
CS-GY 9223 I: Lecture 10
Krylov methods, spectral clustering, spectral
graph theory.

NYU Tandon School of Engineering, Prof. Christopher Musco
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computation in linear algebra

Three classes of methods.

• Direct Methods:

• Iterative Methods:

• Randomized Methods:
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low-rank approximation

Write X as a rank k factorization by projecting onto the
subspace spanned by an orthanormal matrix V ∈ Rd×k

3



singular value decomposition

One-stop shop for computing optimal low-rank
approximations.

Any matrix X can be written:

Where UTU = I, VTV = I, and σ1 ≥ σ2 ≥ . . . σd ≥ 0.
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computational question

Given a subspace V spanned by the k columns in V,

∥X− XVVT∥2F = min
C

∥X− CVT∥2F

We want to find the best V ∈ Rd×k:

min
orthonormal V∈Rd×k

∥X− XVVT∥2F (1)

Note that ∥X− XVVT∥2F = ∥X∥2F − ∥XVVT∥2F for all orthonormal V
(since VVT is a projection). Equivalent form:

max
orthonormal V∈Rd×k

∥XVVT∥2F = ∥XV∥2F (2)
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singular value decomposition

Can read off optimal low-rank approximations from the SVD:

Xk = UkUTkX = XVkVTk.

Vk = argmin
orthonormal V∈Rd×k

∥X− XVVT∥2F = argmax
orthonormal V∈Rd×k

∥XVVT∥2F
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power method

Goal: Find some z ≈ v1.

Input: X ∈ Rn×d with SVD UΣV.

Power method:

• Choose z(0) randomly. E.g. z0 ∼ N (0, 1).
• For i = 1, . . . , T

• z(i) = XT · (Xz(i−1))
• ni = ∥z(i)∥2
• z(i) = z(i)/ni

Return zT
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power method convergence

Theorem (Power Method Convergence)
Let γ = σ1−σ2

σ1
be parameter capturing the “gap” between the

first and second largest singular values. If Power Method is
initialized with a random Gaussian vector then, with high
probability, after T = O

(
log d/ϵ

γ

)
steps, we have:

∥v1 − z(T)∥2 ≤ ϵ.

Total runtime: O(T · nnz(X)) ≤ O(T · nd)
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krylov subspace methods

z(q) = c ·
(
XTX

)q · g

z(q) = c ·
[
c1 · σ2q1 v1 + c2 · σ2q2 v2 + . . .+ cn · σ2qn vn

]
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krylov subspace methods

z(q) = c ·
(
XTX

)q · g
Along the way we computed:

Kq =
[
g,
(
XTX

)
· g,

(
XTX

)2 · g, . . . , (XTX)q · g]
K is called the Krylov subspace of degree q.

Idea behind Krlyov methods: Don’t throw away everything
before

(
XTX

)q · g. What you’re using when you run svds or
eigs in MATLAB or Python.
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krylov subspace methods

Want to find v, which minimizes ∥X− XvvT∥2F.

Lanczos method:

• Let Q ∈ Rd×k be an orthonormal span for the vectors in K.
• Solve minv=Qw ∥X− XvvT∥2F.

• Find best vector in the Krylov subspace, instead of
just using last vector.

• Can be done in O
(
nnz(X) · k+ dk2

)
time.
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lanczos method analysis

Claim 1: For any degree q polynomial p, we can write p(XTX) · g
as Qw for some w.

Claim 2:

min
v=Qw

∥X− XvvT∥2F = min
degree q polynomialp

∥X− XvpvTp∥2F

where vp = p(XTX) · g.

Claim 3:

z(q) = c ·
[
c1 · p(σ21 )v1 + c2 · p(σ22)v2 + . . .+ cn · p(σ2n)vn

]
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lanczos method analysis

Claim: There is an O
(√

q log 1
ϵ

)
degree polynomial p̂

approximating xq up to error ϵ on [0, σ21 ].

∥X− Xvp∗vTp∗∥2F ≤ ∥X− Xvp̂vTp̂∥
2
F ≈ ∥X− XvxqvTxq∥2F ≈ ∥X− Xv1vT1∥2F

Runtime: O
(
log(d/ϵ)√

γ · nnz(X)
)
vs. O

(
log(d/ϵ)

γ · nnz(X)
)
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power method – no gap dependence

Convergence is slow when γ = σ1−σ2
σ1

is small. z(q) has large
components of both v1 and v2. But in this case:

∥X− Xv1vT1∥2F =
∑
i ̸=1

σ2i ≈
∑
i ̸=2

= σ2i ∥X− Xv2vT2∥2F.

So we don’t care! Either v1 or v2 give good rank-1
approximations.

Claim: To achieve

∥X− XzzT∥2F ≤ (1+ ϵ)∥X− Xv1vT1∥2F

we need O
(
log(d/ϵ)

ϵ

)
power method iterations or O

(
log(d/ϵ)√

ϵ

)
Lanczos iterations.
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generalizations to larger k

• Block Power Method aka Simultaneous Iteration aka
Subspace Iteration aka Orthogonal Iteration

• Block Krylov methods

• Let G ∈ Rd×k be a random Gaussian matrix.
• Kq =

[
G,

(
XTX

)
· G,

(
XTX

)2 · G, . . . , (XTX)q · G]
Runtime: O

(
nnz(X) · k · log d/ϵ√

ϵ

)
to obtain a nearly optimal

low-rank approximation.
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randomized methods

What do you think a stochastic version of Krylov subspace
method would look like?

Kq =
[
g,
(
XTX

)
· g,

(
XTX

)2 · g, . . . , (XTX)q · g]
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entity embeddings

Applications of (partial) singular value decomposition:

• Low-rank approximation (data compression)
• Denoising, in-painting, matrix completion
• Semantic embeddings
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example: latent semantic analysis

• ⟨⃗yi, z⃗a⟩ ≈ 1 when doci contains worda.
• If doci and doci both contain worda, ⟨⃗yi, z⃗a⟩ ≈ ⟨⃗yj, z⃗a⟩ = 1.
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example: latent semantic analysis

• The columns z⃗1, z⃗2, . . . give representations of words, with
z⃗i and z⃗j tending to have high dot product if wordi and
wordj appear in many of the same documents.

• Z corresponds to the top k right singular vectors: the
eigenvectors of XXT. Intuitively, what is XXT?

• (XXT)i,j =
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example: word embedding

Not obvious how to convert a word into a feature vector that
captures the meaning of that word. Approach suggested by
LSA: build a d× d symmetric “similarity matrix” M between
words, and factorize: M ≈ FFT for rank k F.

• Similarity measures: How often do wordi,wordj appear in
the same sentence, in the same window of w words, in
similar positions of documents in different languages?

• Replacing XXT with these different metrics (sometimes
appropriately transformed) leads to popular word
embedding algorithms: word2vec, GloVe, etc.
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example: ord Embedding

word2vec was originally described as a neural-network
method, but Levy and Goldberg show that it is simply low-rank
approximation of a specific similarity matrix. Neural word

embedding as implicit matrix factorization.
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encoding graph similarity

Often data is represented as a graph and similarities can be
obtained from that graph:
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encoding graph similarity
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zachary karate club drama

Social networks in 1970: “The network captures 34 members of a
karate club, documenting links between pairs of members who
interacted outside the club. During the study a conflict arose
between the administrator ”John A” and instructor ”Mr. Hi”
(pseudonyms), which led to the split of the club into two. Half of the
members formed a new club around Mr. Hi; members from the other
part found a new instructor or gave up karate. Based on collected
data Zachary correctly assigned all but one member of the club to
the groups they actually joined after the split.” – Wikipedia
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spectral clustering

Idea: Construct synthetic graph for data that is hard to cluster.

Spectral Clustering, Laplacian Eigenmaps, Locally linear
embedding, Isomap, etc.
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spectral graph theory

Spectral graph theory lets us formalize this heuristic idea.
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cut minimization

Goal: Partition nodes along a cut that:

• Has few crossing edges: |{(u, v) ∈ E : u ∈ S, v ∈ T}| is small.
• Separates large partitions: |S|, |T| are not too small.
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the laplacian view

For a graph with adjacency matrix A and degree matrix D,
L = D− A is the graph Laplacian.

L = BTB where B is the “edge-vertex incidence” matrix.

B =
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the laplacian view

Conclusions from L = BTB

• L is positive semidefinite: xTLx ≥ 0 for all x.

• L = VΣ2VT where UΣ2VT is B’s SVD. Columns of V are
eigenvectors of L.

• For a cut indicator vector c ∈ {−1, 1}n with c(i) = −1 for
i ∈ S and c(i) = 1 for i ∈ T:
• cTLc =

∑
(i,j)∈E(c(i)− c(j))2 = 4 · cut(S, T).
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the laplacian view

For a cut indicator vector c ∈ {−1, 1}n with c(i) = −1 for i ∈ S
and c(i) = 1 for i ∈ T:

• cTLc = 4 · cut(S, T).
• cT1 = |T| − |S|.

Want to minimize both cTLc (cut size) and cT1 (imbalance).
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smallest laplacian eigenvector

Courant–Fischer min-max principle

Let V = [v1, . . . , vn] be the eigenvectors of L.

v1 = argmax
∥v∥=1

vTLv

v2 = argmax
∥v∥=1,v⊥v1

vTLv

v3 = argmax
∥v∥=1,v⊥v1,v2

vTLv

...
vn = argmax

∥v∥=1,v⊥v1,...,vn−1

vTLv
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smallest laplacian eigenvector

Courant–Fischer min-max principle

Let V = [v1, . . . , vn] be the eigenvectors of L.

vn = argmin
∥v∥=1

vTLv

vn−1 = argmin
∥v∥=1,v⊥vn

vTLv

vn−2 = argmin
∥v∥=1,v⊥vn,vn−1

vTLv

...
v1 = argmin

∥v∥=1,v⊥vn,...,v2
vTLv
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smallest laplacian eigenvector

The smallest eigenvector/singular vector vn satisfies:

vn =
1√
n
· 1 = argmin

v∈Rn with ∥v∥=1
vTLv

with vTnLvn = 0.
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second smallest laplacian eigenvector

By Courant-Fischer, vn−1 is given by:

vn−1 = argmin
∥v∥=1, vTnv=0

vTLv

If vn−1 were binary {−1, 1}n it would have:

• vTn−1Lvn−1 = cut(S, T) as small as possible given that
vTn−11 = |T| − |S| = 0.

• vn−1 would indicate the smallest perfectly balanced cut.

vn−1 ∈ Rn is not generally binary, but still satisfies a ‘relaxed’
version of this property.
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cutting with the second laplacian eigenvector

Find a good partition of the graph by computing

vn−1 = argmin
v∈Rn with ∥v∥=1, vT1=0

vTLv

Set S to be all nodes with vn−1(i) < 0, and T to be all with
vn−1(i) ≥ 0.
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cutting with the second laplacian eigenvector

Find a good partition of the graph by computing

vn−1 = argmin
v∈Rn with ∥v∥=1, vT1=0

vTLv

Set S to be all nodes with vn−1(i) < 0, and T to be all with
vn−1(i) ≥ 0.
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spectral partitioning in practice

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the
normalized Laplacian L = D−1/2LD−1/2.

Important consideration: What to do when we want to split
the graph into more than two parts?
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spectral partitioning in practice

Spectral Clustering:

• Compute smallest k eigenvectors vn−1, . . . , vn−k of L.
• Represent each node by its corresponding row in V ∈ Rn×k

whose rows are vn−1, . . . vn−k.
• Cluster these rows using k-means clustering (or really any
clustering method).
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laplacian embedding

Original Data: (not linearly separable)
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laplacian embedding

k-Nearest Neighbors Graph:
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laplacian embedding

Embedding with eigenvectors vn−1, vn−2: (linearly separable)
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generative models

So far: Showed that spectral clustering partitions a graph
along a small cut between large pieces.

• No formal guarantee on the ‘quality’ of the partitioning.
• Would be difficult to analyze for general input graphs.

Common approach: Give a natural generative model for which
produces random but realistic inputs and analyze how the
algorithm performs on inputs drawn from this model.

• Very common in algorithm design for data
analysis/machine learning (can be used to justify ℓ2 linear
regression, k-means clustering, PCA, etc.)
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stochastic block model

Ideas for a generative model for graphs that would allow us to
understand partitioning?
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stochastic block model

Stochastic Block Model (Planted Partition Model):

Let Gn(p,q) be a distribution over graphs on n nodes, split
equally into two groups B and C, each with n/2 nodes.

• Any two nodes in the same group are connected with
probability p (including self-loops).

• Any two nodes in different groups are connected with
prob. q < p.
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linear algebraic view

Let G be a stochastic block model graph drawn from Gn(p,q).

• Let A ∈ Rn×n be the adjacency matrix of G. What is E[A]?
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expected adjacency spectrum

Letting G be a stochastic block model graph drawn from
Gn(p,q) and A ∈ Rn×n be its adjacency matrix. (E[A])i,j = p for
i, j in same group, (E[A])i,j = q otherwise.

What are the
eigenvectors and
eigenvalues of E[A]?
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expected adjacency spectrum

Letting G be a stochastic block model graph drawn from
Gn(p,q) and A ∈ Rn×n be its adjacency matrix, what are the
eigenvectors and eigenvalues of E[A]?
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expected adjacency spectrum

• v⃗1 = 1⃗ with eigenvalue λ1 =
(p+q)n

2 .
• v⃗2 = χB,C with eigenvalue λ2 =

(p−q)n
2 .

• χB,C(i) = 1 if i ∈ B and χB,C(i) = −1 for i ∈ C.

If we compute v⃗2 then we recover the communities B and C!
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expected laplacian spectrum

Letting G be a stochastic block model graph drawn from
Gn(p,q), A ∈ Rn×n be its adjacency matrix and L be its
Laplacian, what are the eigenvectors and eigenvalues of E[L]?
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expected laplacian spectrum

Upshot: The second small eigenvector of E[L] is χB,C – the
indicator vector for the cut between the communities.

• If the random graph G (equivilantly A and L) were exactly
equal to its expectation, partitioning using this
eigenvector would exactly recover communities B and C.

How do we show that a matrix (e.g., A) is close to its
expectation? Matrix concentration inequalities.

• Analogous to scalar concentration inequalities like
Markovs, Chebyshevs, Bernsteins.

• Random matrix theory is a very recent and cutting edge
subfield of mathematics that is being actively applied in
computer science, statistics, and machine learning.
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matrix concentration

Matrix Concentration Inequality: If p ≥ O
(
log4 n
n

)
, then

with high probability

∥A− E[A]∥2 ≤ O(
√
pn).

where ∥ · ∥2 is the matrix spectral norm (operator norm).

For X ∈ Rn×d, ∥X∥2 = maxz∈Rd:∥z∥2=1 ∥Xz∥2.

Exercise: Show that ∥X∥2 is equal to the largest singular value
of X. For symmetric X (like A− E[A]) show that it is equal to the
magnitude of the largest magnitude eigenvalue.

For the stochastic block model application, we want to show
that the second eigenvectors of A and E[A] are close. How
does this relate to their difference in spectral norm? 50



Eigenvector Perturbation

Davis-Kahan Eigenvector Perturbation Theorem: Sup-
pose A,A ∈ Rd×d are symmetric with ∥A − A∥2 ≤ ϵ

and eigenvectors v1, v2, . . . , vd and v̄1, v̄2, . . . , v̄d. Letting
θ(vi, v̄i) denote the angle between vi and v̄i, for all i:

sin[θ(vi, v̄i)] ≤
ϵ

minj̸=i |λi − λj|

where λ1, . . . , λd are the eigenvalues of A.

The error gets larger if there are eigenvalues with similar
magnitudes.
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eigenvector perturbation
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application to stochastic block model

Claim 1 (Matrix Concentration): For p ≥ O
(
log4 n
n

)
,

∥A− E[A]∥2 ≤ O(
√
pn).

Claim 2 (Davis-Kahan): For p ≥ O
(
log4 n
n

)
,

sin θ(v2, v̄2) ≤
O(√pn)

minj̸=i |λi − λj|
≤ O(√pn)

(p− q)n/2 == O
( √p
(p− q)

√
n

)
Recall: E[A], has eigenvalues λ1 = (p+q)n

2 , λ2 = (p−q)n
2 , λi = 0 for i ≥ 3.

min
j̸=i

|λi − λj| = min
(
qn, (p− q)n

2

)
.

Typically, (p−q)n
2 will be the minimum of these two gaps.
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application to stochastic block model

So Far: sin θ(v2, v̄2) ≤ O
( √p

(p−q)
√
n

)
. What does this give us?

• Can show that this implies ∥v2 − v̄2∥22 ≤ O
(

p
(p−q)2n

)
(exercise).

• v̄2 is 1√
nχB,C: the community indicator vector.

• Every i where v2(i), v̄2(i) differ in sign contributes ≥ 1
n to

∥v2 − v̄2∥22.

• So they differ in sign in at most O
(

p
(p−q)2

)
positions.
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application to stochastic block model

Upshot: If G is a stochastic block model graph with adjacency
matrix A, if we compute its second large eigenvector v2 and
assign nodes to communities according to the sign pattern of
this vector, we will correctly assign all but O

(
p

(p−q)2

)
nodes.

• Why does the error increase as q gets close to p?
• Even when p−q = O(1/

√
n), assign all but an O(n) fraction

of nodes correctly. E.g., assign 99% of nodes correctly.
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