
New York University Tandon School of Engineering
Computer Science and Engineering

CS-GY 9223I: Homework 4.
Due Monday, December 16th, 2019, 11:59pm.

Collaboration is allowed on this problem set, but solutions must be written-up individually. Please list
collaborators for each problem separately, or write “No Collaborators” if you worked alone.

Problem 1: Restricted Isometry Property for JL Matrices

(15 pts) A k-sparse vector is any vector with k nonzero entries. Let Sk be the set of all k-sparse vectors
in Rd. Show that, if Π ∈ Rs×d is chosen to be a Johnson-Lindenstrauss embedding matrix (e.g. a scaled
random Gaussian matrix, random sign matrix, etc.) with s = O(k log d

ε2 ) rows then, with high probability,

(1− ε)‖Πx‖2 ≤ ‖x‖2 ≤ (1 + ε)‖Πx‖2

for all x ∈ Sk, simultaneously. You may use any of the results stated in class for JL matrices (except for the
RIP property itself of course).

Problem 2: 18th Century Style Compressed Sensing

(15 pts) In class it was mentioned that there exist simpler compressed sensing schemes that work when
noise/numerical precision is not an issue. Let q1, . . . , qn ∈ R be any set of distinct numbers. E.g. we could
choose [q1, . . . , qn] = [1, . . . , n]. Consider the sensing matrix A ∈ R2k×n:

A =


1 1 1 . . . 1
q1 q2 q3 . . . qn

(q1)2 (q2)2 (q3)2 . . . (qn)2

...
...

...
...

(q1)2k−1 (q2)2k−1 (q3)2k−1 . . . (qn)2k−1


This A does not obey any sort of RIP property. Nevertheless, show that, if x ∈ Rn is a k sparse vector – i.e.
‖x‖0 ≤ k – then we can recover x from Ax. You don’t need to give an efficient algorithm. Just argue that
for any given y ∈ R2k, there is at most one k-sparse x such that y = Ax. (Hint: Use that a non-zero degree
p polynomial cannot have more than p roots. You may also want to use that the column and row rank of a
matrix are always equal.)

Problem 3: Sparse Recovery for Dense Vectors – BONUS PROBLEM

(10 pts Bonus) A compressed sensing scheme typically recovers x from a linear sketch Ax whenever x is
k-sparse. When x is not k-sparse, there is no guarantee about what is returned. E.g., for the measurement
matrix A described above, for any specified k, there exists an algorithm Decode(y) which returns x if y = Ax
for a k-sparse x. If y 6= Ax for some k-sparse x, Decode(y) can return anything. In this problem we consider
an method that will still return something useful when x is not k-sparse.

In particular, your goal is to design a measurement matrix B ∈ RO(logn)×n such that for any x (i.e.
not necessarily sparse) it is possible to recover a single index/value pair (i, xi) with xi 6= 0 from Bx with
constant probability (e.g. with success probability 9/10). Your algorithm can return any (i, xi) as long as
xi 6= 0. Hint: One possible B takes the form:

B =


AD0

AD1

AD2

. . .
ADs


where D1, . . . , Ds are carefully (and randomly) constructed diagonal matrices and A is the
matrix from Problem 2 with k = O(1).



Problem 4: Communicating in the Dark is Easier with Shared Random Coins.

(10 pts) Suppose Jesse holds a subset of elements J ⊆ {1, . . . , n}. Leslie holds another subset L ⊆ {1, . . . , n}.
Jesse and Leslie do not know what elements the other holds. Using as little communication as possible, Jesse
wants to figure out if she or Leslie hold any unique elements – i.e. if there is any j ∈ J ∪ L− J ∩ L.

Show that, for some constant c, Leslie can send Jesse a single message of O(logc n) bits that allows her
to find such a j if one exists, with constant success probability.

You can assume that Jesse and Leslie decide on a strategy in advance, and that they have access to an
unlimited source of shared random bits (e.g. that are published by some third party).

Hint: You might want to use the result from Problem 3. Even if you do not solve Problem 3,
you can use the existence of a solution (e.g. a measurement matrix B and a recovery algorithm
achieving the described goal.)

This result should surprise you! Even if Leslie knew all of Jesse’s elements, O(log n) bits
would be needed to communicate if they hold any unique elements. Here we are saying that
nearly the same communication complexity can be achieved with no prior knowledge of J .
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