Structured Covariance Estimation

Christopher Musco (NYU, Tandon School of Engineering)

With Yonina Eldar (Weizmann Institute), Jerry Li (Microsoft Research), Cameron Musco (UMass Amherst), Hannah Lawrence (Flatiron Institute).

COVARIANCE ESTIMATION

Basic statistical problem:

- Distribution \mathcal{D} over d-dimensional vectors.
- $\mathbb{E}_{x \sim \mathcal{D}}\left[x x^{\top}\right]=C . C_{j, k}$ is the covariance between x_{j} and x_{k}.

COVARIANCE ESTIMATION

Basic statistical problem:

- Distribution \mathcal{D} over d-dimensional vectors.
- $\mathbb{E}_{x \sim \mathcal{D}}\left[x x^{\top}\right]=C . C_{j, k}$ is the covariance between x_{j} and x_{k}.

How many samples $x^{(1)}, \ldots, x^{(n)} \sim \mathcal{D}$ are required to learn C ?

COVARIANCE ESTIMATION

Basic statistical problem:

- Distribution \mathcal{D} over d-dimensional vectors.
- $\mathbb{E}_{x \sim \mathcal{D}}\left[x x^{\top}\right]=C . C_{j, k}$ is the covariance between x_{j} and x_{k}.

How many samples $x^{(1)}, \ldots, x^{(n)} \sim \mathcal{D}$ are required to learn C ?
Reasonable goal: Find \tilde{C} with $\|C-\tilde{C}\|_{2} \leq \epsilon\|C\|_{2} .{ }^{1}$
${ }^{1}$ Lots of other possible metrics.

GENERIC BOUND

Assuming \mathcal{D} is high-dimensional Gaussian, subgaussian, subexponential:

GENERIC BOUND

Assuming \mathcal{D} is high-dimensional Gaussian, subgaussian, subexponential:

Known bound: $\Theta\left(\frac{d}{\epsilon^{2}}\right)$ samples are necessary and sufficient. Estimator: Simple sample covariance.

$$
\tilde{C}=\sum_{i=1}^{n} x^{(i)} x^{(i) T}
$$

Analysis: Matrix concentration bounds or JL Lemma $+\epsilon$-net (e.g., Vershynin, "High Dimensional Probability", 2019).

GENERIC BOUND

Assuming \mathcal{D} is high-dimensional Gaussian, subgaussian, subexponential:

Known bound: $\Theta\left(\frac{d}{\epsilon^{2}}\right)$ samples are necessary and sufficient. Estimator: Simple sample covariance.

$$
\tilde{C}=\sum_{i=1}^{n} x^{(i)} x^{(i) T}
$$

Analysis: Matrix concentration bounds or JL Lemma $+\epsilon$-net (e.g., Vershynin, "High Dimensional Probability", 2019).

Can we improve the dependence on d ?

STRUCTURED COVARIANCE

What is we know C has additional structure?

- Block structure.
- Low-rank, low-rank + diagonal.
- Diagonal, banded.
- Many other possibilities.

STRUCTURED COVARIANCE

Some easy improvements over $\Theta\left(\frac{d}{\epsilon^{2}}\right)$:

STRUCTURED COVARIANCE

Some easy improvements over $\Theta\left(\frac{d}{\epsilon^{2}}\right)$:

- C is rank- $k: \Theta\left(\frac{k}{\epsilon^{2}}\right)$. Sample covariance.

STRUCTURED COVARIANCE

Some easy improvements over $\Theta\left(\frac{d}{\epsilon^{2}}\right)$:

- C is rank- $k: \Theta\left(\frac{k}{\epsilon^{2}}\right)$. Sample covariance.
- C is diagonal: $\Theta\left(\frac{\log d}{\epsilon^{2}}\right)$. Estimate variance $C_{i, i}$ of each index separately. Set $C_{i, j}=0$.

Some work on more complicated models:

- Sparse graphical models (Meinshausen, Bühlmann, 2006). Dependence on graph sparsity.

SPATIALLY STRUCTURED COVARIANCE

But little is known for many natural structures...

SPATIALLY STRUCTURED COVARIANCE

But little is known for many natural structures...

Example: Spatially structured covariance matrices in ecology.

COVARIANCE ESTIMATION

This work: Covariance matrix is Toeplitz. ${ }^{2}$

$$
T=\left[\begin{array}{lllll}
a & b & c & d & e \\
b & a & b & c & d \\
c & b & a & b & c \\
d & c & b & a & b \\
e & d & c & b & a
\end{array}\right]
$$

COVARIANCE ESTIMATION

This work: Covariance matrix is Toeplitz. ${ }^{2}$

$$
T=\left[\begin{array}{lllll}
a & b & c & d & e \\
b & a & b & c & d \\
c & b & a & b & c \\
d & c & b & a & b \\
e & d & c & b & a
\end{array}\right]
$$

${ }^{2}$ As for any covariance matrix, T must also be positive semidefinite.

TOEPLITZ COVARIANCE ESTIMATION

Arises when measurements taken on a spatial or temporal grid. Covariance depends on distance between them: $\mathbb{E}\left[x_{j} \cdot x_{k}\right]=f(|j-k|)$.

TOEPLITZ COVARIANCE ESTIMATION

Arises when measurements taken on a spatial or temporal grid. Covariance depends on distance between them: $\mathbb{E}\left[x_{j} \cdot x_{k}\right]=f(|j-k|)$.

nearby samples

TOEPLITZ COVARIANCE ESTIMATION

Arises when measurements taken on a spatial or temporal grid. Covariance depends on distance between them: $\mathbb{E}\left[x_{j} \cdot x_{k}\right]=f(|j-k|)$.

nearby samples

TOEPLITZ COVARIANCE ESTIMATION

Arises when measurements taken on a spatial or temporal grid. Covariance depends on distance between them: $\mathbb{E}\left[x_{j} \cdot x_{k}\right]=f(|j-k|)$.

nearby samples

TOEPLITZ COVARIANCE ESTIMATION

Arises when measurements taken on a spatial or temporal grid. Covariance depends on distance between them: $\mathbb{E}\left[x_{j} \cdot x_{k}\right]=f(|j-k|)$.

TOEPLITZ COVARIANCE ESTIMATION

Arises when measurements taken on a spatial or temporal grid. Covariance depends on distance between them: $\mathbb{E}\left[x_{j} \cdot x_{k}\right]=f(|j-k|)$.

Applications in signal processing: spectrum sensing/cognitive radio, Doppler radar, direction-of-arrival estimation, prediction via Gaussian process regression, etc.

Note: Shift-invariant kernel matrices in machine learning are Toeplitz covariance matrices when data points are on a grid.

SAMPLE COMPLEXITY

Goal: Minimize two types of sample complexity:

SAMPLE COMPLEXITY

Goal: Minimize two types of sample complexity:

- Vector sample complexity: How many samples $x^{(1)}, \ldots, x^{(n)} \sim \mathcal{D}$ are required to estimate T ?

SAMPLE COMPLEXITY

Goal: Minimize two types of sample complexity:

- Vector sample complexity: How many samples $x^{(1)}, \ldots, x^{(n)} \sim \mathcal{D}$ are required to estimate T ?
- Entry sample complexity: How many entries s must be read from each sample $x^{(1)}, \ldots, x^{(n)}$?

SAMPLE COMPLEXITY

Goal: Minimize two types of sample complexity:

- Vector sample complexity: How many samples $x^{(1)}, \ldots, x^{(n)} \sim \mathcal{D}$ are required to estimate T ?
- Entry sample complexity: How many entries s must be read from each sample $x^{(1)}, \ldots, x^{(n)}$?

In different applications, these complexities correspond to different costs. Typically there is a tradeoff.

EXAMPLE: DIRECTION OF ARRIVAL (DOA) ESTIMATION

EXAMPLE: DIRECTION OF ARRIVAL (DOA) ESTIMATION

Can back out direction of arrival θ from covariance structure.

EXAMPLE: DIRECTION OF ARRIVAL (DOA) ESTIMATION

Can back out direction of arrival θ from covariance structure.

EXAMPLE: DIRECTION OF ARRIVAL (DOA) ESTIMATION

Can back out direction of arrival θ from covariance structure.

EXAMPLE: DIRECTION OF ARRIVAL (DOA) ESTIMATION

Can back out direction of arrival θ from covariance structure.
Vector sample complexity, n : Estimation time (\# snapshots).

EXAMPLE: DIRECTION OF ARRIVAL (DOA) ESTIMATION

Can back out direction of arrival θ from covariance structure.
Vector sample complexity, n : Estimation time (\# snapshots).
Entry sample complexity, s: Number of active receivers.

SAMPLE COMPLEXITY

Total sample complexity: Total number of entries read, $n \cdot s$.

SAMPLE COMPLEXITY

Total sample complexity: Total number of entries read, $n \cdot s$.

- For general covariance matrices, vector sample complexity is $\Theta\left(d / \epsilon^{2}\right)$, entry sample complexity is d, so total sample complexity is $\Theta\left(d^{2} / \epsilon^{2}\right)$.

SAMPLE COMPLEXITY

Total sample complexity: Total number of entries read, $n \cdot s$.

- For general covariance matrices, vector sample complexity is $\Theta\left(d / \epsilon^{2}\right)$, entry sample complexity is d, so total sample complexity is $\Theta\left(d^{2} / \epsilon^{2}\right)$.
- Seems to be interesting even beyond Toeplitz covariance matrices, but not well studied.

OUR CONTRIBUTIONS

Current state: Many algorithms for Toeplitz covariance estimation, but few formal results on sample complexities/tradeoffs.

OUR CONTRIBUTIONS

Current state: Many algorithms for Toeplitz covariance estimation, but few formal results on sample complexities/tradeoffs.

Our contributions:

OUR CONTRIBUTIONS

Current state: Many algorithms for Toeplitz covariance estimation, but few formal results on sample complexities/tradeoffs.

Our contributions:

- Non-asymptotic sample complexity bounds by analyzing classic algorithms, including those with sublinear entry sample complexity based on sparse ruler measurements.

OUR CONTRIBUTIONS

Current state: Many algorithms for Toeplitz covariance estimation, but few formal results on sample complexities/tradeoffs.

Our contributions:

- Non-asymptotic sample complexity bounds by analyzing classic algorithms, including those with sublinear entry sample complexity based on sparse ruler measurements.
- Develop improved algorithms for the case when T is (approximately) low-rank, using techniques from matrix sketching, leverage score-based sampling, and sparse Fourier transform algorithms.

A FIRST RESULT

Estimator: $\tilde{T}=\operatorname{avg}\left(\frac{1}{n} \sum x^{(j)} x^{(j)^{T}}\right)$

True covariance T

Empirical covariance \hat{T}

A FIRST RESULT

Estimator: $\tilde{T}=\operatorname{avg}\left(\frac{1}{n} \sum x^{(j)} x^{(j)^{T}}\right)$

True covariance T

Empirical covariance \hat{T}

- Vector sample complexity: $O\left(\log ^{2} d / \epsilon^{2}\right)$

A FIRST RESULT

Estimator: $\tilde{T}=\operatorname{avg}\left(\frac{1}{n} \sum x^{(j)} X^{(j)^{T}}\right)$

True covariance T

Empirical covariance \hat{T}

Improved estimator $\operatorname{avg}(\hat{T})$

- Vector sample complexity: $O\left(\log ^{2} d / \epsilon^{2}\right)$
- Entry sample complexity: d.
- Total sample complexity: $O\left(d \log ^{2} d / \epsilon^{2}\right)$.

A FIRST RESULT

Estimator: $\tilde{T}=\operatorname{avg}\left(\frac{1}{n} \sum x^{(j)} X^{(j)^{T}}\right)$

True covariance T

Empirical covariance \hat{T}

Improved estimator $\operatorname{avg}(\hat{T})$

- Vector sample complexity: $O\left(\log ^{2} d / \epsilon^{2}\right)$
- Entry sample complexity: d.
- Total sample complexity: $O\left(d \log ^{2} d / \epsilon^{2}\right)$.

Improves over $O\left(d^{2} / \epsilon^{2}\right)$ for generic covariance matrices.

KEY PROOF INGREDIENT

Vandermonde decomposition: Any Toeplitz T can be written as $F_{S} D F_{S}$ where F_{S} is an 'off-grid' Fourier matrix with frequencies $f_{1}, \ldots, f_{d} \in[0,1]$ and D is a positive diagonal matrix.

$$
F_{S}(j, k)=\exp \left(-2 \pi \sqrt{-1} \cdot j \cdot f_{k}\right)
$$

VERY ROUGH PROOF IDEA

$$
\text { Let } \hat{T}=\frac{1}{n} \sum x^{(j)} x^{(j)^{T}} . \quad \tilde{T}=\operatorname{avg}(\hat{T}) . \quad E=T-\tilde{T} .
$$

VERY ROUGH PROOF IDEA

$$
\text { Let } \hat{T}=\frac{1}{n} \sum x^{(j)} x^{(j)^{T}} . \quad \tilde{T}=\operatorname{avg}(\hat{T}) . \quad E=T-\tilde{T} .
$$

VERY ROUGH PROOF IDEA

$$
\text { Let } \hat{T}=\frac{1}{n} \sum x^{(j)} X_{X}^{(j)^{T}} . \quad \tilde{T}=\operatorname{avg}(\hat{T}) . \quad E=T-\tilde{T} .
$$

- Roughly, to bound $\|E\|_{2}=\max _{\|z\|_{2}=1}\left|z^{\top} E z\right|$, it suffices to bound $\left|f_{j}^{\top} E f_{j}\right|$. Obvious if f_{1}, \ldots, f_{d} where eigenvectors of E (they aren't quite).

VERY ROUGH PROOF IDEA

$$
\text { Let } \hat{T}=\frac{1}{n} \sum x^{(j)} X_{X}^{(j)^{T}} . \quad \tilde{T}=\operatorname{avg}(\hat{T}) . \quad E=T-\tilde{T} .
$$

- Roughly, to bound $\|E\|_{2}=\max _{\|z\|_{2}=1}\left|z^{\top} E z\right|$, it suffices to bound $\left|f_{j}^{\top} E f_{j}\right|$. Obvious if f_{1}, \ldots, f_{d} where eigenvectors of E (they aren't quite).
- Argue that $\left|f_{j}^{T}(T-\tilde{T}) f_{j}\right|=\left|f_{j}^{T}(T-\hat{T}) f_{j}\right| \leq \epsilon\|T\|_{2}$ for all j using standard matrix concentration (Hanson-Wright inequality) $+\epsilon$-net over frequencies in [0, 1] + union bound.

VERY ROUGH PROOF IDEA

$$
\text { Let } \hat{T}=\frac{1}{n} \sum x^{(j)} x_{X}^{(j)^{T}} . \quad \tilde{T}=\operatorname{avg}(\hat{T}) . \quad E=T-\tilde{T} .
$$

- Roughly, to bound $\|E\|_{2}=\max _{\|z\|_{2}=1}\left|z^{\top} E z\right|$, it suffices to bound $\left|f_{j}^{\top} E f_{j}\right|$. Obvious if f_{1}, \ldots, f_{d} where eigenvectors of E (they aren't quite).
- Argue that $\left|f_{j}^{T}(T-\tilde{T}) f_{j}\right|=\left|f_{j}^{T}(T-\hat{T}) f_{j}\right| \leq \epsilon\|T\|_{2}$ for all j using standard matrix concentration (Hanson-Wright inequality) $+\epsilon$-net over frequencies in [0, 1] + union bound.

Question: Can $O\left(\log ^{2} d\right)$ samples be improved to $O(\log d)$?

IMPROVING ENTRY SAMPLE COMPLEXITY

Consider algorithms that sample $x^{(1)}, \ldots, x^{(n)} \sim \mathcal{D}$ and read a fixed subset of entries $R \subseteq[d]$ from each $x^{(j)}$.
Approximate T using $x_{R}^{(1)}, \ldots, x_{R}^{(n)} \in \mathbb{R}^{|R|}$.
samples

Entry sample complexity: $|R|$. Total sample complexity: $|R| \cdot n$.

IMPROVING ENTRY SAMPLE COMPLEXITY

Consider algorithms that sample $x^{(1)}, \ldots, x^{(n)} \sim \mathcal{D}$ and read a fixed subset of entries $R \subseteq[d]$ from each $x^{(j)}$.
Approximate T using $x_{R}^{(1)}, \ldots, x_{R}^{(n)} \in \mathbb{R}^{|R|}$.
samples

Entry sample complexity: $|R|$. Total sample complexity: $|R| \cdot n$.
Only get information about cov $\left(x_{j}, x_{k}\right)$ for subset of pairs j, k.

SUBSET BASED ESTIMATION

How small can R be if T is Toeplitz?

SUBSET BASED ESTIMATION

How small can R be if T is Toeplitz? Can take advantage of redundancy.

$$
T=\left[\begin{array}{cccccc}
a_{0} & a_{1} & a_{2} & \cdots & a_{d-2} & a_{d-1} \\
a_{1} & a_{0} & a_{1} & \cdots & \cdots & a_{d-2} \\
a_{2} & a_{1} & a_{0} & \cdots & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
a_{d-2} & \cdots & \cdots & \cdots & \cdots & a_{1} \\
a_{d-1} & a_{d-2} & \cdots & \cdots & a_{1} & a_{0}
\end{array}\right]
$$

SUBSET BASED ESTIMATION

How small can R be if T is Toeplitz? Can take advantage of redundancy.

$$
T=\left[\begin{array}{cccccc}
a_{0} & a_{1} & a_{2} & \cdots & a_{d-2} & a_{d-1} \\
a_{1} & a_{0} & a_{1} & \cdots & \cdots & a_{d-2} \\
a_{2} & a_{1} & a_{0} & \cdots & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
a_{d-2} & \cdots & \cdots & \cdots & \cdots & a_{1} \\
a_{d-1} & a_{d-2} & \cdots & \cdots & a_{1} & a_{0}
\end{array}\right]
$$

- $a_{1}=\mathbb{E}\left[x_{2} \cdot x_{3}\right]=\mathbb{E}\left[x_{d} \cdot x_{d-1}\right]$.

SPARSE RULER BASED ESTIMATION

Definition (Ruler) A subset $R \subseteq[d]$ is a ruler if for every distance $s \in\{0, \ldots, d-1\}$, there exist $j, k \in R$ with $j-k=s$.

SPARSE RULER BASED ESTIMATION

Definition (Ruler) A subset $R \subseteq[d]$ is a ruler if for every distance $s \in\{0, \ldots, d-1\}$, there exist $j, k \in R$ with $j-k=s$.
E.g., for $d=10, R=\{1,2,5,8,10\}$ is a ruler.

SPARSE RULER BASED ESTIMATION

$$
T=\left[\begin{array}{cccccc}
a_{0} & a_{1} & a_{2} & \cdots & a_{d-2} & a_{d-1} \\
a_{1} & a_{0} & a_{1} & \cdots & \cdots & a_{d-2} \\
a_{2} & a_{1} & a_{0} & \cdots & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
a_{d-2} & \cdots & \cdots & \cdots & \cdots & a_{1} \\
a_{d-1} & a_{d-2} & \cdots & \cdots & a_{1} & a_{0}
\end{array}\right]
$$

- If R is a ruler, for each $s \in\{0, \ldots, d-1\}$, there is at least one $k, \ell \in R$ with $|k-\ell|=s$ and thus with covariance

$$
\mathbb{E}\left[x_{k}^{(j)} \cdot x_{\ell}^{(j)}\right]=a_{s} .
$$

SPARSE RULER BASED ESTIMATION

$$
T=\left[\begin{array}{cccccc}
a_{0} & a_{1} & a_{2} & \cdots & a_{d-2} & a_{d-1} \\
a_{1} & a_{0} & a_{1} & \cdots & \cdots & a_{d-2} \\
a_{2} & a_{1} & a_{0} & \cdots & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
a_{d-2} & \cdots & \cdots & \cdots & \cdots & a_{1} \\
a_{d-1} & a_{d-2} & \cdots & \cdots & a_{1} & a_{0}
\end{array}\right]
$$

- If R is a ruler, for each $s \in\{0, \ldots, d-1\}$, there is at least one $k, \ell \in R$ with $|k-\ell|=s$ and thus with covariance

$$
\mathbb{E}\left[x_{k}^{(j)} \cdot x_{\ell}^{(j)}\right]=a_{s}
$$

- Get at least one independent sample of a_{s} from every $x_{R}^{(j)}$.

SPARSE RULER BASED ESTIMATION

$$
T=\left[\begin{array}{cccccc}
a_{0} & a_{1} & a_{2} & \cdots & a_{d-2} & a_{d-1} \\
a_{1} & a_{0} & a_{1} & \cdots & \cdots & a_{d-2} \\
a_{2} & a_{1} & a_{0} & \cdots & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
a_{d-2} & \cdots & \cdots & \cdots & \cdots & a_{1} \\
a_{d-1} & a_{d-2} & \cdots & \cdots & a_{1} & a_{0}
\end{array}\right]
$$

- If R is a ruler, for each $s \in\{0, \ldots, d-1\}$, there is at least one $k, \ell \in R$ with $|k-\ell|=s$ and thus with covariance

$$
\mathbb{E}\left[x_{k}^{(j)} \cdot x_{\ell}^{(j)}\right]=a_{s}
$$

- Get at least one independent sample of a_{s} from every $x_{R}^{(j)}$.
- With enough samples from \mathcal{D}, can estimate each a_{s} to high accuracy, and thus get an estimate for T.

SPARSE RULER BASED ESTIMATION

Claim: For any d there exists a sparse ruler R with $|R|=2 \sqrt{d}$

SPARSE RULER BASED ESTIMATION

Claim: For any d there exists a sparse ruler R with $|R|=2 \sqrt{d}$

- Suffices to take $R=[1,2, \ldots, \sqrt{d}] \cup[2 \sqrt{d}, 3 \sqrt{d}, \ldots, d]$.

SPARSE RULER BASED ESTIMATION

Claim: For any d there exists a sparse ruler R with $|R|=2 \sqrt{d}$

- Suffices to take $R=[1,2, \ldots, \sqrt{d}] \cup[2 \sqrt{d}, 3 \sqrt{d}, \ldots, d]$.

- Best possible leading constant is between $\sqrt{2+\frac{4}{3 \pi}}$ and $\sqrt{8 / 3}$ (Erdös, Gal, Leech, ‘48, ‘56)

SPARSE RULER SAMPLE COMPLEXITY

How many vector samples do we need? What do we pay for the optimal entry sample complexity of sparse rulers?

SPARSE RULER SAMPLE COMPLEXITY

How many vector samples do we need? What do we pay for the optimal entry sample complexity of sparse rulers?

We prove:

- Upper bound: $\tilde{O}(d)$ vector samples.
- Lower bound: O(d) vector samples.

SPARSE RULER SAMPLE COMPLEXITY

How many vector samples do we need? What do we pay for the optimal entry sample complexity of sparse rulers?

We prove:

- Upper bound: $\tilde{O}(d)$ vector samples.
- Lower bound: O(d) vector samples.

Recall that $O\left(\log ^{2} d\right)$ samples were possible when reading all entries of each sample.

SOME INTUITION

Let $\mathcal{D}=\mathcal{N}(0, T)$ be a d-dimensional Gaussian with $a_{0}=1$.

SOME INTUITION

Let $\mathcal{D}=\mathcal{N}(0, T)$ be a d-dimensional Gaussian with $a_{0}=1$.

- For $n=O\left(\frac{\log d}{\varepsilon^{2}}\right)$ all estimates of a_{s} give error $\left|\varepsilon_{s}\right| \leq \varepsilon$.

SOME INTUITION

$$
\text { Let } \mathcal{D}=\mathcal{N}(0, T) \text { be a } d \text {-dimensional Gaussian with } a_{0}=1
$$

- For $n=O\left(\frac{\log d}{\varepsilon^{2}}\right)$ all estimates of a_{s} give error $\left|\varepsilon_{S}\right| \leq \varepsilon$.

$$
\tilde{T}=\left[\begin{array}{cccccc}
a_{0}+\varepsilon_{0} & a_{1}+\varepsilon_{1} & a_{2}+\varepsilon_{2} & \cdots & a_{d-2}+\varepsilon_{d-2} & a_{d-1}+\varepsilon_{d-1} \\
a_{1}+\varepsilon_{1} & a_{0}+\varepsilon_{0} & a_{1}+\varepsilon_{1} & \cdots & \cdots & a_{d-2}+\varepsilon_{d-2} \\
a_{2}+\varepsilon_{2} & a_{1}+\varepsilon_{1} & a_{0}+\varepsilon_{0} & \cdots & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
a_{d-2}+\varepsilon_{d-2} & \cdots & \cdots & \cdots & \cdots & a_{1}+\varepsilon_{1} \\
a_{d-1}+\varepsilon_{d-1} & a_{d-2}+\varepsilon_{d-2} & \cdots & \cdots & a_{1}+\varepsilon_{1} & a_{0}+\varepsilon_{0}
\end{array}\right]
$$

SOME INTUITION

Let $\mathcal{D}=\mathcal{N}(0, T)$ be a d-dimensional Gaussian with $a_{0}=1$.

- For $n=O\left(\frac{\log d}{\varepsilon^{2}}\right)$ all estimates of a_{s} give error $\left|\varepsilon_{s}\right| \leq \varepsilon$.

$$
\tilde{T}-T=\left[\begin{array}{cccccc}
\varepsilon_{0} & \varepsilon_{1} & \varepsilon_{2} & \cdots & \varepsilon_{d-2} & \varepsilon_{d-1} \\
\varepsilon_{1} & \varepsilon_{0} & \varepsilon_{1} & \cdots & \cdots & \varepsilon_{d-2} \\
\varepsilon_{2} & \varepsilon_{1} & \varepsilon_{0} & \cdots & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\varepsilon_{d-2} & \cdots & \cdots & \cdots & \cdots & \varepsilon_{1} \\
\varepsilon_{d-1} & \varepsilon_{d-2} & \cdots & \cdots & \varepsilon_{1} & \varepsilon_{0}
\end{array}\right]
$$

SOME INTUITION

Let $\mathcal{D}=\mathcal{N}(0, T)$ be a d-dimensional Gaussian with $a_{0}=1$.

- For $n=O\left(\frac{\log d}{\varepsilon^{2}}\right)$ all estimates of a_{s} give error $\left|\varepsilon_{s}\right| \leq \varepsilon$.

$$
\tilde{T}-T=\left[\begin{array}{cccccc}
\varepsilon_{0} & \varepsilon_{1} & \varepsilon_{2} & \cdots & \varepsilon_{d-2} & \varepsilon_{d-1} \\
\varepsilon_{1} & \varepsilon_{0} & \varepsilon_{1} & \cdots & \cdots & \varepsilon_{d-2} \\
\varepsilon_{2} & \varepsilon_{1} & \varepsilon_{0} & \cdots & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\varepsilon_{d-2} & \cdots & \cdots & \cdots & \cdots & \varepsilon_{1} \\
\varepsilon_{d-1} & \varepsilon_{d-2} & \cdots & \cdots & \varepsilon_{1} & \varepsilon_{0}
\end{array}\right]
$$

- In the worst case, $\|\tilde{T}-T\|_{2}=O(\varepsilon d)$.

SOME INTUITION

Let $\mathcal{D}=\mathcal{N}(0, T)$ be a d-dimensional Gaussian with $a_{0}=1$.

- For $n=O\left(\frac{\log d}{\varepsilon^{2}}\right)$ all estimates of a_{s} give error $\left|\varepsilon_{s}\right| \leq \varepsilon$.

$$
\tilde{T}-T=\left[\begin{array}{cccccc}
\varepsilon_{0} & \varepsilon_{1} & \varepsilon_{2} & \cdots & \varepsilon_{d-2} & \varepsilon_{d-1} \\
\varepsilon_{1} & \varepsilon_{0} & \varepsilon_{1} & \cdots & \cdots & \varepsilon_{d-2} \\
\varepsilon_{2} & \varepsilon_{1} & \varepsilon_{0} & \cdots & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\varepsilon_{d-2} & \cdots & \cdots & \cdots & \cdots & \varepsilon_{1} \\
\varepsilon_{d-1} & \varepsilon_{d-2} & \cdots & \cdots & \varepsilon_{1} & \varepsilon_{0}
\end{array}\right]
$$

- In the worst case, $\|\tilde{T}-T\|_{2}=O(\varepsilon d)$.
- Setting $\varepsilon^{\prime}=\varepsilon / d, n=\tilde{O}\left(\frac{d^{2}}{\varepsilon^{2}}\right)$ would give

$$
\|\tilde{T}-T\|_{2} \leq \varepsilon \leq \epsilon\|\tilde{T}-T\|_{2}
$$

SOME INTUITION

Let $\mathcal{D}=\mathcal{N}(0, T)$ be a d-dimensional Gaussian with $a_{0}=1$.

- For $n=O\left(\frac{\log d}{\varepsilon^{2}}\right)$ all estimates of a_{s} give error $\left|\varepsilon_{s}\right| \leq \varepsilon$.

$$
\tilde{T}-T=\left[\begin{array}{cccccc}
\varepsilon_{0} & \varepsilon_{1} & \varepsilon_{2} & \cdots & \varepsilon_{d-2} & \varepsilon_{d-1} \\
\varepsilon_{1} & \varepsilon_{0} & \varepsilon_{1} & \cdots & \cdots & \varepsilon_{d-2} \\
\varepsilon_{2} & \varepsilon_{1} & \varepsilon_{0} & \cdots & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\varepsilon_{d-2} & \cdots & \cdots & \cdots & \cdots & \varepsilon_{1} \\
\varepsilon_{d-1} & \varepsilon_{d-2} & \cdots & \cdots & \varepsilon_{1} & \varepsilon_{0}
\end{array}\right]
$$

- If ε_{s} were independent, $\|\tilde{T}-T\|_{2} \leq \varepsilon \sqrt{d}$ [Meckes '07].

SOME INTUITION

Let $\mathcal{D}=\mathcal{N}(0, T)$ be a d-dimensional Gaussian with $a_{0}=1$.

- For $n=O\left(\frac{\log d}{\varepsilon^{2}}\right)$ all estimates of a_{s} give error $\left|\varepsilon_{s}\right| \leq \varepsilon$.

$$
\tilde{T}-T=\left[\begin{array}{cccccc}
\varepsilon_{0} & \varepsilon_{1} & \varepsilon_{2} & \cdots & \varepsilon_{d-2} & \varepsilon_{d-1} \\
\varepsilon_{1} & \varepsilon_{0} & \varepsilon_{1} & \cdots & \cdots & \varepsilon_{d-2} \\
\varepsilon_{2} & \varepsilon_{1} & \varepsilon_{0} & \cdots & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\varepsilon_{d-2} & \cdots & \cdots & \cdots & \cdots & \varepsilon_{1} \\
\varepsilon_{d-1} & \varepsilon_{d-2} & \cdots & \cdots & \varepsilon_{1} & \varepsilon_{0}
\end{array}\right]
$$

- If ε_{s} were independent, $\|\tilde{T}-T\|_{2} \leq \varepsilon \sqrt{d}$ [Meckes '07].
- Setting $\varepsilon^{\prime}=\varepsilon / \sqrt{d}, n=\tilde{O}\left(\frac{d}{\varepsilon^{2}}\right)$ would give

$$
\|\tilde{T}-T\|_{2} \leq \varepsilon \leq \epsilon\|\tilde{T}-T\|_{2}
$$

SPARSE RULER SAMPLE COMPLEXITY

Theorem. For any ruler $R \subset[d]$, covariance estimation with R gives $\|\tilde{T}-T\|_{2} \leq \varepsilon\|T\|_{2}$ with entry sample complexity $|R|$ and vector sample complexity $n=\tilde{O}\left(\frac{d}{\varepsilon^{2}}\right)$.

SPARSE RULER SAMPLE COMPLEXITY

Theorem. For any ruler $R \subset[d]$, covariance estimation with R gives $\|\tilde{T}-T\|_{2} \leq \varepsilon\|T\|_{2}$ with entry sample complexity $|R|$ and vector sample complexity $n=\tilde{O}\left(\frac{d}{\varepsilon^{2}}\right)$.

- Vector sample complexity matches unstructured covariance estimation, but entry sample complexity is $\underline{O(\sqrt{d}) \text { instead of } d .}$

SPARSE RULER VS. FULL RULER

Total sample complexity is $O(\sqrt{d}) \cdot \tilde{O}(d)=\tilde{O}\left(d^{3 / 2}\right)$ for sparse ruler vs. $d \cdot \tilde{O}(1)=\tilde{O}(d)$ for full sample estimation.

NOT WHATS OBSERVED IN PRACTICE...

NOT WHATS OBSERVED IN PRACTICE...

- Total sample complexity appears to be $\tilde{O}(\sqrt{d})$ for sparse rulers vs. $\tilde{O}(d)$ for full samples.

NOT WHATS OBSERVED IN PRACTICE...

Sparse rulers give much better total sample complexity when T is (approximately) low-rank.

- Total sample complexity appears to be $\tilde{O}(\sqrt{d})$ for sparse rulers vs. $\tilde{O}(d)$ for full samples.

SPARSE RULER SAMPLE COMPLEXITY

How many vector samples do we need when T is (approximately) rank k and samples are collected with a $O(\sqrt{d})$-sparse ruler?

SPARSE RULER SAMPLE COMPLEXITY

How many vector samples do we need when T is (approximately) rank k and samples are collected with a $O(\sqrt{d})$-sparse ruler?

We prove:

- Upper bound: $\tilde{O}\left(k^{2}\right)$ vector samples.
- Lower bound: $O(k)$ vector samples.

SPARSE RULER SAMPLE COMPLEXITY

How many vector samples do we need when T is
(approximately) rank k and samples are collected with a $O(\sqrt{d})$-sparse ruler?

We prove:

- Upper bound: $\tilde{O}\left(k^{2}\right)$ vector samples.
- Lower bound: $O(k)$ vector samples.

Take-away: Sublinear total sample complexity $\tilde{O}\left(k^{2} \sqrt{d}\right)$ is possible when T is low-rank.

Question: Can we reduce the dependence on d even more?

AN APPPROACH VIA FOURIER METHODS

Remainder of the talk: Sketch an entirely different approach to low-rank Toeplitz covariance estimation using sparse Fourier transform methods.

THE FOURIER PERSPECTIVE

Low-rank Vandermonde decomposition: Any rank-k Toeplitz T can be written as $F_{S} D F_{S}$ where $F_{S} \in \mathbb{R}^{d \times k}$ is an 'off-grid' Fourier transform matrix with frequencies f_{1}, \ldots, f_{k} and D is a $k \times k$ positive diagonal matrix.

THE FOURIER PERSPECTIVE

Low-rank Vandermonde decomposition: Any rank-k Toeplitz T can be written as $F_{S} D F_{S}$ where $F_{S} \in \mathbb{R}^{d \times k}$ is an 'off-grid' Fourier transform matrix with frequencies f_{1}, \ldots, f_{k} and D is a $k \times k$ positive diagonal matrix.

- Any sample $x \sim \mathcal{N}(0, T)$ can be written as $T^{1 / 2} g=F_{S} D^{1 / 2} g$ for $g \sim \mathcal{N}(0, I)$.

SAMPLE RECOVERY VIA SPARSE FOURIER FRANSFORM

$x \sim \mathcal{N}(0, T)=F_{S} D^{1 / 2} g$ is a Fourier sparse function.

SAMPLE RECOVERY VIA SPARSE FOURIER FRANSFORM

$$
x \sim \mathcal{N}(0, T)=F_{S} D^{1 / 2} g \text { is a Fourier sparse function. }
$$

SAMPLE RECOVERY VIA SPARSE FOURIER FRANSFORM

$$
x \sim \mathcal{N}(0, T)=F_{S} D^{1 / 2} g \text { is a Fourier sparse function. }
$$

- Can recover exactly e.g. via Prony's sparse Fourier transform method by reading any $2 k$ entries.

SAMPLE RECOVERY VIA SPARSE FOURIER FRANSFORM

$$
x \sim \mathcal{N}(0, T)=F_{S} D^{1 / 2} g \text { is a Fourier sparse function. }
$$

$$
\}_{\}}^{f_{k}}
$$

- Can recover exactly e.g. via Prony's sparse Fourier transform method by reading any $2 k$ entries.
- Take $n=O\left(\log ^{2} d / \varepsilon^{2}\right)$ samples, recover each in full by reading $2 k$ entries, and then apply our earlier result for full ruler $R=[d]$. Total sample complexity: $\tilde{O}\left(k / \varepsilon^{2}\right)$.

ROBUSTNESS TO APPROXIMATE LOW-RANK

What about when T is close to, but not exactly rank- k ?

ROBUSTNESS TO APPROXIMATE LOW-RANK

What about when T is close to, but not exactly rank- k ?

- Prony's method totally fails in this case.

ROBUSTNESS TO APPROXIMATE LOW-RANK

What about when T is close to, but not exactly rank- k ?

- Prony's method totally fails in this case.

Step 1: Prove that when T is close to low-rank, there is are k frequencies that approximately span each $x^{(j)} \sim \mathcal{N}(0, T)$.

ROBUSTNESS TO APPROXIMATE LOW-RANK

What about when T is close to, but not exactly rank- k ?

- Prony's method totally fails in this case.

Step 1: Prove that when T is close to low-rank, there is are k frequencies that approximately span each $x^{(j)} \sim \mathcal{N}(0, T)$.

- Not as easy as it sounds.

ROBUSTNESS TO APPROXIMATE LOW-RANK

What about when T is close to, but not exactly rank- k ?

- Prony's method totally fails in this case.

Step 1: Prove that when T is close to low-rank, there is are k frequencies that approximately span each $x^{(j)} \sim \mathcal{N}(0, T)$.

- Not as easy as it sounds.

Step 2: Use a robust sparse Fourier transform method to recover $x^{(1)}, \ldots, x^{(n)}$ and estimate T from these samples.

ROBUSTNESS TO APPROXIMATE LOW-RANK

What about when T is close to, but not exactly rank- k ?

- Prony's method totally fails in this case.

Step 1: Prove that when T is close to low-rank, there is are k frequencies that approximately span each $x^{(j)} \sim \mathcal{N}(0, T)$.

- Not as easy as it sounds.

Step 2: Use a robust sparse Fourier transform method to recover $x^{(1)}, \ldots, x^{(n)}$ and estimate T from these samples.

- Well studied in TCS, but almost exclusively in the case when f_{1}, \ldots, f_{k} are 'on grid' frequencies.

FREQUENCY-BASED LOW-RANK APPROXIMATION

Step 1: Prove that when T is close to low-rank, there is are k frequencies that approximately span each $x^{(j)} \sim \mathcal{N}(0, T)$.

FREQUENCY-BASED LOW-RANK APPROXIMATION

Step 1: Prove that when T is close to low-rank, there is are k frequencies that approximately span each $x^{(j)} \sim \mathcal{N}(0, T)$.

- Use several tools from Randomized Numerical Linear Algebra: Specifically a column subset selection result (see e.g., Guruswami, Sinop '12) + a projection-cost preservation bound (Cohen, Elder, Musco, Musco, Persu, '15).

RECOVERING A SPARSE REPRESENTATION

Step 2: Recover frequencies f_{1}, \ldots, f_{m} and $Z \in \mathbb{C}^{m \times n}$ with $X \approx F_{M} \cdot Z$. Then estimate T using this approximation.

RECOVERING A SPARSE REPRESENTATION

Step 2: Recover frequencies f_{1}, \ldots, f_{m} and $Z \in \mathbb{C}^{m \times n}$ with $X \approx F_{M} \cdot Z$. Then estimate T using this approximation.

- Find frequencies via brute force search over a net.

RECOVERING A SPARSE REPRESENTATION

Step 2: Recover frequencies f_{1}, \ldots, f_{m} and $Z \in \mathbb{C}^{m \times n}$ with $X \approx F_{M} \cdot Z$. Then estimate T using this approximation.

- Find frequencies via brute force search over a net.
- At each step of the search, for a given F_{M}, we must find Z that reconstructs X as well as possible using these frequencies. How do we do this without reading all of X ?

APPROXIMATE FREQUENCY REGRESSION

Want to find Z satisfying the approximate regression guarantee:

$$
\left\|X-F_{M} Z\right\|_{F}^{2}=O(1) \cdot \min _{Y}\left\|X-F_{M} Y\right\|_{F}^{2}
$$

APPROXIMATE FREQUENCY REGRESSION

Want to find Z satisfying the approximate regression guarantee:

$$
\left\|X-F_{M} Z\right\|_{F}^{2}=O(1) \cdot \min _{Y}\left\|X-F_{M} Y\right\|_{F}^{2} .
$$

APPROXIMATE FREQUENCY REGRESSION

Want to find Z satisfying the approximate regression guarantee:

$$
\left\|X-F_{M} Z\right\|_{F}^{2}=O(1) \cdot \min _{Y}\left\|X-F_{M} Y\right\|_{F}^{2} .
$$

- Suffices to sample $\tilde{O}(k)$ rows by the leverage scores of F_{M} and solve the regression problem just considering these rows.

APPROXIMATE FREQUENCY REGRESSION

Want to find Z satisfying the approximate regression guarantee:

$$
\left\|X-F_{M} Z\right\|_{F}^{2}=O(1) \cdot \min _{Y}\left\|X-F_{M} Y\right\|_{F}^{2}
$$

- Suffices to sample $\tilde{O}(k)$ rows by the leverage scores of F_{M} and solve the regression problem just considering these rows.
- Remark: If f_{1}, \ldots, f_{m} are 'on-grid' integers, the columns of F_{M} are orthonormal and the leverage scores are all k / n

APPROXIMATE FREQUENCY REGRESSION

Want to find Z satisfying the approximate regression guarantee:

$$
\left\|X-F_{M} Z\right\|_{F}^{2}=O(1) \cdot \min _{Y}\left\|X-F_{M} Y\right\|_{F}^{2}
$$

- Suffices to sample $\tilde{O}(k)$ rows by the leverage scores of F_{M} and solve the regression problem just considering these rows.
- Remark: If f_{1}, \ldots, f_{m} are 'on-grid' integers, the columns of F_{M} are orthonormal and the leverage scores are all $k / n \rightarrow$ RIP for subsampled Fourier matrices.

FOURIER LEVERAGE SCORES

Leverage scores measure how large a function in the column span of F_{M} can be at index i (i.e., how important that index may be in the regression.)

$$
\tau_{i}\left(F_{M}\right)=\max _{y} \frac{\left(F_{M} y\right)_{i}^{2}}{\left\|F_{M} y\right\|_{2}^{2}}
$$

FOURIER LEVERAGE SCORES

Leverage scores measure how large a function in the column span of F_{M} can be at index i (i.e., how important that index may be in the regression.)

$$
\tau_{i}\left(F_{M}\right)=\max _{y} \frac{\left(F_{M} y\right)_{i}^{2}}{\left\|F_{M}\right\|_{2}^{2}}
$$

FOURIER LEVERAGE SCORES

Leverage scores measure how large a function in the column span of F_{M} can be at index i (i.e., how important that index may be in the regression.)

$$
\tau_{i}\left(F_{M}\right)=\max _{y} \frac{\left(F_{M} y\right)_{i}^{2}}{\left\|F_{M} y\right\|_{2}^{2}}
$$

- Using that $F_{M y}$ is a Fourier sparse function we can bound this quantity a priori, without any dependence on F_{M}.

FOURIER LEVERAGE SCORES

Extend bounds of [Chen Kane Price Song '16] to give explicit function upper bounding the leverage scores of any F_{M} :

FOURIER LEVERAGE SCORES

Extend bounds of [Chen Kane Price Song '16] to give explicit function upper bounding the leverage scores of any F_{M} :

Since this distribution is universal, can sample one set of entries by these leverages scores, and find $X \approx F_{M} \cdot Z$ with high probability for any set of frequencies f_{1}, \ldots, f_{m} in net.

FOURIER LEVERAGE SCORES

Extend bounds of [Chen Kane Price Song '16] to give explicit function upper bounding the leverage scores of any F_{M} :

Since this distribution is universal, can sample one set of entries by these leverages scores, and find $X \approx F_{M} \cdot Z$ with high probability for any set of frequencies f_{1}, \ldots, f_{m} in net.

Note the resemblance to the distribution of marks in an optimal sparse ruler!

FINAL ALGORITHM

1. Sample poly (k / ε) indices $R \subset[d]$ according to the sparse Fourier leverage distribution (random 'ultra-sparse' ruler)

FINAL ALGORITHM

1. Sample poly (k / ε) indices $R \subset[d]$ according to the sparse Fourier leverage distribution (random 'ultra-sparse' ruler)

2. Solve an exponential number of regression problems to recover $\tilde{X} \approx X$.

FINAL ALGORITHM

1. Sample poly (k / ε) indices $R \subset[d]$ according to the sparse Fourier leverage distribution (random 'ultra-sparse' ruler)

2. Solve an exponential number of regression problems to recover $\tilde{X} \approx X$.
3. Return $\tilde{T}=\operatorname{avg}\left(\tilde{X} \tilde{X}^{\top}\right)$.

FINAL ALGORITHM

1. Sample poly (k / ε) indices $R \subset[d]$ according to the sparse Fourier leverage distribution (random 'ultra-sparse' ruler)

2. Solve an exponential number of regression problems to recover $\tilde{X} \approx X$.
3. Return $\tilde{T}=\operatorname{avg}\left(\tilde{X} \tilde{X}^{\top}\right)$.

Vector, entry, total sample complexity: $O($ poly $(k \log d / \epsilon))$.
Bound: $\|T-\tilde{T}\|_{2} \leq \varepsilon\|T\|_{2}+f\left(T-T_{k}\right)$

OPEN QUESTIONS AND FUTURE DIRECTIONS

OPEN QUESTIONS AND FUTURE DIRECTIONS

Concrete.

OPEN QUESTIONS AND FUTURE DIRECTIONS

Concrete.

- Runtime efficiency.

OPEN QUESTIONS AND FUTURE DIRECTIONS

Concrete.

- Runtime efficiency.
- Can hopefully avoid exponential time net approach using off-grid sparse FFT of [Chen Kane Price Song '16.]
- Convex optimization-based approaches and 'off-grid’ RIP?
- Matrix sparse Fourier transform $X \approx F_{M} \cdot Z$. Connections to MUSIC, ESPRIT, etc.

OPEN QUESTIONS AND FUTURE DIRECTIONS

Concrete.

- Runtime efficiency.
- Can hopefully avoid exponential time net approach using off-grid sparse FFT of [Chen Kane Price Song '16.]
- Convex optimization-based approaches and 'off-grid’ RIP?
- Matrix sparse Fourier transform $X \approx F_{M} \cdot Z$. Connections to MUSIC, ESPRIT, etc.
- Improve sample complexity.

OPEN QUESTIONS AND FUTURE DIRECTIONS

Concrete.

- Runtime efficiency.
- Can hopefully avoid exponential time net approach using off-grid sparse FFT of [Chen Kane Price Song '16.]
- Convex optimization-based approaches and 'off-grid' RIP?
- Matrix sparse Fourier transform $X \approx F_{M} \cdot Z$. Connections to MUSIC, ESPRIT, etc.
- Improve sample complexity.
- We give entry sample complexity of $\tilde{O}\left(k^{2}\right)$ but likely can be improved. Partial results towards $\tilde{O}(\sqrt{k})$ complexity.

FUTURE DIRECTIONS

"Low-Rank Toeplitz Matrix Estimation via Random Ultra-Sparse Rulers." Builds on work by [Qiao, Pal, 2017].

Hannah Lawrence, Jerry Li, Cameron Musco, Christopher Musco.

May 4-8th. Registration is now free! Great plenary speakers.

CONNECTIONS BETWEEN SAMPLING SCHEMES

THANKS! QUESTIONS?

