CS-GY 9223 I: Lecture 10

Krylov methods, spectral clustering, spectral
graph theory.

NYU Tandon School of Engineering, Prof. Christopher Musco



COMPUTATION IN LINEAR ALGEBRA

Three classes of methods.

- Direct Methods:

- lterative Methods:

- Randomized Methods:



LOW-RANK APPROXIMATION

Write X as a rank k factorization by projecting onto the
subspace spanned by an orthanormal matrix V € R9xF

VT }k




SINGULAR VALUE DECOMPOSITION

Any matrix X can be written:

d left singular vectors  singular values right singular vectors

0,
0,

X = v b3 VT

Og-q

n Oy

WhereUTU=1,VIV=1,and o1 > 0, > ...04 > 0.



COMPUTATIONAL QUESTION

Given a subspace V spanned by the k columnsinV,

X=XV = min X — cV7|

We want to find the best V € Rk

min [X — XWVT||2 (1)

orthonormal VERdxk

Note that ||[X — XVWVT||Z = ||X||2 — |[XVVT||2 for all orthonormal V
(since W/ is a projection). Equivalent form:

max XTI = V|2 @

orthonormal VeRdxk



SINGULAR VALUE DECOMPOSITION

Can read off optimal low-rank approximations from the SVD:

d left singular vectors  singular values right singular vectors

'l

0,
Oy

Xi | ={Uk 2

Xp = URUIX = XV,VT,
Vo= argmin  |X=XW'||2=  argmax | XW|}?

orthonormal VERdxk orthonormal VERYxk



POWER METHOD

Goal: Find some z =~ v,.

Input: X € R"*% with SVD UZV.

Power method:

- Choose z(9 randomly. E.g. zg ~ N(0,1).

- Fori=1,...,T
- 20 = XT . (xz(=M)
= [120];
- 200 = z0) /p;

Return zy



POWER METHOD CONVERGENCE

Theorem (Power Method Convergence)

Let v = ‘”a;fz be parameter capturing the “gap” between the
first and second largest singular values. If Power Method is
initialized with a random Gaussian vector then, with high
probability, after T= 0 (%) steps, we have:

vy — 2|, < e.



KRYLOV SUBSPACE METHODS

2@ — . (xTx)q g

24

ZD =c.|c1 2V + -3V . G- aﬁqvn]



KRYLOV SUBSPACE METHODS

29 =c.(X'x)?- g
Along the way we computed:
Ko =[g (XX) g (X% g ..., (X%) g

K is called the Krylov subspace of degree g.

Idea behind Krlyov methods: Don’t throw away everything
before (X'X)? - g. What you're using when you run svds or
elgs in MATLAB or Python.
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KRYLOV SUBSPACE METHODS

Want to find v, which minimizes ||X — Xwv'||2.

Lanczos method:

- Let Q € R9*k be an orthonormal span for the vectors in K.
- Solve miny—qw ||X — XwT||Z.
- Find best vector in the Krylov subspace, instead of

just using last vector.
- Can be done in O (nnz(X) - k + dk?) time.

"



LANCZOS METHOD ANALYSIS

Claim 1: For any degree g polynomial p, we can write p(X'X) - g
as Qw for some w.

Claim 2:

min [|X — Xw/'||z = min X — XvpV/ |2
v=QWH HF degreeqpolynomialp” 2 pHF

where v, = p(X'X) - g.

Claim 3:

29D =c.[cr-p(o?)vi +Co- p(a3)V2 + ...+ Cn - p(o2)Vn]
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LANCZOS METHOD ANALYSIS

Claim: Thereisan O < qglog 1>degree polynomial p

approximating x3 up to error € on [0, o7].

24

X — XV [2 < [IX — XupVE 2 & X — XV [~ X — Xvov] 2

Runtime: O (M : nnz(X)) vs. O <% : nnz(X))

Nai 13



POWER METHOD — NO GAP DEPENDENCE

Convergence is slow when v = #1222 is small. z(9) has large
components of both vq and v,. But in this case:

X —xviviE =" 0% & Y = o?[X — xvov]|
i£1 i#£2
So we don't care! Either v; or v, give good rank-1

approximations.

Claim: To achieve

IX —XezT|[ < (1 + €)X — Xuy] |2

we need O (%) power method iterations or O (logf/(jg/e)>

Lanczos iterations.
14



GENERALIZATIONS TO LARGER R

- Block Power Method aka Simultaneous Iteration aka
Subspace Iteration aka Orthogonal Iteration

- Block Krylov methods
- Let G € R9%k be a random Gaussian matrix.

+ Kq = 6, (X'X) - 6, (%) 6,..., (X'X)" - 6]

Runtime: O (nnz(X) R %) to obtain a nearly optimal

low-rank approximation.
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RANDOMIZED METHODS

What do you think a stochastic version of Krylov subspace
method would look like?

Ko = [ 07 & 0007 6. (00" ¢



ENTITY EMBEDDINGS

Applications of (partial) singular value decomposition:

- Low-rank approximation (data compression)
- Denoising, in-painting, matrix completion

- Semantic embeddings



EXAMPLE: LATENT SEMANTIC ANALYSIS

Corpus of Documents

Term Document Matrix X

N %, %
. wet[sTo[ale o [2a]e o
-m,2n0n101nnn

1
olofofo]o 1
docn| 1

ofo 1

Low-Rank Approximation via
SVD

) {E

- {Vi,Za) ~ 1 when doc; contains wordg.

+ If doc; and doc; both contain wordq, (Vj, Za) = (Vj;Za) =1

Yj
Yi



EXAMPLE: LATENT SEMANTIC ANALYSIS

Term Document Matrix X Low-Rank Approximation via SVD
e oy e %,

docfofo[1]ofofa]2]0]0
f o [ o o [o [3]o | ) ~
A DBEaBBnE X ~ |y

doc_ 1|/o0|lojofofof0o|1]|1

- The columns 71,2, ... give representations of words, with
Z; and Z; tending to have high dot product if word; and
word; appear in many of the same documents.

- Z corresponds to the top k right singular vectors: the
eigenvectors of XX. Intuitively, what is XX'?

- (XXT);; =
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EXAMPLE: WORD EMBEDDING

Not obvious how to convert a word into a feature vector that
captures the meaning of that word. Approach suggested by
LSA: build a d x d symmetric “similarity matrix” M between
words, and factorize: M =~ FF' for rank k F.

- Similarity measures: How often do word;, word; appear in
the same sentence, in the same window of w words, in
similar positions of documents in different languages?

- Replacing XX with these different metrics (sometimes
appropriately transformed) leads to popular word

embedding algorithms: word2vec, GloVe, etc.
20



EXAMPLE: ORD EMBEDDING

woman .
L girl slower
\ father <‘ slow /
son
cat king Aueen boy
slowest
dog \ mother 4‘ faster
cats daughter fast
s France
3 England longer
he fastest
Paris Italy \ she long
London \
himself longest
Rome herself

word2vec was originally described as a neural-network
method, but Levy and Goldberg show that it is simply low-rank
approximation of a specific similarity matrix. Neural word
embedding as implicit matrix factorization.
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ENCODING GRAPH SIMILARITY

Often data is represented as a graph and similarities can be
obtained from that graph:

n nodes

|

\ L 2
AN

e

L ] ® <
®
o o

% - Similarity

matrix

Ry

E.g. 1in position i,j if node i
and j are connected

12 n
- : Approximate
factorization

12
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ENCODING GRAPH SIMILARITY

%

/:

(a) Zachary Karate Club
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ZACHARY KARATE CLUB DRAMA

Social networks in 1970: “The network captures 34 members of a
karate club, documenting links between pairs of members who
interacted outside the club. During the study a conflict arose
between the administrator "John A” and instructor "Mr. Hi”
(pseudonyms), which led to the split of the club into two. Half of the
members formed a new club around Mr. Hi; members from the other
part found a new instructor or gave up karate. Based on collected
data Zachary correctly assigned all but one member of the club to
the groups they actually joined after the split” — Wikipedia

2%



SPECTRAL CLUSTERING

Idea: Construct synthetic graph for data that is hard to cluster.

o0 [ ]
. o.’:: o.’..:.. .:. e.g. k-nn graph
[ ]
° : .
[ J

Spectral Clustering, Laplacian Eigenmaps, Locally linear
embedding, Isomap, etc.
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SPECTRAL GRAPH THEORY

Spectral graph theory lets us formalize this heuristic idea.
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CUT MINIMIZATION

Goal: Partition nodes along a cut that:

- Has few crossing edges: |{(u,v) € E:u e S,ve T} is small.
- Separates large partitions: |S|, |T| are not too small.

® o
i\ Q. , ® ®
\ / v
* eige o0
® -® \‘;‘ ; ®
@ “ ® \\ ® @
® .q ‘ \
® / { ® ‘\\
. . @ \x\_
@
® o ©

(a) Zachary Karate Club Graph
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THE LAPLACIAN VIEW

For a graph with adjacency matrix A and degree matrix D,
L =D — Ais the graph Laplacian.

X4 ) A
X | 00O 0100 100
4 0300 1011 14311
X —_
2 = (bo020|for101 =012
0002 0110 0 -1-1
X3

L = B'B where B is the “edge-vertex incidence” matrix.

B =

28



THE LAPLACIAN VIEW

Conclusions from L = B'B
- Lis positive semidefinite: x'Lx > 0 for all x.

- L=VZ2VT where UZ2VT is B's SVD. Columns of V are
eigenvectors of L.

- For a cut indicator vector ¢ € {—1,1}" with c(/) = —1 for
ieSandc(i)y=1forieT:

- cTle = Y jee(cli) — c(i)? = 4 cut(S, T).

29



THE LAPLACIAN VIEW
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(a) Zachary Karate Club Graph

For a cut indicator vector c € {—1,1}" with ¢(/) = —1fori € S
andc(i)=1forieT:

- c'Lc = 4-cut(S,T).
-1 =T -8

Want to minimize both ¢’Lc (cut size) and ¢ (imbalance).
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SMALLEST LAPLACIAN EIGENVECTOR

Courant-Fischer min-max principle

Let V= [vq,...,Vy] be the eigenvectors of L.

v; = argmaxv’Lv
lIvl=1

v, = argmax v'Lv
[[v]][=1,vLvq

v3 = argmax V'Lv
[[v][=1,vLvq, vy

Vo= argmax V'Lv
IVlI=1,9-L¥t, ¥
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SMALLEST LAPLACIAN EIGENVECTOR

Courant-Fischer min-max principle

Let V= [vq,...,Vy] be the eigenvectors of L.

vy, =argminv’Lv
[vl=1

Vp_1 = argmin v'Lv
[[V]|=1,vLvn

Vp_o = argmin V'Lv
[[V][=1,vLvn, vy

vi= argmin V/Lv
[IVI[=1,vLvn,...,v

32



SMALLEST LAPLACIAN EIGENVECTOR

The smallest eigenvector/singular vector v, satisfies:

1= argmin V'Lv

1
Vp = —
\m veR" with ||v||=1

with v]Lv, = 0.

33



SECOND SMALLEST LAPLACIAN EIGENVECTOR

By Courant-Fischer, v,_q is given by:

Vp_1= argmin v'Lv
lIv|=1, vfv=0

If vp—1 were binary {—1,1}" it would have:

- v . Lvp_q = cut(S,T) as small as possible given that
Vp_1=[T| = |S| = 0.

- Vp_1 would indicate the smallest perfectly balanced cut.

Vo1 € R"is not generally binary, but still satisfies a ‘relaxed’
version of this property.
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CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

Find a good partition of the graph by computing

V1= argmin viLv
veR" with ||v||=1, vI1=0

Set S to be all nodes with v,_4(i) < 0, and T to be all with
V(i) > 0.

35



CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

Find a good partition of the graph by computing

V1= argmin viLv
veR" with ||v||=1, vI1=0

Set S to be all nodes with v,_4(i) < 0, and T to be all with
V(i) > 0.
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SPECTRAL PARTITIONING IN PRACTICE

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the
normalized Laplacian L = D~"2LD~"/2.

Important consideration: What to do when we want to split
the graph into more than two parts?
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SPECTRAL PARTITIONING IN PRACTICE

Spectral Clustering:

- Compute smallest k eigenvectors v _1,...,V,_p Of L.

- Represent each node by its corresponding row in V € Rk
whose rows are vp_1,...Vp_p.

- Cluster these rows using k-means clustering (or really any
clustering method).

37



LAPLACIAN EMBEDDING

Original Data: (not linearly separable)
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LAPLACIAN EMBEDDING

k-Nearest Neighbors Graph:
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LAPLACIAN EMBEDDING

Embedding with eigenvectors v,_1,v,_;: (linearly separable)
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GENERATIVE MODELS

So far: Showed that spectral clustering partitions a graph
along a small cut between large pieces.

- No formal guarantee on the ‘quality’ of the partitioning.
- Would be difficult to analyze for general input graphs.
Common approach: Give a natural generative model for which

produces random but realistic inputs and analyze how the
algorithm performs on inputs drawn from this model.

- Very common in algorithm design for data
analysis/machine learning (can be used to justify ¢, linear
regression, k-means clustering, PCA, etc.)

4



STOCHASTIC BLOCK MODEL

Ideas for a generative model for graphs that would allow us to
understand partitioning?

42



STOCHASTIC BLOCK MODEL

Stochastic Block Model (Planted Partition Model):

Let Gn(p, g) be a distribution over graphs on n nodes, split
equally into two groups B and C, each with n/2 nodes.

- Any two nodes in the same group are connected with
probability p (including self-loops).

- Any two nodes in different groups are connected with
prob. g < p.

43



LINEAR ALGEBRAIC VIEW

Let G be a stochastic block model graph drawn from G,(p, q).

- Let A € R™" be the adjacency matrix of G. What is E[A]?

B Cc
(n/2 nodes)  (n/2 nodes)

B -
(n/2 nodes)

Cc
(n/2 nodes) | «

44



EXPECTED ADJACENCY SPECTRUM

Letting G be a stochastic block model graph drawn from
Gn(p,q) and A € R™" be its adjacency matrix. (E[A]);; = p for
I,j in same group, (E[A]);; = g otherwise.

B

(n/2 nodes) T

C
(n/2 nodes)

B C
(n/2 nodes)  (n/2 nodes)
| A

E[A]

What are the
eigenvectors and
eigenvalues of E[A]?
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EXPECTED ADJACENCY SPECTRUM

Letting G be a stochastic block model graph drawn from
Gn(p,q) and A € R™" be its adjacency matrix, what are the
eigenvectors and eigenvalues of E[A]?

46



EXPECTED ADJACENCY SPECTRUM

B C
(n/2 nodes)  (n/2 nodes) V /1 VT
——
[ | 11111111
11
p q 1 w1111 111
=(11
E[A] 1 -1
=1
a P 1 -1
=1

- V1 = Twith eigenvalue \ = (“2‘“”,

« ¥, = xp,c with eigenvalue \; = (p_f)”.

- xg,c(l)="1ifi e Band xg (i) = —1forieC.

If we compute V, then we recover the communities B and C!

47



EXPECTED LAPLACIAN SPECTRUM

Letting G be a stochastic block model graph drawn from
Gn(p,q), A € R"™" be its adjacency matrix and L be its
Laplacian, what are the eigenvectors and eigenvalues of E[L]?

48



EXPECTED LAPLACIAN SPECTRUM

Upshot: The second small eigenvector of E[L] is xg ¢ - the
indicator vector for the cut between the communities.

- If the random graph G (equivilantly A and L) were exactly
equal to its expectation, partitioning using this
eigenvector would exactly recover communities B and C.

How do we show that a matrix (e.g., A) is close to its
expectation? Matrix concentration inequalities.

- Analogous to scalar concentration inequalities like
Markovs, Chebyshevs, Bernsteins.

- Random matrix theory is a very recent and cutting edge
subfield of mathematics that is being actively applied in
computer science, statistics, and machine learning.

49



MATRIX CONCENTRATION

Matrix Concentration Inequality: If p > O <10§:”>, then
with high probability

IA—E[A]ll2 < O(v/pn).

where || - ||2 is the matrix spectral norm (operator norm).

For X € R™9, [|X|l2 = MaX,cpa. 7,1 1X2]l2.

Exercise: Show that ||X]|; is equal to the largest singular value
of X. For symmetric X (like A — E[A]) show that it is equal to the
magnitude of the largest magnitude eigenvalue.

For the stochastic block model application, we want to show
that the second eigenvectors of A and E[A] are close. How
does this relate to their difference in spectral norm? 50



EIGENVECTOR PERTURBATION

Davis-Kahan Eigenvector Perturbation Theorem: Sup-
pose A,A € RYY are symmetric with [|[A — Al < e
and eigenvectors vq,Vs,...,Vy and Vq,Vo,...,V,. Letting
6(vj, v;) denote the angle between v; and v;, for all I:

€

info(v;,v)] < ————
Sln[ (Vlavl)] mln/;é,‘)\,—)\}‘

where \,..., \g are the eigenvalues of A.

The error gets larger if there are eigenvalues with similar
magnitudes.
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EIGENVECTOR PERTURBATION

A A A-A
1+¢ 0 1 0 e 0

0O 1 0 1+¢ 0 ¢
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APPLICATION TO STOCHASTIC BLOCK MODEL

Claim 1 (Matrix Concentration): For p > O (@)
A —E[A]ll2 < O(v/pn).

Claim 2 (Davis-Kahan): For p > O (%)

sin 9(V2,V2) < < ==

0(,/pn) O(v/P) < VP >
Minii [Ai — Al = (p—q)n/2 (p

Recall: E[A], has eigenvalues A = 2407y, — (=1 5 — o forj > 3.

min|A; — Aj| = min <qn, W) .
J# 2

Typically, @ will be the minimum of these two gaps.
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APPLICATION TO STOCHASTIC BLOCK MODEL

> <f 7 VP i= o ?
So Far: sin0(v,,v,) <O ((p_q)ﬁ). What does this give us?

- Can show that this implies ||v, — % |3 < O( oy ) (exercise).

© Vs WXB’C: the community indicator vector.

(n/2 nodes) (n/2 nodes)
[ L | | 1 1
1 1 1 1 1 1 1 1
R R
()
. i N T i 1
Every i where v,(i), V»(i) contributes > - to

V2 — Valf5.

- So they differ in sign in at most O (( ) positions.
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APPLICATION TO STOCHASTIC BLOCK MODEL

Upshot: If G is a stochastic block model graph with adjacency
matrix A, if we compute its second large eigenvector v, and
assign nodes to communities according to the sign pattern of

this vector, we will correctly assign all but O (ﬁ nodes.

(n/2 nodes) (n/2 nodes) (n/2 nodes) (n/2 nodes)
A L
r ! Y . 1 I T 1
1 1 1 1 1 1 1 1
.03 .—-.01.02.01 —-.04 —.03 —.01 —.03 el e e em mey em e, e
n Vn n n n n n n
~
L = XB,C

- Why does the error increase as g gets close to p?
- Even when p—qg = O(1/+/n), assign all but an O(n) fraction
of nodes correctly. E.g, assign 99% of nodes correctly.
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