly used variants of this approach, using the normalized Laplacian $\overline{L} = D^{-1/2}LD^{-1/2}$.

Important consideration: What to do when we want to split

the graph into more than two parts?

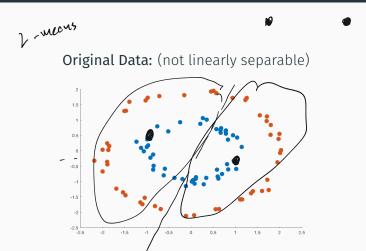


SPECTRAL PARTITIONING IN PRACTICE

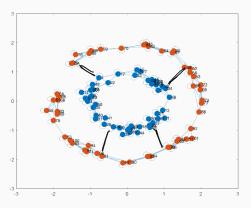
Spectral Clustering:

- Compute smallest k eigenvectors $\mathbf{v}_{n-1}, \dots, \mathbf{v}_{n-k}$ of L.
- Represent each node by its corresponding row in $V \in \mathbb{R}^{n \times k}$ whose rows are $\mathbf{v}_{n-1}, \dots \mathbf{v}_{n-k}$.
- Cluster these rows using *k*-means clustering (or really any clustering method).

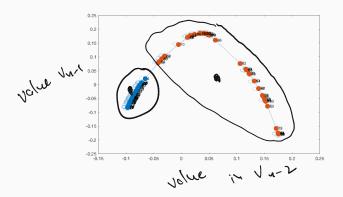
LAPLACIAN EMBEDDING



LAPLACIAN EMBEDDING



Embedding with eigenvectors v_{n-1}, v_{n-2} : (linearly separable)



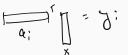
GENERATIVE MODELS

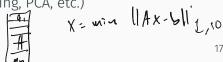
So far: Spectral clustering partitions a graph along a small cut between large pieces.

- · No formal guarantee on the 'quality' of the partitioning.
- · Would be difficult to analyze for general input graphs.

Common approach: Give a natural generative model for which produces random but realistic inputs and analyze how the algorithm performs on inputs drawn from this model.

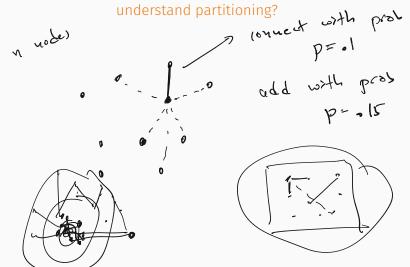
· Very common in algorithm design for data analysis/machine learning (can be used to justify ℓ_2 linear regression, k-means clustering, PCA, etc.)





STOCHASTIC BLOCK MODEL

Ideas for a generative model for graphs that would allow us to understand partitioning?



STOCHASTIC BLOCK MODEL

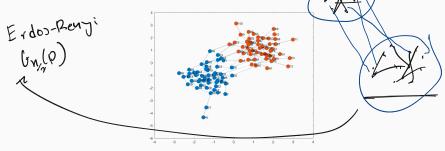
Stochastic Block Model (Planted Partition Model):

Let $G_n(p,q)$ be a distribution over graphs on n nodes, split equally into two groups \underline{B} and C_r each with $\underline{n/2}$ nodes.

• Any two nodes in the same group are connected with probability \underline{p} (including self-loops). P^{-}

· Any two nodes in different groups are connected with

prob. q < p.

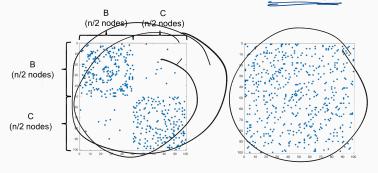


19

LINEAR ALGEBRAIC VIEW

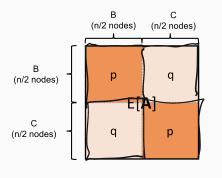
Let G be a stochastic block model graph drawn from $G_n(p,q)$.

• Let $A \in \mathbb{R}^{n \times n}$ be the adjacency matrix of G. What is $\mathbb{E}[A]$?



EXPECTED ADJACENCY SPECTRUM

Letting G be a stochastic block model graph drawn from $G_n(p,q)$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix. $(\mathbb{E}[\mathbf{A}])_{i,j} = p$ for i,j in same group, $(\mathbb{E}[\mathbf{A}])_{i,j} = q$ otherwise.



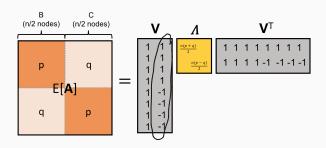
What are the eigenvectors and eigenvalues of $\mathbb{E}[A]$?

EXPECTED ADJACENCY SPECTRUM

Letting G be a stochastic block model graph drawn from $G_n(p,q)$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix, what are the eigenvectors and eigenvalues of $\mathbb{E}[A]$?

Eigenvector 2: In

EXPECTED ADJACENCY SPECTRUM



- $\mathbf{v}_1 = \mathbf{v}_1$ with eigenvalue $\lambda_1 = \frac{(p+q)n}{2}$.
- $\mathbf{v}_2 = \underline{\boldsymbol{\chi}_{B,C}}$ with eigenvalue $\lambda_2 = \frac{(p-q)n}{2}$.
- $\chi_{B,C}(i) = 1$ if $i \in B$ and $\chi_{B,C}(i) = -1$ for $i \in C$.

If we compute \mathbf{v}_2 then we recover the communities B and C!

EXPECTED LAPLACIAN SPECTRUM

Letting G be a stochastic block model graph drawn from $G_n(p,q)$, $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix and \mathbf{L} be its Laplacian, what are the eigenvectors and eigenvalues of $\mathbb{E}[\mathbf{L}]$?

EXPECTED LAPLACIAN SPECTRUM

Upshot: The second small eigenvector of $\mathbb{E}[L]$ is $\chi_{B,C}$ – the indicator vector for the cut between the communities.

• If the random graph *G* (equivilantly **A** and **L**) were exactly equal to its expectation, partitioning using this eigenvector would exactly recover communities *B* and *C*.

How do we show that a matrix (e.g., A) is close to its expectation? Matrix concentration inequalities.

 Analogous to scalar concentration inequalities like Markovs, Chebyshevs, Bernsteins.

MATRIX CONCENTRATION

Matrix Concentration Inequality: If $p \ge O\left(\frac{\log^4 n}{n}\right)$, then with high probability

$$\|\underline{\mathbf{A}} - \mathbb{E}[\mathbf{A}]\|_{2} \leq O(\sqrt{pn})$$

where $\|\cdot\|_2$ is the matrix spectral norm (operator norm).

For
$$X \in \mathbb{R}^{n \times d}$$
, $\|X\|_2 = \max_{z \in \mathbb{R}^d: \|z\|_2 = 1} \|Xz\|_2$. we $x (z^T A z)$

Exercise: Show that $\|\mathbf{X}\|_2$ is equal to the largest singular value of \mathbf{X} . For symmetric \mathbf{X} (like $\mathbf{A} - \mathbb{E}[\mathbf{A}]$) show that it is equal to the magnitude of the largest magnitude eigenvalue.

For the stochastic block model application, we want to show that the second <u>eigenvectors</u> of **A** and $\mathbb{E}[A]$ are close. How does this relate to their difference in spectral norm?

EIGENVECTOR PERTURBATION

Davis-Kahan Eigenvector Perturbation Theorem: Suppose $A, \overline{A} \in \mathbb{R}^{d \times d}$ are symmetric with $||\underline{A} - \overline{A}||_2 \leq \epsilon$ and eigenvectors $\underline{v_1}, \underline{v_2}, \dots, \underline{v_d}$ and $\underline{\overline{v_1}}, \underline{\overline{v_2}}, \dots, \underline{\overline{v_d}}$. Letting $\theta(v_i, \overline{v_i})$ denote the angle between v_i and $\overline{v_i}$, for all i:

$$\theta(v_i, \bar{v}_i) \text{ denote the angle between } v_i \text{ and } \bar{v}_i$$

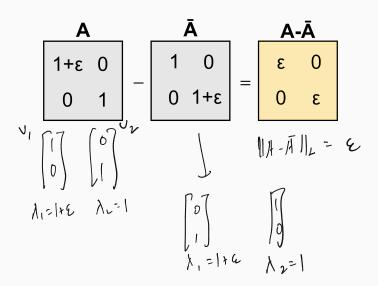
$$\text{New Ne47} \text{ letter } v_i, \bar{v}_i$$

$$\sin[\theta(v_i, \bar{v}_i)] \leq \frac{\epsilon}{\min_{j \neq i} |\lambda_i - \lambda_j|}$$

where $\lambda_1, \ldots, \lambda_d$ are the eigenvalues of $\overline{\mathbf{A}}$.

The error gets larger if there are eigenvalues with similar magnitudes.

EIGENVECTOR PERTURBATION



APPLICATION TO STOCHASTIC BLOCK MODEL

Claim 1 (Matrix Concentration): For $p \ge O\left(\frac{\log^4 n}{n}\right)$,

$$\|\mathbf{A} - \mathbb{E}[\mathbf{A}]\|_2 \leq O(\sqrt{pn}). = 4$$

Claim 2 (Davis-Kahan): For $p \ge O\left(\frac{\log^4 n}{n}\right)$,

$$\sin\theta(v_2,\underline{\overline{v_2}}) \leq \frac{O(\sqrt{pn})}{\min_{j\neq \mathbf{j}}|\lambda_{\mathbf{j}}-\lambda_j|} \leq \frac{O(\sqrt{pn})}{(p-q)n/2} = \boxed{O\left(\frac{\sqrt{p}}{(p-q)\sqrt{n}}\right)}$$
Recall: $\mathbb{E}[\mathbf{A}]$, has eigenvalues $\lambda_1 = \frac{(p+q)n}{2}$, $\lambda_2 = \frac{(p-q)n}{2}$, $\lambda_i = 0$ for $i \geq 3$.

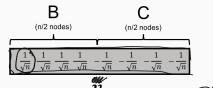
$$\min_{j\neq i} |\lambda_i - \lambda_j| = \min \left(qn, \frac{(p-q)n}{2} \right).$$

Assume $\frac{(p-q)n}{2}$ will be the minimum of these two gaps.

APPLICATION TO STOCHASTIC BLOCK MODEL

So Far: $\sin \theta(\sqrt{2}, \sqrt{2}) \le O(\sqrt{\frac{\sqrt{p}}{(p-q)\sqrt{n}}})$. What does this give us?

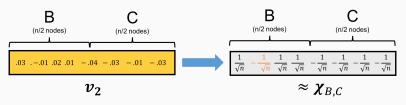
- Can show that this implies $\|v_2 \bar{v}_2\|_2^2 \le O\left(\frac{p}{(p-q)^2n}\right)$ (exercise).
- \bar{V}_2 is $\frac{1}{\sqrt{n}}\chi_{B,C}$: the community indicator vector.



- Every i where $v_2(i)$, $\overline{v_2(i)}$ differ in sign contributes $\geq \frac{1}{n}$ to $\|v_2 \overline{v_2}\|_2^2$.
- So they differ in sign in at most $O\left(\frac{p}{(p-q)^2}\right)$ positions.

APPLICATION TO STOCHASTIC BLOCK MODEL

Upshot: If G is a stochastic block model graph with adjacency matrix A, if we compute its second large eigenvector v_2 and assign nodes to communities according to the sign pattern of this vector, we will correctly assign all but $O\left(\frac{p}{(p-q)^2}\right)$ nodes.



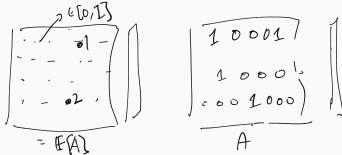
- Why does the error increase as q gets close to p?
- Even when $p q = O(1/\sqrt{n})$, assign all but an O(n) fraction of nodes correctly. E.g., assign 99% of nodes correctly.

RANDOMIZED NUMERICAL LINEAR ALGEBRA

Forget about the previous problem, but still consider the matrix $\mathbf{M} = \mathbb{E}[\mathbf{A}].$

- Dense $n \times n$ matrix.
- Computing top eigenvectors takes $\approx O(n^2/\sqrt{\epsilon})$ time.

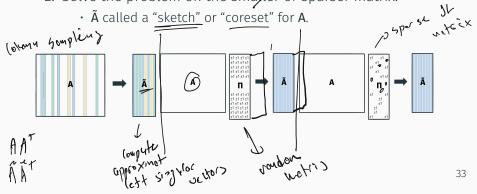
If someone asked you to speed this up and return approximate top eigenvectors, what could you do?.



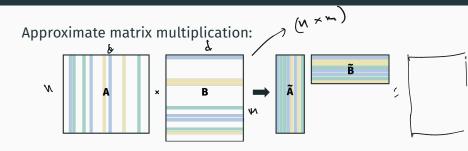
RANDOMIZED NUMERICAL LINEAR ALGEBRA

Main idea: If you want to compute singular vectors or eigenvectors, multiply two matrices, solve a regression problem, etc.:

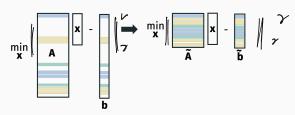
- 1. Compress your matrices using a randomized method.
- 2. Solve the problem on the smaller or sparser matrix. · Ã called a "sketch" or "coreset" for A.



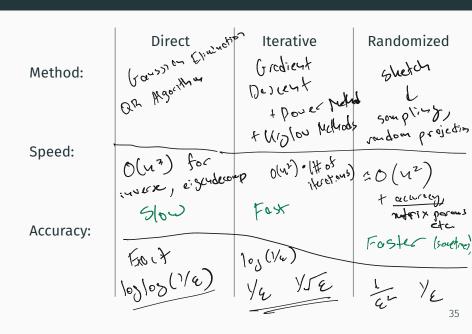
RANDOMIZED NUMERICAL LINEAR ALGEBRA



Approximate regression:



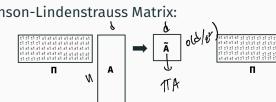
COMPARISON



SKETCHED REGRESSION

Randomized approximate regression using a Johnson-Lindenstrauss Matrix:

11 Ax - 12 112



Input:
$$A \in \mathbb{R}^{n \times d}$$
, $b \in \mathbb{R}^n$.

Goal: Want www

to prove:
$$\|AX^{4} - b\|_{2}^{2} \le (1+\epsilon) \|AX^{4} - b\|_{2}^{2}$$

Claim: Suffices to prove that for all $x \in \mathbb{R}^{d}$, where $X^{4} = b$

$$\|AX - b\|_{2}^{2} \le \|\Pi AX - \Pi b\|_{2}^{2} \le (1+\epsilon) \|AX - b\|_{2}^{2}$$

organia $\|AX - b\|_{2}^{2}$

DISTRIBUTIONAL JOHNSON-LINDENSTRAUSS REVIEW

Lemma (Distributional JL)

If Π is chosen to a properly scaled random Gaussian matrix, sign matrix, sparse random matrix, etc., with $O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$ rows then for any fixed y,

$$(|\boldsymbol{\beta}) \ \underline{\|\mathbf{y}\|_2^2} \le \|\underline{\mathbf{\Pi}}\mathbf{y}\|_2^2 \le (1+\epsilon)\|\mathbf{y}\|_2^2$$

with probability $(1 - \delta)$.

Corollary: For any fixed x, with probability $(1 - \delta)$,

$$(1 - 4) \|Ax - b\|_2^2 \le \|\Pi Ax - \Pi b\|_2^2 \le (1 + \epsilon) \|Ax - b\|_2^2.$$

FOR ANY TO FOR ALL

How do we go from "for any fixed x" to "for all
$$x \in \mathbb{R}^{d}$$
".

This statement requires establishing a Johnson-Lindenstrauss type bound for an <u>infinity</u> of possible vectors (Ax - b), which obviously can't be tackled with a union bound argument.

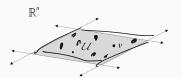
3

SUBSPACE EMBEDDINGS

Theorem (Subspace Embedding from JL)

Let $\mathcal{U} \subset \mathbb{R}^n$ be a d-dimensional linear subspace in \mathbb{R}^n . If $\Pi \in \mathbb{R}^{m \times d}$ is chosen from any distribution \mathcal{D} satisfying the Dist. JL Lemma, then with probability $1 - \delta$,

$$(1-\epsilon)\|\mathbf{v}\|_2 \le \|\mathbf{\Pi}\mathbf{v}\|_2 \le (1+\epsilon)\|\mathbf{v}\|_2$$
 for all $\mathbf{v} \in \mathcal{U}$, as long as $m = O\left(\frac{d\log(1/\epsilon)}{\epsilon^2}\log(1/\delta)\right)^1$.



¹It's possible to obtain a slightly tighter bound of challenge to try proving this.

SUBSPACE EMBEDDING TO APPROXIMATE REGRESSION

Corollary: If we choose Π and properly scale then, with $O(d/\epsilon^2)$ rows, then with high probability,

i.e. we can solve linear regression approximately using the $O\left(d/\epsilon^2\right) \times d$ matrix ΠA in place of A.

Proof: Apply Subspace Embedding Thm. to the (d + 1) dimensional subspace spanned by <u>A's d</u> columns and **b**. Every vector $\mathbf{A}\mathbf{x} - \mathbf{b}$ lies in this subspace.

SUBSPACE EMBEDDINGS

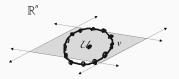
Theorem (Subspace Embedding from JL)

Let $\mathcal{U} \subset \mathbb{R}^n$ be a d-dimensional linear subspace in \mathbb{R}^n . If $\Pi \in \mathbb{R}^{m \times d}$ is chosen from any distribution \mathcal{D} satisfying the Dist. JL Lemma, then with probability $1 - \delta$,

$$(1 - \epsilon) \|\mathbf{v}\|_2 \le \|\Pi \mathbf{v}\|_2 \le (1 + \epsilon) \|\mathbf{v}\|_2$$

(1)

for all $\mathbf{v} \in \mathcal{U}$, as long as $m = O\left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon^2}\right)^2$.



²It's possible to obtain a slightly tighter bound of $O\left(\frac{d + \log(1/\delta)}{\epsilon^2}\right)$. It's a nice challenge to try proving this.

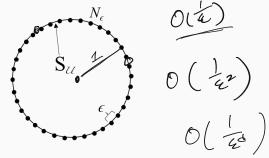
Observation: The theorem holds as long as (1) holds for all w on the unit sphere in \mathcal{U} . Denote the sphere $(S_{\mathcal{U}})$

$$S_{\mathcal{U}} = \{ \mathbf{w} \mid \underline{\mathbf{w} \in \mathcal{U}} \text{ and } \|\underline{\mathbf{w}}\|_2 = 1 \}.$$

Follows from linearity: Any point $\mathbf{v} \in \mathcal{U}_{\underline{\mathbf{c}}}$ can be written as $c\mathbf{w}$ for some scalar c and some point $\mathbf{w} \in S_{\mathcal{U}}$. V= NVID V

- If $(1 \epsilon) \|\mathbf{w}\|_2 \le \|\mathbf{\Pi}\mathbf{w}\|_2 \le (1 + \epsilon) \|\mathbf{w}\|_2$.
- then $c(1-\epsilon)\|\mathbf{w}\|_{2} < c\|\mathbf{\Pi}\mathbf{w}\|_{2} < c(1+\epsilon)\|\mathbf{w}\|_{2}$,
- and thus $(1 \epsilon) \|c\mathbf{w}\|_2 \le \|\mathbf{\Pi} c\mathbf{w}\|_2 \le (1 + \epsilon) \|c\mathbf{w}\|_2$.

Intuition: There are not too many "different" points on a *d*-dimensional sphere:



 N_{ϵ} is called an " ϵ "-net.

If we can prove

$$\|\omega\| (1-\epsilon) \le \|\Pi w\|_2 \le (1+\epsilon) \|\omega\|_{\gamma}$$

for all points $\mathbf{w} \in \underline{N}_{\epsilon}$, we can hopefully extend to all of $S_{\mathcal{U}}$.

$\epsilon\text{-NET}$ for the sphere

Lemma (ϵ -net for the sphere)

For any $\epsilon \leq 1$, there exists a set $N_{\epsilon} \subset S_{\mathcal{U}}$ with $|N_{\epsilon}| = \left(\frac{4}{\epsilon}\right)^{d}$ such that $\forall \mathbf{v} \in S_{\mathcal{U}}$,

$$\min_{\mathbf{w}\in N_{\epsilon}}\|\mathbf{v}-\mathbf{w}\|\leq \epsilon.$$

Set
$$S = \frac{1}{|N_e|} |O_{\mathcal{S}}(|V_{\mathcal{S}})| |O_{\mathcal{S}}(|N_e|)$$

$$= |O_{\mathcal{S}}(|V_{\mathcal{E}})| |O_{\mathcal{S}}(|N_{\mathcal{E}}|)$$

1. Set $\delta = \left(\frac{\epsilon}{8}\right)^d$. By a union bound, with high probability, for all $\mathbf{w} \in N_{\epsilon}$,

$$(1-\epsilon) \le \|\Pi \mathbf{w}\|_2 \le (1+\epsilon).$$

as long as
$$\Pi$$
 has $O\left(\frac{\log(1/\delta)}{\epsilon^2}\right) = O\left(\frac{d\log(1/\epsilon)}{\epsilon^2}\right)$ rows.

2. Consider any $\mathbf{v} \in S_{\mathcal{U}}$. You can check that, for some $\mathbf{w}_0, \mathbf{w}_1, \mathbf{w}_2 \dots \in N_{\epsilon}$, v can be written:

$$\mathbf{v} = \mathbf{w}_0 + c_1 \mathbf{w}_1 + c_2 \mathbf{w}_2 + \dots$$

for constants c_1, c_2, \ldots where $|c_i| \leq \epsilon^i$.

3. Applying triangle inequality, we have

$$\|\mathbf{\Pi}\mathbf{v}\|_{2} = \|\mathbf{\Pi}\mathbf{w}_{0} + c_{1}\mathbf{\Pi}\mathbf{w}_{1} + c_{2}\mathbf{\Pi}\mathbf{w}_{2} + \dots \|$$

$$\leq \|\mathbf{\Pi}\mathbf{w}_{0}\| + \epsilon \|\mathbf{\Pi}\mathbf{w}_{1}\| + \epsilon^{2}\|\mathbf{\Pi}\mathbf{w}_{2}\| + \dots$$

$$\leq (1 + \epsilon) + \epsilon(1 + \epsilon) + \epsilon^{2}(1 + \epsilon) + \dots$$

$$\leq 1 + O(\epsilon).$$

4. Similarly,

$$\|\mathbf{\Pi}\mathbf{v}\|_{2} = \|\mathbf{\Pi}\mathbf{w}_{0} + c_{1}\mathbf{\Pi}\mathbf{w}_{1} + c_{2}\mathbf{\Pi}\mathbf{w}_{2} + \dots \|$$

$$\geq \|\mathbf{\Pi}\mathbf{w}_{0}\| - \epsilon\|\mathbf{\Pi}\mathbf{w}_{1}\| - \epsilon^{2}\|\mathbf{\Pi}\mathbf{w}_{2}\| - \dots$$

$$\geq (1 - \epsilon) - \epsilon(1 + \epsilon) - \epsilon^{2}(1 + \epsilon) - \dots$$

$$\geq 1 - O(\epsilon).$$

So we have proven

$$1 - O(\epsilon) \le \|\mathbf{\Pi}\mathbf{v}\|_2 \le 1 + O(\epsilon)$$

for all v in $S_{\mathcal{U}}$.

Adjusting ϵ proves the Subspace Embedding theorem.