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covariance estimation

Basic statistical problem:
• Distribution D over d-dimensional vectors.
• Ex∼D[xxT] = C. Cj,k is the covariance between xj and xk.

How many samples x(1), . . . , x(n) ∼ D are required to learn C?

Reasonable goal: Find C̃ with ∥C− C̃∥2 ≤ ϵ∥C∥2.1

1Lots of other possible metrics.
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generic bound

Assuming D is high-dimensional Gaussian, subgaussian,
subexponential:

Known bound: Θ
(
d
ϵ2

)
samples are necessary and sufficient.

Estimator: Simple sample covariance.

C̃ =
n∑
i=1

x(i)x(i)T.

Analysis: Matrix concentration bounds or JL Lemma + ϵ-net
(e.g., Vershynin, “High Dimensional Probability”, 2019).

Can we improve the dependence on d?
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structured covariance

What is we know C has additional structure?

• Block structure.
• Low-rank, low-rank + diagonal.
• Diagonal, banded.
• Many other possibilities.
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structured covariance

Some easy improvements over Θ
(
d
ϵ2

)
:

• C is rank-k: Θ
(
k
ϵ2

)
. Sample covariance.

• C is diagonal: Θ
(
log d
ϵ2

)
. Estimate variance Ci,i of each

index separately. Set Ci,j = 0.

Some work on more complicated models:

• Sparse graphical models (Meinshausen, Bühlmann, 2006).
Dependence on graph sparsity.
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spatially structured covariance

But little is known for many natural structures...

Example: Spatially structured covariance matrices in ecology.
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covariance estimation

This work: Covariance matrix is Toeplitz.2

T =


a b c d e
b a b c d
c b a b c
d c b a b
e d c b a



2As for any covariance matrix, T must also be positive semidefinite.
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toeplitz covariance estimation

Arises when measurements taken on a spatial or temporal grid.
Covariance depends on distance between them: E[xj · xk] = f(|j− k|).
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toeplitz covariance estimation

Arises when measurements taken on a spatial or temporal grid.
Covariance depends on distance between them: E[xj · xk] = f(|j− k|).

Applications in signal processing: spectrum sensing/cognitive
radio, Doppler radar, direction-of-arrival estimation, prediction

via Gaussian process regression, etc.

Note: Shift-invariant kernel matrices in machine learning are
Toeplitz covariance matrices when data points are on a grid.
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sample complexity

Goal: Minimize two types of sample complexity:

• Vector sample complexity: How many samples
x(1), . . . , x(n) ∼ D are required to estimate T?

• Entry sample complexity: How many entries s must be
read from each sample x(1), . . . , x(n)?

In different applications, these complexities correspond to
different costs. Typically there is a tradeoff.
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example: direction of arrival (doa) estimation

Can back out direction of arrival θ from covariance structure.

Vector sample complexity, n : Estimation time (# snapshots).

Entry sample complexity, s: Number of active receivers.
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sample complexity

Total sample complexity: Total number of entries read, n · s.

• For general covariance matrices, vector sample complexity
is Θ(d/ϵ2), entry sample complexity is d, so total sample
complexity is Θ(d2/ϵ2).

• Seems to be interesting even beyond Toeplitz covariance
matrices, but not well studied.
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our contributions

Current state: Many algorithms for Toeplitz covariance estimation,
but few formal results on sample complexities/tradeoffs.

Our contributions:

• Non-asymptotic sample complexity bounds by analyzing classic
algorithms, including those with sublinear entry sample
complexity based on sparse ruler measurements.

• Develop improved algorithms for the case when T is
(approximately) low-rank, using techniques from matrix
sketching, leverage score-based sampling, and sparse Fourier
transform algorithms.
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a first result

Estimator: T̃ = avg
(
1
n
∑
x(j)x(j)T

)

• Vector sample complexity: O(log2 d/ϵ2)

• Entry sample complexity: d.
• Total sample complexity: O(d log2 d/ϵ2).

Improves over O(d2/ϵ2) for generic covariance matrices.
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key proof ingredient

Vandermonde decomposition: Any Toeplitz T can be written as
FSDFS where FS is an ‘off-grid’ Fourier matrix with frequencies
f1, . . . , fd ∈ [0, 1] and D is a positive diagonal matrix.

FS(j, k) = exp
(
−2π

√
−1 · j · fk

)
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very rough proof idea

Let T̂ = 1
n
∑
x(j)x(j)T. T̃ = avg

(
T̂
)
. E = T− T̃.

• Roughly, to bound ∥E∥2 = max∥z∥2=1 |zTEz|, it suffices to
bound |fTj Efj|. Obvious if f1, . . . , fd where eigenvectors of E
(they aren’t quite).

• Argue that |fTj (T− T̃)fj| = |fTj (T− T̂)fj| ≤ ϵ∥T∥2 for all j using
standard matrix concentration (Hanson-Wright inequality)
+ ϵ-net over frequencies in [0, 1] + union bound.

Question: Can O(log2 d) samples be improved to O(logd)?

16



very rough proof idea

Let T̂ = 1
n
∑
x(j)x(j)T. T̃ = avg

(
T̂
)
. E = T− T̃.

• Roughly, to bound ∥E∥2 = max∥z∥2=1 |zTEz|, it suffices to
bound |fTj Efj|. Obvious if f1, . . . , fd where eigenvectors of E
(they aren’t quite).

• Argue that |fTj (T− T̃)fj| = |fTj (T− T̂)fj| ≤ ϵ∥T∥2 for all j using
standard matrix concentration (Hanson-Wright inequality)
+ ϵ-net over frequencies in [0, 1] + union bound.

Question: Can O(log2 d) samples be improved to O(logd)?

16



very rough proof idea

Let T̂ = 1
n
∑
x(j)x(j)T. T̃ = avg

(
T̂
)
. E = T− T̃.

• Roughly, to bound ∥E∥2 = max∥z∥2=1 |zTEz|, it suffices to
bound |fTj Efj|. Obvious if f1, . . . , fd where eigenvectors of E
(they aren’t quite).

• Argue that |fTj (T− T̃)fj| = |fTj (T− T̂)fj| ≤ ϵ∥T∥2 for all j using
standard matrix concentration (Hanson-Wright inequality)
+ ϵ-net over frequencies in [0, 1] + union bound.

Question: Can O(log2 d) samples be improved to O(logd)?

16



very rough proof idea

Let T̂ = 1
n
∑
x(j)x(j)T. T̃ = avg

(
T̂
)
. E = T− T̃.

• Roughly, to bound ∥E∥2 = max∥z∥2=1 |zTEz|, it suffices to
bound |fTj Efj|. Obvious if f1, . . . , fd where eigenvectors of E
(they aren’t quite).

• Argue that |fTj (T− T̃)fj| = |fTj (T− T̂)fj| ≤ ϵ∥T∥2 for all j using
standard matrix concentration (Hanson-Wright inequality)
+ ϵ-net over frequencies in [0, 1] + union bound.

Question: Can O(log2 d) samples be improved to O(logd)?

16



very rough proof idea

Let T̂ = 1
n
∑
x(j)x(j)T. T̃ = avg

(
T̂
)
. E = T− T̃.

• Roughly, to bound ∥E∥2 = max∥z∥2=1 |zTEz|, it suffices to
bound |fTj Efj|. Obvious if f1, . . . , fd where eigenvectors of E
(they aren’t quite).

• Argue that |fTj (T− T̃)fj| = |fTj (T− T̂)fj| ≤ ϵ∥T∥2 for all j using
standard matrix concentration (Hanson-Wright inequality)
+ ϵ-net over frequencies in [0, 1] + union bound.

Question: Can O(log2 d) samples be improved to O(logd)? 16



improving entry sample complexity

Consider algorithms that sample x(1), . . . , x(n) ∼ D and read a
fixed subset of entries R ⊆ [d] from each x(j).
Approximate T using x(1)R , . . . , x(n)R ∈ R|R|.

Entry sample complexity: |R|. Total sample complexity: |R| · n.

Only get information about cov
(
xj, xk

)
for subset of pairs j, k.
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subset based estimation

How small can R be if T is Toeplitz?

Can take advantage of
redundancy.

T =



a0 a1 a2 · · · ad−2 ad−1
a1 a0 a1 · · · · · · ad−2
a2 a1 a0 · · · · · · · · ·
...

...
...

...
...

...
ad−2 · · · · · · · · · · · · a1
ad−1 ad−2 · · · · · · a1 a0



• a1 = E[x2 · x3] = E[xd · xd−1].
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sparse ruler based estimation

Definition (Ruler) A subset R ⊆ [d] is a ruler if for every distance
s ∈ {0, . . . ,d− 1}, there exist j, k ∈ R with j− k = s.

E.g., for d = 10, R = {1, 2, 5, 8, 10} is a ruler.

19
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sparse ruler based estimation

T =



a0 a1 a2 · · · ad−2 ad−1
a1 a0 a1 · · · · · · ad−2
a2 a1 a0 · · · · · · · · ·
...

...
...

...
...

...
ad−2 · · · · · · · · · · · · a1
ad−1 ad−2 · · · · · · a1 a0


• If R is a ruler, for each s ∈ {0, . . . ,d− 1}, there is at least
one k, ℓ ∈ R with |k− ℓ| = s and thus with covariance

E[x(j)k · x(j)ℓ ] = as.

• Get at least one independent sample of as from every x(j)R .
• With enough samples from D, can estimate each as to
high accuracy, and thus get an estimate for T.
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sparse ruler based estimation

Claim: For any d there exists a sparse ruler R with |R| = 2
√
d

• Suffices to take R = [1, 2, . . . ,
√
d] ∪ [2

√
d, 3

√
d, . . . ,d].

• Best possible leading constant is between
√
2+ 4

3π and
√
8/3

(Erdös, Gal, Leech, ‘48, ‘56)
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sparse ruler sample complexity

How many vector samples do we need? What do we pay for
the optimal entry sample complexity of sparse rulers?

We prove:

• Upper bound: Õ (d) vector samples.
• Lower bound: O (d) vector samples.

Recall that O(log2 d) samples were possible when reading all
entries of each sample.

22
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some intuition

Let D = N (0, T) be a d-dimensional Gaussian with a0 = 1.

• For n = O
(
log d
ε2

)
all estimates of as give error |εs| ≤ ε.

T̃ =



a0 + ε0 a1 + ε1 a2 + ε2 · · · ad−2 + εd−2 ad−1 + εd−1
a1 + ε1 a0 + ε0 a1 + ε1 · · · · · · ad−2 + εd−2
a2 + ε2 a1 + ε1 a0 + ε0 · · · · · · · · ·

...
...

...
...

...
...

ad−2 + εd−2 · · · · · · · · · · · · a1 + ε1
ad−1 + εd−1 ad−2 + εd−2 · · · · · · a1 + ε1 a0 + ε0



• In the worst case, ∥T̃− T∥2 = O(εd).
• Setting ε′ = ε/d, n = Õ

(
d2
ε2

)
would give

∥T̃− T∥2 ≤ ε ≤ ϵ∥T̃− T∥2.
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• In the worst case, ∥T̃− T∥2 = O(εd).
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(
d
ε2

)
would give

∥T̃− T∥2 ≤ ε ≤ ϵ∥T̃− T∥2.
24



sparse ruler sample complexity

Theorem. For any ruler R ⊂ [d], covariance estimation with R
gives ∥T̃− T∥2 ≤ ε∥T∥2 with entry sample complexity |R| and
vector sample complexity n = Õ

(
d
ε2

)
.

• Vector sample complexity matches unstructured
covariance estimation, but entry sample complexity is

O(
√
d) instead of d.
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sparse ruler vs. full ruler

Total sample complexity is O(
√
d) · Õ(d) = Õ(d3/2) for sparse

ruler vs. d · Õ(1) = Õ(d) for full sample estimation.
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not whats observed in practice...

Sparse rulers give much better total sample complexity when T
is (approximately) low-rank.

• Total sample complexity appears to be Õ(
√
d) for sparse

rulers vs. Õ(d) for full samples.
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sparse ruler sample complexity

How many vector samples do we need when T is
(approximately) rank k and samples are collected with a
O(

√
d)-sparse ruler?

We prove:

• Upper bound: Õ
(
k2
)
vector samples.

• Lower bound: O (k) vector samples.

Take-away: Sublinear total sample complexity Õ(k2
√
d) is

possible when T is low-rank.

Question: Can we reduce the dependence on d even more?
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an appproach via fourier methods

Remainder of the talk: Sketch an entirely different approach
to low-rank Toeplitz covariance estimation using sparse
Fourier transform methods.
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the fourier perspective

Low-rank Vandermonde decomposition: Any rank-k Toeplitz T
can be written as FSDFS where FS ∈ Rd×k is an ‘off-grid’ Fourier
transform matrix with frequencies f1, . . . , fk and D is a k× k
positive diagonal matrix.

• Any sample x ∼ N (0, T) can be written as T1/2g = FSD1/2g
for g ∼ N (0, I).
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sample recovery via sparse fourier fransform

x ∼ N (0, T) = FsD1/2g is a Fourier sparse function.

• Can recover exactly e.g. via Prony’s sparse Fourier
transform method by reading any 2k entries.

• Take n = O(log2 d/ε2) samples, recover each in full by
reading 2k entries, and then apply our earlier result for
full ruler R = [d]. Total sample complexity: Õ(k/ε2).
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robustness to approximate low-rank

What about when T is close to, but not exactly rank-k?

• Prony’s method totally fails in this case.

Step 1: Prove that when T is close to low-rank, there is are k
frequencies that approximately span each x(j) ∼ N (0, T).

• Not as easy as it sounds.

Step 2: Use a robust sparse Fourier transform method to
recover x(1), . . . , x(n) and estimate T from these samples.

• Well studied in TCS, but almost exclusively in the case
when f1, . . . , fk are ‘on grid’ frequencies.
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frequency-based low-rank approximation

Step 1: Prove that when T is close to low-rank, there is are k
frequencies that approximately span each x(j) ∼ N (0, T).

• Use several tools from Randomized Numerical Linear
Algebra: Specifically a column subset selection result (see
e.g., Guruswami, Sinop ‘12) + a projection-cost preservation
bound (Cohen, Elder, Musco, Musco, Persu, ‘15).
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recovering a sparse representation

Step 2: Recover frequencies f1, . . . , fm and Z ∈ Cm×n with
X ≈ FM · Z. Then estimate T using this approximation.

• Find frequencies via brute force search over a net.
• At each step of the search, for a given FM, we must find Z
that reconstructs X as well as possible using these
frequencies. How do we do this without reading all of X?
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approximate frequency regression

Want to find Z satisfying the approximate regression guarantee:

∥X− FMZ∥2F = O(1) ·minY∥X− FMY∥2F.

• Suffices to sample Õ(k) rows by the leverage scores of FM and
solve the regression problem just considering these rows.

• Remark: If f1, . . . , fm are ‘on-grid’ integers, the columns of FM are
orthonormal and the leverage scores are all k/n

→ RIP for
subsampled Fourier matrices.
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fourier leverage scores

Leverage scores measure how large a function in the column
span of FM can be at index i (i.e., how important that index may
be in the regression.)

τi(FM) = max
y

(FMy)2i
∥FMy∥22

.

• Using that FMy is a Fourier sparse function we can bound
this quantity a priori, without any dependence on FM.
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fourier leverage scores

Extend bounds of [Chen Kane Price Song ‘16] to give explicit
function upper bounding the leverage scores of any FM:

Since this distribution is universal, can sample one set of
entries by these leverages scores, and find X ≈ FM · Z with high
probability for any set of frequencies f1, . . . , fm in net.

Note the resemblance to the distribution of marks in an
optimal sparse ruler!
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final algorithm

1. Sample poly(k/ε) indices R ⊂ [d] according to the sparse
Fourier leverage distribution (random ‘ultra-sparse’ ruler)

2. Solve an exponential number of regression problems to
recover X̃ ≈ X.

3. Return T̃ = avg(X̃X̃T).

Vector, entry, total sample complexity: O(poly(k logd/ϵ)).

Bound: ∥T− T̃∥2 ≤ ε∥T∥2 + f(T− Tk)
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open questions and future directions

Concrete.

• Runtime efficiency.

• Can hopefully avoid exponential time net approach using
off-grid sparse FFT of [Chen Kane Price Song ‘16.]

• Convex optimization-based approaches and ‘off-grid’ RIP?
• Matrix sparse Fourier transform X ≈ FM · Z. Connections to
MUSIC, ESPRIT, etc.

• Improve sample complexity.

• We give entry sample complexity of Õ(k2) but likely can be
improved. Partial results towards Õ(

√
k) complexity.

39



open questions and future directions

Concrete.

• Runtime efficiency.

• Can hopefully avoid exponential time net approach using
off-grid sparse FFT of [Chen Kane Price Song ‘16.]

• Convex optimization-based approaches and ‘off-grid’ RIP?
• Matrix sparse Fourier transform X ≈ FM · Z. Connections to
MUSIC, ESPRIT, etc.

• Improve sample complexity.

• We give entry sample complexity of Õ(k2) but likely can be
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future directions

“Low-Rank Toeplitz Matrix Estimation via Random Ultra-Sparse
Rulers.” Builds on work by [Qiao, Pal, 2017].

Hannah Lawrence, Jerry Li, Cameron Musco, Christopher Musco.

May 4 - 8th. Registration is now free! Great plenary speakers.
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connections between sampling schemes

41



thanks! questions?
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