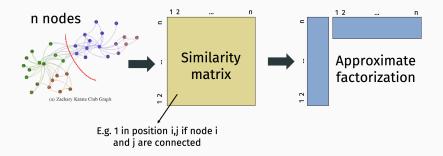
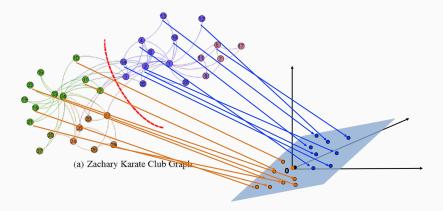
CS-GY 9223 I: Lecture 11 Spectral graph theory + randomized numerical linear algebra.

NYU Tandon School of Engineering, Prof. Christopher Musco

Often data is represented as a graph and similarities can be obtained from that graph:



ENCODING GRAPH SIMILARITY



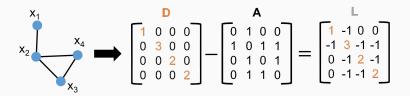
Spectral graph theory lets us formalize this heuristic idea.

CUT MINIMIZATION

Goal: Partition nodes along a cut that:

- Has few crossing edges: $|\{(u, v) \in E : u \in S, v \in T\}|$ is small.
- Separates large partitions: |S|, |T| are not too small.

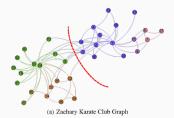
For a graph with adjacency matrix A and degree matrix D, L = D - A is the graph Laplacian.



 $\mathbf{L} = \mathbf{B}^{\mathsf{T}}\mathbf{B}$ where B is the "edge-vertex incidence" matrix.

$$\mathbf{B} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

THE LAPLACIAN VIEW



For a <u>cut indicator vector</u> $\mathbf{c} \in \{-1, 1\}^n$ with $\mathbf{c}(i) = -1$ for $i \in S$ and $\mathbf{c}(i) = 1$ for $i \in T$:

•
$$\mathbf{c}^T L \mathbf{c} = 4 \cdot cut(S, T).$$

• $c^T 1 = |T| - |S|.$

Want to minimize both $c^T L c$ (cut size) and $c^T 1$ (imbalance).

Courant-Fischer min-max principle

Let $V = [v_1, \dots, v_n]$ be the eigenvectors of L.

$$\mathbf{v}_{1} = \underset{\|\mathbf{v}\|=1}{\operatorname{arg max}} \mathbf{v}^{T} \mathbf{L} \mathbf{v}$$
$$\mathbf{v}_{2} = \underset{\|\mathbf{v}\|=1, \mathbf{v} \perp \mathbf{v}_{1}}{\operatorname{arg max}} \mathbf{v}^{T} \mathbf{L} \mathbf{v}$$
$$\mathbf{v}_{3} = \underset{\|\mathbf{v}\|=1, \mathbf{v} \perp \mathbf{v}_{1}, \mathbf{v}_{2}}{\operatorname{arg max}} \mathbf{v}^{T} \mathbf{L} \mathbf{v}$$
$$\vdots$$
$$\mathbf{v}_{n} = \underset{\|\mathbf{v}\|=1, \mathbf{v} \perp \mathbf{v}_{1}, \dots, \mathbf{v}_{n-1}}{\operatorname{arg max}} \mathbf{v}^{T} \mathbf{L} \mathbf{v}$$

Courant-Fischer min-max principle

Let $V = [v_1, \dots, v_n]$ be the eigenvectors of L.

$$\mathbf{v}_{n} = \underset{\|\mathbf{v}\|=1}{\arg\min} \mathbf{v}^{T} \mathbf{L} \mathbf{v}$$
$$\|\mathbf{v}\|=1$$
$$\mathbf{v}_{n-1} = \underset{\|\mathbf{v}\|=1, \mathbf{v} \perp \mathbf{v}_{n}}{\arg\min} \mathbf{v}^{T} \mathbf{L} \mathbf{v}$$
$$\mathbf{v}_{n-2} = \underset{\|\mathbf{v}\|=1, \mathbf{v} \perp \mathbf{v}_{n}, \mathbf{v}_{n-1}}{\arg\min} \mathbf{v}^{T} \mathbf{L} \mathbf{v}$$
$$\vdots$$
$$\mathbf{v}_{1} = \underset{\|\mathbf{v}\|=1, \mathbf{v} \perp \mathbf{v}_{n}, ..., \mathbf{v}_{2}}{\arg\min} \mathbf{v}^{T} \mathbf{L} \mathbf{v}$$

The smallest eigenvector/singular vector \mathbf{v}_n satisfies:

$$\mathbf{v}_n = \frac{1}{\sqrt{n}} \cdot \mathbf{1} = \operatorname*{arg\,min}_{\mathbf{v} \in \mathbb{R}^n \text{ with } \|\mathbf{v}\|=1} \mathbf{v}^T L \mathbf{v}$$

with $\mathbf{v}_n^T L \mathbf{v}_n = 0$.

By Courant-Fischer, \mathbf{v}_{n-1} is given by:

$$\mathbf{v}_{n-1} = \operatorname*{arg\,min}_{\|\mathbf{v}\|=1, \ \mathbf{v}_n^T \mathbf{v}=0} \mathbf{v}^T L \mathbf{v}$$

If \mathbf{v}_{n-1} were <u>binary</u>, i.e. $\in \{-1, 1\}^n$, scaled by $\frac{1}{\sqrt{n}}$, it would have:

- $\mathbf{v}_{n-1}^T L \mathbf{v}_{n-1} = cut(S, T)$ as small as possible given that $\mathbf{v}_{n-1}^T \mathbf{1} = |T| |S| = 0$.
- $\cdot v_{n-1}$ would indicate the smallest <u>perfectly balanced</u> cut.

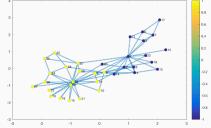
 $\textbf{v}_{n-1} \in \mathbb{R}^n$ is not generally binary, but still satisfies a 'relaxed' version of this property.

CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

Find a good partition of the graph by using an eigendecomposition to compute

$$\mathbf{v}_{n-1} = \operatorname*{arg\,min}_{\mathbf{v}\in\mathbb{R}^n ext{ with } \|\mathbf{v}\|=1, \ \mathbf{v}^T \mathbf{1} = 0} \mathbf{v}^T L \mathbf{v}$$

Set S to be all nodes with $\mathbf{v}_{n-1}(i) < 0$, and T to be all with $\mathbf{v}_{n-1}(i) \ge 0$.

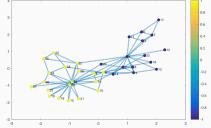


CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

Find a good partition of the graph by using an eigendecomposition to compute

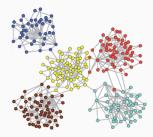
$$\mathbf{v}_{n-1} = \operatorname*{arg\,min}_{\mathbf{v}\in\mathbb{R}^n ext{ with } \|\mathbf{v}\|=1, \ \mathbf{v}^T \mathbf{1} = 0} \mathbf{v}^T L \mathbf{v}$$

Set S to be all nodes with $\mathbf{v}_{n-1}(i) < 0$, and T to be all with $\mathbf{v}_{n-1}(i) \ge 0$.



The Shi-Malik normalized cuts algorithm is one of the most commonly used variants of this approach, using the normalized Laplacian $\overline{L} = D^{-1/2}LD^{-1/2}$.

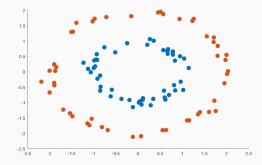
Important consideration: What to do when we want to split the graph into more than two parts?



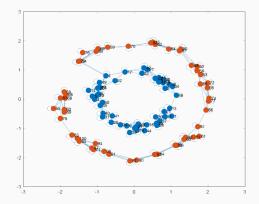
Spectral Clustering:

- Compute smallest *k* eigenvectors $\mathbf{v}_{n-1}, \ldots, \mathbf{v}_{n-k}$ of **L**.
- Represent each node by its corresponding row in $\mathbf{V} \in \mathbb{R}^{n \times k}$ whose rows are $\mathbf{v}_{n-1}, \dots \mathbf{v}_{n-k}$.
- Cluster these rows using *k*-means clustering (or really any clustering method).

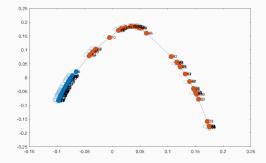
Original Data: (not linearly separable)



k-Nearest Neighbors Graph:



Embedding with eigenvectors v_{n-1} , v_{n-2} : (linearly separable)



So far: Spectral clustering partitions a graph along a small cut between large pieces.

- No formal guarantee on the 'quality' of the partitioning.
- Would be difficult to analyze for general input graphs.

Common approach: Give a natural generative model for which produces <u>random but realistic</u> inputs and analyze how the algorithm performs on inputs drawn from this model.

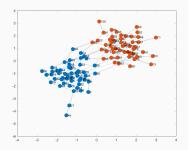
 Very common in algorithm design for data analysis/machine learning (can be used to justify l₂ linear regression, k-means clustering, PCA, etc.)

Ideas for a generative model for graphs that would allow us to understand partitioning?

Stochastic Block Model (Planted Partition Model):

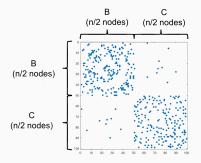
Let $G_n(p,q)$ be a distribution over graphs on n nodes, split equally into two groups B and C, each with n/2 nodes.

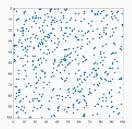
- Any two nodes in the same group are connected with probability *p* (including self-loops).
- Any two nodes in different groups are connected with prob. *q* < *p*.



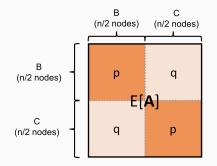
Let G be a stochastic block model graph drawn from $G_n(p,q)$.

• Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be the adjacency matrix of G. What is $\mathbb{E}[\mathbf{A}]$?





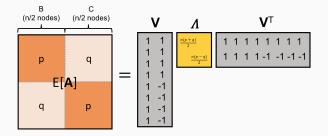
Letting *G* be a stochastic block model graph drawn from $G_n(p,q)$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix. $(\mathbb{E}[\mathbf{A}])_{i,j} = p$ for i, j in same group, $(\mathbb{E}[\mathbf{A}])_{i,j} = q$ otherwise.



What are the eigenvectors and eigenvalues of **E[A]**?

Letting *G* be a stochastic block model graph drawn from $G_n(p,q)$ and $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix, what are the eigenvectors and eigenvalues of $\mathbb{E}[\mathbf{A}]$?

EXPECTED ADJACENCY SPECTRUM



- $\mathbf{v}_1 = \mathbf{v}_1$ with eigenvalue $\lambda_1 = \frac{(p+q)n}{2}$.
- $\mathbf{v}_2 = \boldsymbol{\chi}_{B,C}$ with eigenvalue $\lambda_2 = \frac{(p-q)n}{2}$.
- $\chi_{B,C}(i) = 1$ if $i \in B$ and $\chi_{B,C}(i) = -1$ for $i \in C$.

If we compute v_2 then we recover the communities B and C!

Letting *G* be a stochastic block model graph drawn from $G_n(p,q)$, $\mathbf{A} \in \mathbb{R}^{n \times n}$ be its adjacency matrix and \mathbf{L} be its Laplacian, what are the eigenvectors and eigenvalues of $\mathbb{E}[\mathbf{L}]$?

Upshot: The second small eigenvector of $\mathbb{E}[L]$ is $\chi_{B,C}$ – the indicator vector for the cut between the communities.

• If the random graph *G* (equivilantly **A** and **L**) were exactly equal to its expectation, partitioning using this eigenvector would exactly recover communities *B* and *C*.

How do we show that a matrix (e.g., A) is close to its expectation? Matrix concentration inequalities.

• Analogous to scalar concentration inequalities like Markovs, Chebyshevs, Bernsteins.

Matrix Concentration Inequality: If $p \ge O\left(\frac{\log^4 n}{n}\right)$, then with high probability

$$\|\mathbf{A} - \mathbb{E}[\mathbf{A}]\|_2 \le O(\sqrt{pn}).$$

where $\|\cdot\|_2$ is the matrix spectral norm (operator norm).

For
$$\mathbf{X} \in \mathbb{R}^{n \times d}$$
, $\|\mathbf{X}\|_2 = \max_{z \in \mathbb{R}^d : \|z\|_2 = 1} \|\mathbf{X}z\|_2$.

Exercise: Show that $||X||_2$ is equal to the largest singular value of X. For symmetric X (like $A - \mathbb{E}[A]$) show that it is equal to the magnitude of the largest magnitude eigenvalue.

For the stochastic block model application, we want to show that the second <u>eigenvectors</u> of A and $\mathbb{E}[A]$ are close. How does this relate to their difference in spectral norm?

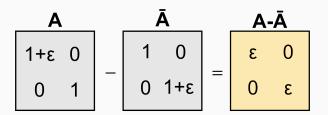
Davis-Kahan Eigenvector Perturbation Theorem: Suppose $\mathbf{A}, \overline{\mathbf{A}} \in \mathbb{R}^{d \times d}$ are symmetric with $\|\mathbf{A} - \overline{\mathbf{A}}\|_2 \leq \epsilon$ and eigenvectors v_1, v_2, \ldots, v_d and $\overline{v}_1, \overline{v}_2, \ldots, \overline{v}_d$. Letting $\theta(v_i, \overline{v}_i)$ denote the angle between v_i and \overline{v}_i , for all *i*:

$$\sin[heta(\mathsf{v}_i, ar{\mathsf{v}}_i)] \leq rac{\epsilon}{\min_{j
eq i} |\lambda_i - \lambda_j|}$$

where $\lambda_1, \ldots, \lambda_d$ are the eigenvalues of \overline{A} .

The error gets larger if there are eigenvalues with similar magnitudes.

EIGENVECTOR PERTURBATION



Claim 1 (Matrix Concentration): For $p \ge O\left(\frac{\log^4 n}{n}\right)$, $\|\mathbf{A} - \mathbb{E}[\mathbf{A}]\|_2 \le O(\sqrt{pn}).$

Claim 2 (Davis-Kahan): For $p \ge O\left(\frac{\log^4 n}{n}\right)$,

$$\sin\theta(v_2,\bar{v}_2) \leq \frac{O(\sqrt{pn})}{\min_{j\neq i}|\lambda_i-\lambda_j|} \leq \frac{O(\sqrt{pn})}{(p-q)n/2} = O\left(\frac{\sqrt{p}}{(p-q)\sqrt{n}}\right)$$

Recall: $\mathbb{E}[\mathbf{A}]$, has eigenvalues $\lambda_1 = \frac{(p+q)n}{2}$, $\lambda_2 = \frac{(p-q)n}{2}$, $\lambda_i = 0$ for $i \ge 3$.

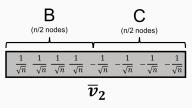
$$\min_{j\neq i} |\lambda_i - \lambda_j| = \min\left(qn, \frac{(p-q)n}{2}\right).$$

Assume $\frac{(p-q)n}{2}$ will be the minimum of these two gaps.

APPLICATION TO STOCHASTIC BLOCK MODEL

So Far: $\sin \theta(v_2, \bar{v}_2) \le O\left(\frac{\sqrt{p}}{(p-q)\sqrt{n}}\right)$. What does this give us?

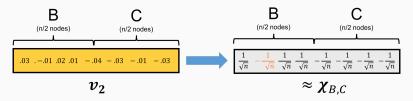
- Can show that this implies $\|v_2 \bar{v}_2\|_2^2 \le O\left(\frac{p}{(p-q)^2n}\right)$ (exercise).
- \bar{v}_2 is $\frac{1}{\sqrt{n}}\chi_{B,C}$: the community indicator vector.



- Every *i* where $v_2(i)$, $\bar{v}_2(i)$ differ in sign contributes $\geq \frac{1}{n}$ to $||v_2 \bar{v}_2||_2^2$.
- So they differ in sign in at most $O\left(\frac{p}{(p-q)^2}\right)$ positions.

APPLICATION TO STOCHASTIC BLOCK MODEL

Upshot: If *G* is a stochastic block model graph with adjacency matrix **A**, if we compute its second large eigenvector v_2 and assign nodes to communities according to the sign pattern of this vector, we will correctly assign all but $O\left(\frac{p}{(p-q)^2}\right)$ nodes.



- Why does the error increase as q gets close to p?
- Even when $p q = O(1/\sqrt{n})$, assign all but an O(n) fraction of nodes correctly. E.g., assign 99% of nodes correctly.

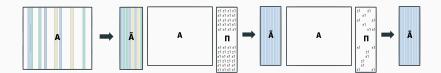
Forget about the previous problem, but still consider the matrix $M=\mathbb{E}[A].$

- Dense $n \times n$ matrix.
- Computing top eigenvectors takes $\approx O(n^2/\sqrt{\epsilon})$ time.

If someone asked you to speed this up and return <u>approximate</u> top eigenvectors, what could you do?.

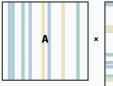
Main idea: If you want to compute singular vectors or eigenvectors, multiply two matrices, solve a regression problem, etc.:

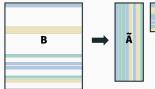
- 1. Compress your matrices using a randomized method.
- 2. Solve the problem on the smaller or sparser matrix.
 - Ã called a "sketch" or "coreset" for A.



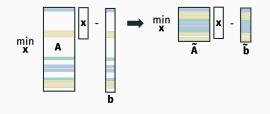
RANDOMIZED NUMERICAL LINEAR ALGEBRA

Approximate matrix multiplication:





Approximate regression:



	Direct	Iterative	Randomized
Method:			
Speed:			
Accuracy:			