
CS-GY 9223 I: Lecture 11
Spectral graph theory + randomized numerical
linear algebra.

NYU Tandon School of Engineering, Prof. Christopher Musco
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encoding graph similarity

Often data is represented as a graph and similarities can be
obtained from that graph:
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encoding graph similarity

Spectral graph theory lets us formalize this heuristic idea.
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cut minimization

Goal: Partition nodes along a cut that:

• Has few crossing edges: |{(u, v) ∈ E : u ∈ S, v ∈ T}| is small.
• Separates large partitions: |S|, |T| are not too small.
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the laplacian view

For a graph with adjacency matrix A and degree matrix D,
L = D− A is the graph Laplacian.

L = BTB where B is the “edge-vertex incidence” matrix.

B =


1 −1 0 0
0 1 −1 0
0 1 0 −1
0 0 1 −1


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the laplacian view

For a cut indicator vector c ∈ {−1, 1}n with c(i) = −1 for i ∈ S
and c(i) = 1 for i ∈ T:

• cTLc = 4 · cut(S, T).
• cT1 = |T| − |S|.

Want to minimize both cTLc (cut size) and cT1 (imbalance).
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smallest laplacian eigenvector

Courant–Fischer min-max principle

Let V = [v1, . . . , vn] be the eigenvectors of L.

v1 = argmax
∥v∥=1

vTLv

v2 = argmax
∥v∥=1,v⊥v1

vTLv

v3 = argmax
∥v∥=1,v⊥v1,v2

vTLv

...
vn = argmax

∥v∥=1,v⊥v1,...,vn−1

vTLv
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smallest laplacian eigenvector

Courant–Fischer min-max principle

Let V = [v1, . . . , vn] be the eigenvectors of L.

vn = argmin
∥v∥=1

vTLv

vn−1 = argmin
∥v∥=1,v⊥vn

vTLv

vn−2 = argmin
∥v∥=1,v⊥vn,vn−1

vTLv

...
v1 = argmin

∥v∥=1,v⊥vn,...,v2
vTLv
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smallest laplacian eigenvector

The smallest eigenvector/singular vector vn satisfies:

vn =
1√
n
· 1 = argmin

v∈Rn with ∥v∥=1
vTLv

with vTnLvn = 0.
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second smallest laplacian eigenvector

By Courant-Fischer, vn−1 is given by:

vn−1 = argmin
∥v∥=1, vTnv=0

vTLv

If vn−1 were binary, i.e. ∈ {−1, 1}n, scaled by 1√
n , it would have:

• vTn−1Lvn−1 = cut(S, T) as small as possible given that
vTn−11 = |T| − |S| = 0.

• vn−1 would indicate the smallest perfectly balanced cut.

vn−1 ∈ Rn is not generally binary, but still satisfies a ‘relaxed’
version of this property.

10



cutting with the second laplacian eigenvector

Find a good partition of the graph by using an
eigendecomposition to compute

vn−1 = argmin
v∈Rn with ∥v∥=1, vT1=0

vTLv

Set S to be all nodes with vn−1(i) < 0, and T to be all with
vn−1(i) ≥ 0.
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cutting with the second laplacian eigenvector

Find a good partition of the graph by using an
eigendecomposition to compute

vn−1 = argmin
v∈Rn with ∥v∥=1, vT1=0

vTLv

Set S to be all nodes with vn−1(i) < 0, and T to be all with
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spectral partitioning in practice

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the
normalized Laplacian L = D−1/2LD−1/2.

Important consideration: What to do when we want to split
the graph into more than two parts?

12



spectral partitioning in practice

Spectral Clustering:

• Compute smallest k eigenvectors vn−1, . . . , vn−k of L.
• Represent each node by its corresponding row in V ∈ Rn×k

whose rows are vn−1, . . . vn−k.
• Cluster these rows using k-means clustering (or really any
clustering method).

13



laplacian embedding

Original Data: (not linearly separable)
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laplacian embedding

k-Nearest Neighbors Graph:
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laplacian embedding

Embedding with eigenvectors vn−1, vn−2: (linearly separable)

16



generative models

So far: Spectral clustering partitions a graph along a small cut
between large pieces.

• No formal guarantee on the ‘quality’ of the partitioning.
• Would be difficult to analyze for general input graphs.

Common approach: Give a natural generative model for which
produces random but realistic inputs and analyze how the
algorithm performs on inputs drawn from this model.

• Very common in algorithm design for data
analysis/machine learning (can be used to justify ℓ2 linear
regression, k-means clustering, PCA, etc.)
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stochastic block model

Ideas for a generative model for graphs that would allow us to
understand partitioning?
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stochastic block model

Stochastic Block Model (Planted Partition Model):

Let Gn(p,q) be a distribution over graphs on n nodes, split
equally into two groups B and C, each with n/2 nodes.

• Any two nodes in the same group are connected with
probability p (including self-loops).

• Any two nodes in different groups are connected with
prob. q < p.
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linear algebraic view

Let G be a stochastic block model graph drawn from Gn(p,q).

• Let A ∈ Rn×n be the adjacency matrix of G. What is E[A]?
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expected adjacency spectrum

Letting G be a stochastic block model graph drawn from
Gn(p,q) and A ∈ Rn×n be its adjacency matrix. (E[A])i,j = p for
i, j in same group, (E[A])i,j = q otherwise.

What are the
eigenvectors and
eigenvalues of E[A]?
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expected adjacency spectrum

Letting G be a stochastic block model graph drawn from
Gn(p,q) and A ∈ Rn×n be its adjacency matrix, what are the
eigenvectors and eigenvalues of E[A]?
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expected adjacency spectrum

• v1 = v1 with eigenvalue λ1 =
(p+q)n

2 .
• v2 = χB,C with eigenvalue λ2 =

(p−q)n
2 .

• χB,C(i) = 1 if i ∈ B and χB,C(i) = −1 for i ∈ C.

If we compute v2 then we recover the communities B and C!
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expected laplacian spectrum

Letting G be a stochastic block model graph drawn from
Gn(p,q), A ∈ Rn×n be its adjacency matrix and L be its
Laplacian, what are the eigenvectors and eigenvalues of E[L]?
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expected laplacian spectrum

Upshot: The second small eigenvector of E[L] is χB,C – the
indicator vector for the cut between the communities.

• If the random graph G (equivilantly A and L) were exactly
equal to its expectation, partitioning using this
eigenvector would exactly recover communities B and C.

How do we show that a matrix (e.g., A) is close to its
expectation? Matrix concentration inequalities.

• Analogous to scalar concentration inequalities like
Markovs, Chebyshevs, Bernsteins.
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matrix concentration

Matrix Concentration Inequality: If p ≥ O
(
log4 n
n

)
, then

with high probability

∥A− E[A]∥2 ≤ O(
√
pn).

where ∥ · ∥2 is the matrix spectral norm (operator norm).

For X ∈ Rn×d, ∥X∥2 = maxz∈Rd:∥z∥2=1 ∥Xz∥2.

Exercise: Show that ∥X∥2 is equal to the largest singular value
of X. For symmetric X (like A− E[A]) show that it is equal to the
magnitude of the largest magnitude eigenvalue.

For the stochastic block model application, we want to show
that the second eigenvectors of A and E[A] are close. How
does this relate to their difference in spectral norm? 26



Eigenvector Perturbation

Davis-Kahan Eigenvector Perturbation Theorem: Sup-
pose A,A ∈ Rd×d are symmetric with ∥A − A∥2 ≤ ϵ

and eigenvectors v1, v2, . . . , vd and v̄1, v̄2, . . . , v̄d. Letting
θ(vi, v̄i) denote the angle between vi and v̄i, for all i:

sin[θ(vi, v̄i)] ≤
ϵ

minj̸=i |λi − λj|

where λ1, . . . , λd are the eigenvalues of A.

The error gets larger if there are eigenvalues with similar
magnitudes.
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eigenvector perturbation
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application to stochastic block model

Claim 1 (Matrix Concentration): For p ≥ O
(
log4 n
n

)
,

∥A− E[A]∥2 ≤ O(
√
pn).

Claim 2 (Davis-Kahan): For p ≥ O
(
log4 n
n

)
,

sin θ(v2, v̄2) ≤
O(√pn)

minj̸=i |λi − λj|
≤ O(√pn)

(p− q)n/2 = O
( √p
(p− q)

√
n

)
Recall: E[A], has eigenvalues λ1 = (p+q)n

2 , λ2 = (p−q)n
2 , λi = 0 for i ≥ 3.

min
j̸=i

|λi − λj| = min
(
qn, (p− q)n

2

)
.

Assume (p−q)n
2 will be the minimum of these two gaps.
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application to stochastic block model

So Far: sin θ(v2, v̄2) ≤ O
( √p

(p−q)
√
n

)
. What does this give us?

• Can show that this implies ∥v2 − v̄2∥22 ≤ O
(

p
(p−q)2n

)
(exercise).

• v̄2 is 1√
nχB,C: the community indicator vector.

• Every i where v2(i), v̄2(i) differ in sign contributes ≥ 1
n to

∥v2 − v̄2∥22.

• So they differ in sign in at most O
(

p
(p−q)2

)
positions.
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application to stochastic block model

Upshot: If G is a stochastic block model graph with adjacency
matrix A, if we compute its second large eigenvector v2 and
assign nodes to communities according to the sign pattern of
this vector, we will correctly assign all but O

(
p

(p−q)2

)
nodes.

• Why does the error increase as q gets close to p?
• Even when p−q = O(1/

√
n), assign all but an O(n) fraction

of nodes correctly. E.g., assign 99% of nodes correctly.
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randomized numerical linear algebra

Forget about the previous problem, but still consider the
matrix M = E[A].

• Dense n× n matrix.
• Computing top eigenvectors takes ≈ O(n2/

√
ϵ) time.

If someone asked you to speed this up and return
approximate top eigenvectors, what could you do?.
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randomized numerical linear algebra

Main idea: If you want to compute singular vectors or
eigenvectors, multiply two matrices, solve a regression
problem, etc.:

1. Compress your matrices using a randomized method.
2. Solve the problem on the smaller or sparser matrix.

• Ã called a “sketch” or “coreset” for A.
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randomized numerical linear algebra

Approximate matrix multiplication:

Approximate regression:
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comparison

Method:

Speed:

Accuracy:

Direct Iterative Randomized
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