New York University Tandon School of Engineering Computer Science and Engineering

CS-GY 9223I: Homework 1.

Due Thursday, September 26th, 2019, 11:59pm.

Collaboration is allowed on this problem set, but solutions must be written-up individually. Please list collaborators for each problem separately, or write "No Collaborators" if you worked alone.

For just this first problem set, 10% extra credit will be given if solutions are typewritten (using LaTeX, Markdown, or some other mathematical formatting program).

Problem 1: Short answers.

(10 pts) Do these first!

- 1. For any given k, give an example of a random variable for which Chebyshev's inequality is tight up to constant factors. Specifically, for any given k, describe a random variable X with variance σ^2 such that $\Pr[|X \mathbb{E}X| \ge k\sigma] \ge \frac{1}{10k^2}$.
- 2. A biased random coin comes up heads with probability 1/n for some n > 1. Show that, after n random flips, the probability that you never see heads is $\leq .3679$. Show that after $n \log n$ flips, the probability that you never see heads is $\leq 1/n$. Hint: Think back to calculus and the definition of e!
- 3. Suppose that Π is a Johnson-Lindenstrauss matrix with $O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$ rows. Prove that for any x, y:

$$|\langle x, y \rangle - \langle \Pi x, \Pi y \rangle| \le \epsilon (\|x\|_2^2 + \|y\|_2^2)$$

with probability $\geq 1 - \delta$.

Problem 2: Hashing around the clock.

(15 pts) In modern systems, hashing is often used to distribute data items or computational tasks to a collection of servers. What happens when a server is added or removed from a system? For most hash functions, including those discussed in class, the hash function is tailored to the number of servers, n, and would change completely if n changes. This would require rehashing and moving all of our m data items.

Figure 1: Each data item is stored on the server with matching color.

Here we consider an approach to avoid this problem. Assume we have access to a completely random hash function that maps any value x to a real value $h(x) \in [0, 1]$. Use the hash function to map *both* data items and servers randomly to [0, 1]. Each data item is stored on the first server to its right on the number line (with wrap around – i.e. a job hashed below 1 but above all serves is assigned to the first server after 0). When a new server is added to the system, we hash it to [0, 1] and move data items accordingly.

1. Suppose we have n servers initially. When a new server is added to the system, what is the expected number of data items that need to be relocated?

- 2. Show that, with probability > 9/10, no server "owns" more than an $O(\log n/n)$ fraction of the interval [0, 1].
- 3. Show that if we have n servers and m items and m > n, the maximum load on any server is $O(\frac{m}{n} \log(n))$ with probability > 9/10.

Problem 3: Pinning down the median.

(15 pts) A very common objective in statistical analysis is to estimate the *median* (not the mean) of a dataset from uniformly random samples. For example, a census might poll random citizens in a city to request information about their income. From this sample, the goal is to estimate the city's *median income*.

- 1. Suppose we have a list S of n numbers with median M. We sample k numbers X_1, \ldots, X_k uniformly at random (with replacement) from S. Show that as long as $k \ge O\left(\frac{\log 1/\delta}{\epsilon^2}\right)$, then $\tilde{M} =$ median (X_1, \ldots, X_k) is a good approximate median in the following sense: with probability (1δ) , at least a $\frac{1}{2} \epsilon$ fraction of numbers in S are $\le \tilde{M}$ and at least a $\frac{1}{2} \epsilon$ fraction of numbers in S are $\le \tilde{M}$.
- 2. Extra Credit optional! Show that it is *impossible* to estimate the *value* of the true median M with o(n) random samples from S, even if we just want to get within a constant approximation factor, and succeed with constant probability. For example, we can't even guarantee that $.5M \leq \tilde{M} \leq 2M$ with probability $\geq 2/3$ unless we take nearly n samples from S.

Problem 4: Compressed classification.

(10 pts) In machine learning, the goal of many classification methods (like support vector machines) is to separate data into classes using a *separating hyperplane*.

Recall that a hyperplane in \mathbb{R}^d is defined by a unit vector $a \in \mathbb{R}^d$ ($||a||_2 = 1$) and scalar $c \in \mathbb{R}$. It contains all $h \in \mathbb{R}^d$ such that $\langle a, h \rangle = c$.

Suppose our dataset consists of n unit vectors in \mathbb{R}^d (i.e. each data point is normalized to have norm 1). These points can be separated into two sets X, Y, with the guarantee that there exists a hyperplane such that every point in X is on one side and every point in Y is on the other. In other words, for all $x \in X, \langle a, x \rangle > c$ and for all $y \in Y, \langle a, y \rangle < c$.

Furthermore, suppose that the ℓ_2 distance of each point in X and Y to this separating hyperplane is at least ϵ . When this is the case, the hyperplane is said to have "margin" ϵ .

- 1. Show that this margin assumption equivalently implies that for all $x \in X$, $\langle a, x \rangle > c + \epsilon$ and for all $y \in Y$, $\langle a, y \rangle < c \epsilon$.
- 2. Show that if we use a Johnson-Lindenstrauss map Π to reduce our data points to $O(\log n/\epsilon^2)$ dimensions, then the dimension reduced data can still be separated by a hyperplane with margin $\epsilon/4$, with high probability (say 99/100 times).